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Abstract: In a world overwhelmed with unstructured information, logistics companies increasingly
depend on their websites to acquire new customers and maintain existing ones. Following this
rationale, a series of technical elements may set the ground for differentiating one logistics website
from another. Nevertheless, a suitable digital marketing strategy should be adopted in order to build
competitive advantage. In this paper, the authors attempt to respond by implementing an innovative
methodology building on web analytics and big data. The first phase of the research collects data for
180 days from 7 world-leading logistics companies. The second phase presents the statistical analysis
of the gathered data, including regression, correlations, and descriptive statistics. Subsequently,
Fuzzy Cognitive Mapping (FCM) was employed to illustrate the cause-and-effect links among the
metrics in question. Finally, a predictive simulation model is developed to show the intercorrelation
among the metrics studied as well as various optimization strategies. Research findings reveal a
significant correlation between the logistics websites’ technical factors and the growth of the corporate
brand name.

Keywords: big data; web analytics; logistics; digital marketing; advertising; predictive model;
brand name; user engagement; SEM; competitive advantage

1. Introduction
1.1. Digital Marketing in Logistics Companies

According to previous research, the total size of the logistics industry in 2018 was
USD 5.58 trillion, and it has been predicted that in 2024 will be USD 6.88 trillion world-
wide [1]. This prediction illustrates a 12.3% increase in the total market, and the main
questions that the marketers and strategists must respond to are the following. (a) How can
logistics firms gain more market share in this highly competitive environment? (b) What
marketing strategy needs to be followed in order to maintain the existing customers and
attract new ones faster? (c) Considering those predictions, digital marketing can highly
contribute to the growth of logistics companies by analyzing the web analytics that plays a
crucial role in building a competitive advantage [2,3]. In this paper, the authors attempt
to answer these questions based on big data and web analytics and to examine websites’
technical factors as well as users’ behavior in the websites. Previous studies advocated
that logistics companies need to develop their websites in an easy-to-use and user-friendly
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way to attract new consumers and maintain the existing ones [4,5]. A well-designed web-
site, in addition to the user experience benefits, also provides an opportunity for better
implementation of the corporate digital marketing strategy [6].

Since one of the main forces widening the gap between markets and businesses is the
internet [7], digital marketing may play a crucial role in filling this gap [8]. According to
previous research, digital marketing contributes to logistics companies’ competitive advantage
since its adoption is more economical and more targeted than conventional marketing meth-
ods [8,9]. For example, if a television campaign costs USD 40.00 per month, the Search Engine
Marketing (SEM) campaign costs approximately 100 times less to attract the same number
of customers [10]. Another interesting example is the comparison between the placed
advertisements in newspapers and digital advertisements. To reach the same number
of customers, newspapers’ advertisements are 1000% more expensive in comparison to
digital ones [11]. Finally, one of the main advantages of the adoption of a well-designed
digital marketing strategy is “Interactivity” [8,12], which is the company’s ability to create
strong communication paths between the entity and the customers [13]. An increase in
interactivity leads to an increase in user engagement between the corporate website and the
clients and also leads to increased sales and brand name recognition [13,14]. The following
subsections discuss how interactivity can be optimized with the accurate analysis and
implementation of the website’s big data and web analytics [15,16].

This paper is divided into five sections: Section 1 depicts the introduction and literature
review; Section 2 defines the materials and methods used in this study; Section 3 presents
the results of descriptive statistics, correlation, and regression analyses, as well as the Fuzzy
Cognitive Map (FCM) and the Agent-Based Model (ABM) approaches. Next, Section 4
discusses the findings, followed by Section 5 with the conclusions, which include research
and practical implications.

1.2. Big Data in Logistics Websites

Big data analytics is growing more popular in a variety of fields, from logistics [17]
and marketing [18] to neuroscience [19] and psychology [20]. The reason behind that is
the growing necessity of structuring and using all that unstructured information [21]. This
logic came to the surface 2500 years ago when Thucydides, in his work “Peloponnesian
war”, explained that the person that possesses the ability to structure all the unstructured
information can create intelligence, which leads to power [22]. Consequently, big data
analytics can play a crucial role in corporate competitive advantage [23,24]. Big data may
well be described as large volumes of complex data that need advanced tools and processes
to gather and critically analyze for intelligence production [25,26].

According to previous researchers, four crucial elements can be found underlying
big data [8,27]. Big data “Volume” refers to the volume and size of unstructured data that
businesses gather and attempt to manage [8,25], for instance, the number of visitors that
entered a website and the analysis of their behavior. Second, big data “Variety” refers to the
variety and diversity of dissimilar and incompatible data types, such as raw data that need
to be processed to provide an added value to the corporate marketing strategy [8,26,27].
Third, big data “Velocity” refers to the speed at which businesses collect and handle those
data [8]. For instance, every 24 h, Google has to process 3,500,000,000 searches and Twitter
500,000,000 tweets [28]. Finally, big data “Value” from a corporate point of view is the most
important one [25,27,29]. Big data’s value is generally derived from pattern detection or an
algorithm analysis, which leads to increased efficiency, greater customer interactivity, and
other tangible and measurable benefits [25,27,29].

