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Abstract: Efficient and reasonable utilization of waste biomass resources can not only avoid serious
waste of material resources, but also solve the problem of environmental pollution. Therefore, the
development of efficient and environmentally friendly waste biomass carbonization technology has
important practical significance. Here, the activated carbon from orange peel (OAC) is prepared
by potassium hydroxide (KOH) activation combined with high-temperature carbonization. The
adsorption effects of OAC on three different pollutant aqueous solutions, methylene blue (MB),
tetracycline (TC), and fluorescein sodium (NaFL), are examined. The OAC absorbent has excellent
adsorption capacity for MB, TC, and NaFL pollutants of 10 mg L−1, with adsorption rates of 99.17%,
73.5%, and 94.24%, respectively. This study provides a new idea for turning waste biomass into
treasure and eliminating the hidden danger of environmental pollution.

Keywords: activated carbon; adsorption; dye; antibiotic

1. Introduction

To meet people’s increasing demands for production and living, all kinds of industries
such as paper making, textile, coating, and medical treatment have thrived, which have
caused severe environmental pollution while promoting rapid economic development [1].
With the discharge of industrial wastes, pollutants such as toxic dyes and antibiotics
directly enter various water sources, which not only destroy the ecological environment
of aquatic organisms, but also cause immeasurable harm to human health and ecological
systems [2]. Organic dyes not only hinder photosynthesis in aquatic ecosystems, but also
cause carcinogenicity and mutagenicity in human bodies [3]. The introduction of methylene
blue (MB) into the human body causes many adverse reactions [4]. Ingestion of specific
doses of fluorescein sodium (NaFL) may irritate the stomach, and inhalation of luciferin
sodium dust may cause respiratory symptoms. As the health care industry develops, the
use of antibiotics continues to rise [5]. Tetracycline (TC) is a broad-spectrum antibiotic
that inhibits bacterial protein synthesis, which is widely used to treat human diseases and
prevent bacterial infections in livestock. Tetracycline can enter the environment through
incomplete metabolism in humans or animals. Low concentrations of antibiotics in garbage
and manure can spread into water environments and induce bacterial resistance to drugs,
causing severe harm to human health and ecosystems [6]. Developing low-cost and efficient
adsorbent-adsorbed water pollutants is a major approach in water pollution treatment.

In recent years, numerous studies have been undertaken about biomass carbon ad-
sorbents [7]. Amongst them, biomass carbon prepared by pyrolysis under anaerobic or
low oxygen conditions has a porous structure with highly specific surface area and large
functional groups such as hydroxyl and carboxyl groups on the surface [8]. The physical
and chemical properties of biomass are different due to the various raw materials and
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pyrolysis processes [9]. As an essential adsorbent with apparent advantages, such as ease
of scale-up, high cost-effectiveness, and environmental friendliness, biomass carbon has
received increasing attention [10]. In addition, biomass carbon derived from agricultural
waste can not only reduce the cost of raw materials, but also carry out efficient recovery
and utilization of agricultural waste [11]. A large amount of biomass waste can be used to
prepare adsorbents for absorbing pollutants in water. Zhang et al. [12] used the outer skin
of mangosteen as a carbon source to prepare activated carbon (AC) with a large specific sur-
face area. The AC showed good adsorption performance for MB, with adsorption capacity
up to 871.49 mg g−1. After three cycles, the treatment effect of MB can still reach more than
40%. The mangosteen peel AC has feasible applications for dyes removal. Prusov et al. [13]
synthesized flax, shive-based AC through KOH activation and high-temperature pyrolysis,
which showed an adsorption capacity of 464.2 mg g−1 for MB. The AC can be as an efficient
adsorbent for wastewater purification. Araújo et al. [14] reported that palm endocarp
biochar activated by ZnCl2 was used for an adsorbent for MB. The adsorption capacity of
MB reached 48~229.9 mg g−1 in the temperature range from 30 to 60 ◦C. The AC showed a
promising MB removal performance. Yağmur et al. [15] reported the magnetic AC made
of coconut shell as raw material and activated by ZnCl2, followed by the Fe3+/Fe2+ co-
precipitation, gives a maximum adsorption capacity of 156.25 mg g−1 for MB. The low-cost
magnetic AC may be used as the MB dye adsorbent. Gu et al. [16] synthesized porous
carbon by combining cotton and polyester textile waste with shell as carbon source and
obtained AC with a maximum adsorption capacity of 515.17 mg g−1 for TC. The low-cost
AC is considered to be an effective adsorbent for TC adsorption. Zheng et al. [17] used
sweet potato as biomass carbon source and a hydrothermal method to synthesize biochar
for treating TC in wastewater. The maximum adsorption capacity of activated carbon on
TC was 238.7 mg g−1. The mesoporous