According to the above logic of big data, the following questions have emerged. What
will happen if a logistics website does not process a parcel quote fast enough and the
customer must wait? What will happen if the customer must wait too long for the webpage
to fully load? To respond to these research questions, we have to estimate “how much time
exactly” is the waiting period and why. With the valuable assistance of big data analytics,
web analytics marketers and developers can respond to those questions and possibly revert
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the unwanted outcomes. Consequently, the adoption of big data analytics is crucial for
logistics companies to acquire a competitive advantage [30]. There are different types of
big data analytics, such as audio analytics, social media analytics, video analytics, and
predictive analytics [25,31–34]; this research is focused on predictive analytics. Predictive
analytics refers to the extraction of historic unstructured data and the creation of predictions
based on them [25,35–37]. Predictive analytics are useful in environmental research [38]
and retailing [39] but are commonly used in the logistics industry also [40–44].

1.3. Web Analytics Key Performance Indicators (KPIs) and Corporate Brand Name

Our study is based on predictive analytics as well as their connection with logistics
websites’ web analytics. More specifically, that kind of analytics provides researchers and
marketers the ability to gather logistics websites’ historical data and then create a simulation
to investigate the correlations between the examined metrics [37,39]. Another crucial factor
that logistics companies have to take into consideration is the incorporation of web analytics
into their marketing strategy to acquire a competitive advantage [2,45]. Web analytics (WA)
can play a role in the acquisition of competitive advantage through the extraction and
analysis of various metrics that contribute to a website’s visibility and brand name, such
as “Organic Traffic” and “Global Rank” [46–48]. Predictive analytics were obtained in the
type of web analytics for this study since those were acquired from seven world-leading
logistics webpages. The chosen companies are among the top 10 third-party logistics (3PL)
companies based on their size and profit [49]. The main prerequisites were the use of
Facebook and Instagram for their social media promotion as well as the use of their website
for the digital promotion of their services. Following several research recommendations,
the authors chose seven logistics websites, as that is considered an adequate number for
the type of analysis that this research performs and depicts a sufficient number to produce
results for the logistics sector [9,14].

The procedure of studying the behavior of users on a website is known as web
analytics [2,3]. Previous studies have shown that logistics websites’ brand name, as well as
the digital marketing strategy, can be dramatically improved by the correct implementation
of web analytics [4,5,9]. Key performance indicators are web analytics that have been
extracted from the examined websites and have been utilized quantitatively [50]. The WA
KPIs are divided into two categories; on the one hand, there are the technical factors which
include “Fully Loaded Time”, Total Page Size”, and website’s “Requests”, and on the other
hand, the behavioral KPIs, such as “Organic Traffic”, “Average Duration”, and “Pages
per Visits” [4,51,52]. The authors extracted the behavioral KPIs from the SEMrush and
Alexa platforms, and the technical factors were extracted from the GTmetrix platform. The
examined metrics are presented in Table 1.

Table 1. Presentation of the extracted Web analytics KPIs.

Web Analytics KPIs Description of the Web Analytics KPIs

Organic Traffic Organic traffic refers to users that arrive at the corporate website through a non-paid way [9,53,54].

Fully Loaded Time According to GTmetrix, Fully Loaded Time refers to the time in seconds that it takes for a website to fully
load [55].

Total Page Size The sum of the totality of the components required to load a website is referred to as Total Page Size.
This contains the HTML and CSS, as well as the pictures [56].

Requests The number of requests necessary to render a website is reduced as the number of elements on the page
is reduced, resulting in quicker page loading [57].

Global Rank
This WA Key Performance Indicator is derived from the overall traffic on the platform, including organic,
social, and paid traffic. The lower the worldwide rank, the more well-known the website, since a website
in the 1st place has a better ranking in comparison to a website in the 15th place [14,58].

Bounce Rate When a customer enters a website and immediately exits without seeing anything more, this is known as
a bounce rate [59].
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Table 1. Cont.

Web Analytics KPIs Description of the Web Analytics KPIs

Average Time on Site This KPI measures how long a user remains on a corporate website [60].

Pages per Visit When users enter a corporate webpage, they view a number of pages; the KPI “Pages per Visits”
calculates this number [61].

Paid Traffic Paid Traffic is generated solely through paid methods. For instance, when a user selects a Google ad and
is redirected to the corporate website. [62,63].

Social Traffic When a user is redirected from Facebook, Instagram, or social media in general to the corporate website,
it produces the KPI Social Traffic. [60,64]. This research is limited to Instagram and Facebook.

Total Visitors This KPI calculates the total number of users that enter a corporate website each day [60,65].

1.4. Research Hypotheses

In order to build a competitive advantage, logistics companies have to analyze their
environment through all the available sources, including digital ones. Among the digital
sources that affect their strategy are the technical factors of the websites, which include
“Fully Loaded Time”, “Total Page Size”, and “Request”. Those factors are crucial since we
can identify in a tangible quantitative view the efficiency of the website [4]. Additionally,
the examination of the behavioral factors such as “Average Time on Site” provides added
value to marketing strategy since those factors offer indirect information for the user
experience [9,14]. The intercorrelated examination of both factors will present available
digital marketing optimization strategies. The research gap can be located in the previously
limited research in the field of digital marketing in the logistics sector with the assistance
of big data and web analytics. Additionally, since it is crucial for logistics companies to
acquire a competitive advantage, it is useful to incorporate big data in this analysis. The
unique perceptiveness of this research is important since raw undisputed big data have
been extracted and analyzed to provide useful results for the actual behavior of the users
on these websites, which could provide valuable insights for the increase of the digital
brand name in logistics companies.

The findings of this study will be useful for decision-makers, developers, and mar-
keters to identify the specific technical elements that differentiate one logistics website
from another as well as the best digital marketing strategy that should be adopted. More
specifically, decision-makers can optimize digital investments by the examination of those
web analytics and incorporating them into a general strategy to increase corporate brand
name [66–68]. Additionally, website developers can get useful insights on why and how a
user-friendly website can optimize visibility [4,69,70]. Finally, marketers can identify ways
to accomplish competitive differentiation leading to a competitive advantage [71,72]. As a
consequence, the following hypotheses have been generated to gain a better understanding
of the significance of big data and WA implementation and their impact on the corporate
brand name.

Hypothesis 1 (H1). “Total Page Size” of logistics companies affects “Organic Traffic” variable
through their “Total Visitors” metric.

The first hypothesis attempts to identify if the technical parameter “Total Page Size”
and the behavioral parameter “Total Visitors” affect the metric “Organic Traffic”. This
hypothesis aims to identify if the above technical factors affect logistics webpage visibility.

Hypothesis 2 (H2). “Total Visitors” of logistics companies affects “Social Traffic” variable through
their “Fully Loaded Time” metric.



Processes 2022, 10, 892 5 of 20

The second hypothesis focuses on the investigation of the effects of the behavioral
parameter “Total Visitors” and the technical “Fully Loaded Time” with the metric “Social
Traffic”. This hypothesis attempts to identify the effects of the websites’ technical factors
on the traffic generated from social media platforms such as Facebook and Instagram.

Hypothesis 3 (H3). “Requests” of logistics companies affect “Paid Traffic” variable through their
“Bounce Rate” metric.

This hypothesis attempts to determine if the technical parameter “Requests” and
the behavioral parameter “Bounce Rate” affect the metric “Paid Traffic”. This research
hypothesis is important since logistics managers have to understand the effectiveness of
their advertisements in correlation to the users that exit the website immediately after
they enter.

Hypothesis 4 (H4). “Average Visits Duration” of logistics companies affects “Paid Traffic”
variable through their “Total Visitors” metric.

The fourth hypothesis focuses on the effects of the parameters “Average Visits Du-
ration” and “Total Visitors” on the “Paid Traffic”. This hypothesis is crucial since the
effectiveness of the behavioral metrics on paid advertisements can be identified.

Hypothesis 5 (H5). “Global Rank” of logistics companies is affected by “Fully Loaded Time”,
“Total Page Size”, and “Requests”.

The final hypothesis attempts to discover the effects of the logistics websites’ technical
factors “Fully Loaded Time”, “Total Page Size”, and “Requests” on the corporate brand
name. The findings will provide interesting insights to developers and marketers about the
usability and efficiency of corporate websites.

The purpose of the study is to examine the impact of the websites’ technical factors on
the corporate brand name. For this reason, five research questions have been formulated
to provide a holistic assessment of the main research purpose. More specifically, it is
crucial for the companies to know the impact of the website size and loading time on the
website’s visibility (H1, H2). Additionally, it is important to know the efficiency of their
paid advertisements and how to optimize them (H3, H4), and finally, how all the previous
elements combined affect the corporate brand name (H5).

2. Materials and Methods

In this study, the authors adopted an alternative methodology to evaluate the effects
of the logistics websites’ technical and behavioral factors on the corporate website visibility
and brand name. This methodology was adopted since the raw extracted data are not
affected by any potential cognitive bias [73,74]. At the first stage of the study, web metrics
were gathered for seven world-leading logistics companies. Those data were gathered from
internet platforms daily for 180 days for the behavioral and technical data, respectively.
Additionally, statistical analysis was performed, more specifically, descriptive statistics,
correlations, and regression analysis.

In the second part of the study, an exploration model was developed to present the
intercorrelations between the examined metrics, as well as three optimization scenarios,
to provide decision-makers with a clear picture of the examined metrics. Finally, after
the macro-scale analysis, a microanalysis was implemented supported by regression and
correlation analysis to create a simulation model that illustrates users’ activity on a corporate
website [75].

2.1. Selection, Retrieval, and Statistical Analysis

Web analytics were gathered from seven logistics websites. The logistics firms were
selected based on their profitability [49,76]. SEMrush was used for the extraction of the
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behavioral data and, more specifically, for the metrics: “Organic Traffic”, “Global Rank”,
“Bounce Rate”, “Average Time on Site”, “Pages per Visit”, “Paid Traffic”, “Social Traffic”,
and “Total Visitors”. GTmetrix was used for gathering technical metrics, such as: “Fully
Loaded Time”, “Total Page Size”, and “Requests”. After the extraction of data, the authors
conducted a statistical analysis. This statistical analysis provides a comprehensive picture
of all the factors and how those interconnected factors affect the marketing strategy.

2.2. Exploratory Model Creation

The statistical analysis revealed various correlations among the examined factors. The
adoption of the Fuzzy Cognitive Map (FCM) is based on this statistical analysis. The FCM’s
main aim is to provide a graphic representation of the positive and negative, cause and effect
connections between the web metrics that are being examined [75,77]. Additionally, the
authors use this method to create three optimization scenarios since this macro-scale model
was created to show the strength of correlations and can be utilized in the construction of a
successful marketing strategy [75,77,78].

2.3. Agent-Based Model

After the creation of the macro-scale model (FCM), a micro-scale model was developed.
Agent-Based Models (ABM) provide the ability to simulate and estimate all the behavioral
and technical factors that affect the corporate brand name and visibility [9,75,79]. The
contribution of the ABMs to digital marketing and decision-making is profound and has
been analyzed in various previous research [80,81]. More specifically, ABMs provide
the ability for marketers to create simulations for real-life problems and to analyze user
behavior with no cost for the extraction of valuable decision-making strategies [79,81]. The
following section presents the results of the study.

3. Results
3.1. Statistical Analysis

The results of the data gathering platforms, presented in Table 1, are discussed in
this section. The results are based on data collected from seven world-leading logistics
companies [76]. The collected data were merged per category to present the total results
for the logistics sector. For instance, the metric “Webpages’ Total Page Size” represents the
analysis of all logistics companies. Table 2 illustrates the descriptive statistics from the data
collection of 180 days.

Table 2. Descriptive Statistics for 7 logistics webpages during 180 consequent days.

Mean Min Max Std. Deviation

Webpages’ Organic Traffic 31,199,621.47 3,123,349.00 67,839,204.00 19,997,235.96
Webpages’ Paid Traffic 445,757.35 11,435.00 1,564,843.00 502,902.50
Webpages’ Average Time on Site 517.69 412.00 766.00 103.45
Webpages’ Bounce Rate 0.468 0.349 0.592 0.079
Webpages’ Pages/Visit 2.81 2.20 3.54 0.51
Webpages’ Total Visitors 141,205,016.26 5,418,390.00 375,118,623.00 128,953,195.18
Webpages’ Global Rank 11,944.90 8983.00 14,445.00 1900.42
Webpages’ Total Page Size 1.947 0.874 9.198 1.0784
Webpages’ Requests 90.80 27 152 24.983
Webpages’ Fully Loaded Time 4.373 1.48 49.55 3.21452
Webpages’ Social Traffic 1,410,459.42 17,309.00 3,837,538.00 1,431,734.58

Tables 3 and 4 illustrate Pearson’s coefficients and regression analysis testing the first
hypothesis (H1).
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Table 3. Coefficients between the examined metrics for H1.

Correlations Organic Traffic Total Page Size Total Visitors

Organic Traffic 1

Total Page Size 0.033 1

Total Visitors 0.962 ** 0.018 1
** Correlation is significant at the 0.01 level (1-tailed).

Table 4. First hypothesis’ Regression.

Variables Standardized Coefficient R2 F p-Value

Constant (Organic Traffic) - 0.927 5357.912 <0.001
Total Page Size 0.015 0.087
Total Visitors 0.962 ** 0.000

** Correlation is significant at the 0.01 level (1-tailed).

As illustrated in Table 3, a significant positive correlation with ρ = 0.962 ** was
observed between the traffic and Total Visitors, implying that as traffic increases, more
people will visit the logistics webpage. Furthermore, non-significant correlations have been
found between the total page size, the total visitors, and organic traffic with ρ = 0.018 and
ρ = 0.033, respectively. This result illustrates that there is no correlation between the total
webpage size and visibility. The regression analysis is presented in Table 4. The regression
analysis model is significant, with p-values < 5%. The results are significant, and more
specifically, with every 1% increase in organic traffic, the total visitors and total page size
increase by 1.5% and 96.2% accordingly.

Tables 5 and 6 illustrate the Pearson’s coefficients and the regression of the second
hypothesis (H2).

Table 5. Coefficients between the examined metrics for H2.

Correlations Social Traffic Fully Loaded Time Total Visitors

Social Traffic 1

Fully Loaded Time −0.029 1

Total Visitors 0.931 ** −0.012 1
** Correlation is significant at the 0.01 level (1-tailed).

Table 6. Second hypothesis’ Regression.

Variables Standardized Coefficient R2 F p-Value

Constant (Social Traffic) - 0.868 2749.090 0.683
Fully Loaded Time −0.018 0.150
Total Visitors 0.931 ** 0.000

** Correlation is significant at the 0.01 level (1-tailed).

As presented in Table 5, a significant positive correlation with ρ = 0.931 ** has been
detected between the social traffic and total visitors, suggesting that as the social traffic
increases, more people will visit the corporate website. Additionally, non-significant
negative correlations have been found between the fully loaded time, the total visitors,
and social traffic with ρ = −0.029 and ρ = −0.012, respectively. That indicates that when
the webpage takes less time to load, more visitors access the website. This is the expected
behavior since if the webpage takes too long to load, visitors exit the website [82]. As for
the regression, with every 1% increase in Social Traffic, the total visitors increased by 93.1%,
and fully loaded time decreased by 1.8%.
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Tables 7 and 8 illustrate the Pearson’s coefficients and the regression of the third
hypothesis (H3).

Table 7. Coefficients between the examined metrics for H3.

Correlations Paid Traffic Bounce Rate Requests

Paid Traffic 1

Bounce Rate 0.675 ** 1

Requests −0.013 0.024 1
** Correlation is significant at the 0.01 level (1-tailed).

Table 8. Third hypothesis’ Regression.

Variables Standardized Coefficient R2 F p-Value

Constant (Paid Traffic) - 0.457 351.929 <0.001
Bounce Rate 0.676 ** <0.001
Requests −0.029 0.249

** Correlation is significant at the 0.01 level (1-tailed).

Table 7 illustrates a significant positive correlation with ρ = 0.675 ** between the paid
traffic and the bounce rate. This is interesting since it indicates that most of the users
that entered the websites from a paid advertisement exited from it without any activity.
Additionally, non-significant correlations have been observed between the requests, the
bounce rate, and social traffic with ρ = 0.024 and ρ = −0.013, respectively. The latter
illustrates that paid advertisements, to be effective, need to be placed on a targeted crowd.
The regression is presented in Table 8. Regression is significant, with p-values < 5%. The
results of the H3 are significant, and with every 1% increase in paid traffic, the bounce rate
increased by 67.6%, and requests decreased by 2.9%.

Tables 9 and 10 present the Pearson’s coefficients and the regression of the fourth
hypothesis (H4).

Table 9. Coefficients between the examined metrics for H4.

Correlations Paid Traffic Total Visitors Average Time on Site

Paid Traffic 1

Total Visitors 0.766 ** 1

Average Time on Site 0.275 ** −0.149 ** 1
** Correlation is significant at the 0.01 level (1-tailed).

Table 10. Fourth hypothesis’ Regression.

Variables Standardized Coefficient R2 F p-Value

Constant (Paid Traffic) - 0.742 1204.316 <0.001
Total Visitors 0.826 ** <0.001
Average Time on Site 0.398 ** <0.001

** Correlation is significant at the 0.01 level (1-tailed).

As illustrated in Table 9, significant positive correlations with ρ = 0.766 ** and
ρ = 0.275 ** were observed between the paid traffic, total visitors, and average time on
site, respectively. This is as expected since paid advertisements increase the number of
visitors and the time spent on site. On the other hand, a negative significant correlation was
observed between the total number of visitors and the average time on site with =−0.149 **.
This result indicates that the vast majority of the visitors who entered from a paid advertisement
on the website might have entered accidentally and exited after some seconds. The regression
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is presented in Table 10. Regression is significant, with p-values < 5%. More specifically, the
results are significant since, with every 1% increase in paid traffic, the total visitors and
average time on site increase by 82.6% and 39.8%, respectively.

Tables 11 and 12 illustrate the Pearson’s coefficients and the regression of the fifth
hypothesis (H5).

Table 11. Coefficients between the examined metrics for H5.

Correlations Global Rank Fully Loaded Time Total Page Size Requests

Global Rank 1

Fully Loaded Time 0.088 * 1

Total Page Size −0.268 ** 0.059 1

Requests 0.101 ** −0.071 * 0.158 * 1
* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (1-tailed).

Table 12. Fifth hypothesis’ Regression.

Variables Standardized Coefficient R2 F p-Value

Constant (Global Rank) - 0.107 33.291 <0.001
Fully Loaded Time 0.117 ** <0.001
Total Page Size −0.300 ** <0.001
Requests 0.157 ** <0.001

** Correlation is significant at the 0.01 level (1-tailed).

As illustrated in Table 1, multiple significant correlations were observed among global
rank, fully loaded time, and requests with ρ = 0.088 *, ρ = −0.268 **, and ρ = 0.101 **,
respectively, implying that as traffic increases, more users will visit the logistics webpage.
Drawing from this finding, it can be seen that the global rank and, as a consequence,
the brand name of a logistics website is affected by the technical factors of the website.
Additionally, the regression is presented in Table 12. More specifically, the results are
significant, and with every 1% increase in global rank, an increase can be observed in fully
loaded time and requests as well as a decrease in total page size by 11.7%, 15.7%, and 30%,
respectively. Given that R2 is rather restricted (0.107), although this hypothesis is accepted,
generalizations should be made with caution.

3.2. Fuzzy Cognitive Map

The above statistical analysis was used for the creation of the Fuzzy Cognitive Map.
An FCM can illustrate the fundamental parameters of a system as well as present the level
of correlations (−1,1) between the examined metrics [75,78]. This feature is important
for decision-makers and useful for big data analysts. Since big data are unstructured
information, the illustration on a map of the cause and effects relationships of a system is
very useful for marketers [83]. This method was used in this paper since it was frequently
used in earlier SEO and SEM studies [14,79,84,85]. Figure 1 presents the FCM with the
degree of correlation. The thicker the line, the higher the correlation.
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3.2.1. Adoption of Fuzzy Cognitive Map Scenarios to Analyze the Data

Supporting the progress of the FCM model, three optimization scenarios were run
to assess the predicted variations in the KPIs at different phases of user activity on the
corporate website. In these scenarios, the Sigmoid function has been used because it
provides the ability to use the interval (−1,1) and illustrates the degree of impact between
the examined metrics [86]. Figure 2 presents the technical factors optimization scenario.
According to this scenario, if the company manages to reduce the loading time of the
webpage by 5%, it will observe a 1% decrease in global rank, which is beneficial because
the second website in rankings is better than the 15th, and the average time on site spent
from a user by 1%. This is expected behavior because, according to previous research, a lot
of users exit the website if a page takes more time than expected to load [82].
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Figure 3 presents the visibility optimization scenario, and in this case, some interesting
outcomes have been observed. If the company increases the visitors and the organic traffic
by 10%, the total pages per visit will increase by 2%, the average time on site by 5%, and
the bounce rate will decrease by 8%. This is expected because the sudden rise brings
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the corporate website more users that spend more time and search more pages on the
corporate website.
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Figure 4 presents the brand name optimization scenario. If the company’s target is to
decrease its global rank by 40%, it has to increase the organic traffic by 1%, the paid traffic
by 1%, and the social media traffic by 3%. This interesting observation relies on the fact
that social media advertisements have more impact on the logistics brand name than paid
advertisements through search engines. Additionally, in order to acquire a better brand
name, the logistics websites need to generate 1% more visitors well as decrease the fully
loaded time by 2%.
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3.3. Adoption of ABM

An agent-based model was adopted to provide a microanalysis of the issue [75]. Its
adoption is beneficial for marketers and decision-makers since the agent-based models
provide simulations for real-world situations and evaluate user behavior to extract useful
decision-making and marketing strategies [9,79,81]. Additionally, the usage of Agent-Based
Models allows organizations to fully comprehend the insights provided by big data in
terms of user interaction with their websites, as well as chances for growth [79,81]. The
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complete model was created using the Anylogic 8.7.9 software and the programming
language “Java.”

The model depicts the usual behavior of a customer that enters a logistics website.
More specifically, the gray top box illustrates the initial position of an agent. The model
simulates all the processes from the way that a customer enters the website (traffics) up
to the production of the global rank. Changes to the needed circumstances are shown as
variables (V) at the bottom of the image in Figure 5 that cause movement among the blocks,
which is displayed on the ABM with black arrows. For this model, the Poisson distribution
was used because it provides the ability to incorporate into the model the statistical analysis
presented in Section 3.1 [87,88].
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The simulation starts from the top gray box where agents are distributed, with the
assistance of the statistical analysis, to the logistics website either through paid, social, or
organic traffic (yellow boxes). Following, a part of the agents exits the website through the
bounce rate white box, and another part continues to the website providing the well-known
behavioral metrics, average time on site, total visitors, and pages per visit (green boxes).
After that, the agents moved to the technical factors following the Poisson distribution. The
technical factors are presented in Figure 5 in cyan boxes. Finally, the agents arrive at the
global ranking box (blue), which provides the global rank, and then proceed to the general
agents’ pool on the top (gray box).

Figure 6a,b illustrate the population allocation results over a period of 180 days.
Figure 6a illustrates the 12th day of the simulation, where the gray agents represent the
potential visitors and the yellow agents the traffic sources, either social, paid, or organic
traffic, of the logistics websites. Figure 6b presents the simulation after the 71st day and
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illustrates that more cyan agents are created that represent the technical factors and more
blue agents that represent the global rank. This is expected behavior because, after 70 days,
the brand name has been created. Additionally, the red agents represent the bounce rate,
and the green agents represent the behavioral factors. The following Figures illustrate the
results of the simulation.
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Figures 7 and 8 depict the simulation’s results of the visibility factors, and more
specifically, Figure 8 illustrates the total visitors and the organic traffic, and Figure 7
presents the social traffic and paid traffic. The horizontal axis represents the duration of
the model for 180 consequent days, and the vertical axis illustrates the values given from
the simulation. The yellow line in Figure 7 shows a stream of advertisements (paid traffic)
placed from the logistics companies, and the pink line depicts the visitors that access the
websites from social media advertisements. In Figure 8, it can be observed that the paid
advertisements in Figure 7 have slightly affected the number of visitors to the logistics
websites. On the other hand, the placements of social media advertisements in Figure 7
had a crucial impact on the total number of visitors. This interesting result illustrates that
the logistics sector websites are affected much more by social media advertisements than
the general Google or website advertisements and suggests to logistics industry marketers
to invest much more in social media than in other sources to promote visibility.



Processes 2022, 10, 892 14 of 20

Processes 2022, 10, 892 14 of 20 
 

 

the logistics sector websites are affected much more by social media advertisements than 
the general Google or website advertisements and suggests to logistics industry marketers 
to invest much more in social media than in other sources to promote visibility. 

Figure 9 depicts the simulation results for the global rank variable. As can be 
identified, there is a significant improvement when social media advertisement is placed. 
The major change can be observed again after day 23 and the spike of the social media 
advertisements, where the global ranking gets much better values day after day (negative 
values because the 2nd place in the global ranking is better than the 150th place). This 
finding highlights to decision-makers the importance of social media to the logistics 
industry as well as the possible beneficial impact of investing in social media in order to 
optimize the corporate brand name [89]. Finally, the global ranking seems to be impacted 
much more by social media advertisements than the general paid traffic which means that 
the social media advertisements have a better return on investment than the general paid 
advertisements (Google ads or ads on other websites). 

 
Figure 7. The time chart depicts the history of the contribution of the following traffic factors: Social 
traffic and Paid Traffic during 180 days. 

 
Figure 8. The time chart depicts the history of the contribution of the following visibility factors: 
Organic traffic and Total visitors during 180 days. 

 

Figure 7. The time chart depicts the history of the contribution of the following traffic factors: Social
traffic and Paid Traffic during 180 days.

Processes 2022, 10, 892 14 of 20 
 

 

the logistics sector websites are affected much more by social media advertisements than 
the general Google or website advertisements and suggests to logistics industry marketers 
to invest much more in social media than in other sources to promote visibility. 

Figure 9 depicts the simulation results for the global rank variable. As can be 
identified, there is a significant improvement when social media advertisement is placed. 
The major change can be observed again after day 23 and the spike of the social media 
advertisements, where the global ranking gets much better values day after day (negative 
values because the 2nd place in the global ranking is better than the 150th place). This 
finding highlights to decision-makers the importance of social media to the logistics 
industry as well as the possible beneficial impact of investing in social media in order to 
optimize the corporate brand name [89]. Finally, the global ranking seems to be impacted 
much more by social media advertisements than the general paid traffic which means that 
the social media advertisements have a better return on investment than the general paid 
advertisements (Google ads or ads on other websites). 

 
Figure 7. The time chart depicts the history of the contribution of the following traffic factors: Social 
traffic and Paid Traffic during 180 days. 

 
Figure 8. The time chart depicts the history of the contribution of the following visibility factors: 
Organic traffic and Total visitors during 180 days. 

 

Figure 8. The time chart depicts the history of the contribution of the following visibility factors:
Organic traffic and Total visitors during 180 days.

Figure 9 depicts the simulation results for the global rank variable. As can be identified,
there is a significant improvement when social media advertisement is placed. The major
change can be observed again after day 23 and the spike of the social media advertisements,
where the global ranking gets much better values day after day (negative values because
the 2nd place in the global ranking is better than the 150th place). This finding highlights
to decision-makers the importance of social media to the logistics industry as well as the
possible beneficial impact of investing in social media in order to optimize the corporate
brand name [89]. Finally, the global ranking seems to be impacted much more by social
media advertisements than the general paid traffic which means that the social media
advertisements have a better return on investment than the general paid advertisements
(Google ads or ads on other websites).
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4. Discussion

The main goals of this study are, on the one hand, to examine the effects of the
websites’ technical factors and behavioral factors on the logistics websites’ visibility and
brand name, and on the other hand, to suggest digital marketing optimization strategies
in order to improve corporate brand name. More specifically, the first hypothesis (H1),
which is built on previous studies [90,91], highlights the importance of developing websites
with low size to optimize visibility, as presented in the technical optimization scenario
in Section 3.2.1. The second hypothesis (H2) illustrates the necessity of placing more
advertisements on social media than on other websites since the return on investment
could be higher. This significant result is illustrated in the agent-based model and supported
by previous researchers [92,93]. Additionally, the findings, as also presented in the technical
optimization scenario in Section 3.2.1, highlight the necessity of minimizing the fully loaded
time because if a customer must wait too long for a page to load, they are more likely to
exit the website immediately [94,95].

The results of the third hypothesis (H3) revealed no correlation between the request
and the percentage of visitors that exit the website but illustrated a great correlation
between bounce rate and paid traffic. This finding illustrates that a large number of visitors
that entered the website from a paid advertisement exit without viewing anything. This
practically means that visitors clicked the advertisement and entered accidentally, and
this underlines the finding of the first hypothesis. The fourth hypothesis (H4) found a
correlation between the time spent on the website, the visibility, and the paid traffic, as
presented in the visibility optimization scenario in Section 3.2.1, and on the execution of
the agent-based model in Section 3.3, the paid advertisements (social and general) have
a beneficial impact on corporate websites’ traffic and visibility [14,16,92,93]. Finally, the
findings for the fifth hypothesis (H5) were very interesting. Statistical analysis and the
brand name optimization scenario illustrated a great impact of technical factors on the
corporate global ranking. More specifically, when the website takes less time to load, it
increases the ranking and the corporate brand name. Companies must construct user-
friendly websites to increase their brand name. For example, the consumer must be able
to find a tracking number as fast as possible and without waiting for a webpage to load,
which will contribute to the development of brand loyalty [96]. An additional finding
highlights the beneficial effects of social media advertisements on the brand name [97,98].

5. Conclusions
5.1. Theoretical Implications

This research contributed by developing a three-stage data-driven technique for mea-
suring the effect of technical and behavioral factors on seven logistics companies’ websites.
Additionally, the study broadens researchers’ toolbox while attempting to extend crucial
digital marketing previous results and future strategies. More specifically, this study pre-
sented the usefulness of Fuzzy Cognitive Maps in the examination of macro-level situations
and the creation of optimum digital marketing scenarios. Additionally, the adoption of
agent-based models provides the researchers with the ability to run iconic simulations for
free. This research perspective moves digital marketing research forward to a new and
more practical approach.

5.2. Practical Implications

The practical implications of this study are three-fold. First, marketers can benefit from
the implementation of both general paid and social media advertisements, but they have to
emphasize social media advertisements because it will increase the website’s visibility and
brand name faster. Second, developers need to make sure that the logistics website will be
easy to use and user-friendly since the technical factors are highly related to the corporate
brand name. Third, decision-makers need to consider the adoption of Fuzzy Cognitive
Maps and Agent-based models while designing their corporate strategy. The adoption of
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those methods will save cost, effort, time, and potential damage for the companies, since
there is no need to test the scenarios in real life but on a platform instead.

5.3. Future Research and Limitations

This study implemented an innovative methodology and provided useful insights
for logistics managers globally. There are several limitations and suggestions for future re-
search. The current research is based on the seven biggest world-leading logistics websites
and provides global practical implications. The next step must be based on microenviron-
ments. For instance, the competition among the logistics websites in the Mediterranean
Sea [99]. This will give more accurate findings for SMEs. Another limitation is that there is
no in-depth examination of the above advertisements either on social media or on websites.
Future research can examine the optimal website advertisements for social media based
on neuromarketing [100]. Finally, research data are extracted from data platforms which,
on the one hand, provide accurate and indisputable big data, but on the other hand, the
organizational culture cannot be identified. Finally, future research could examine and
correlate both big data and qualitative research through interviews to reveal underlying
mechanisms [101].
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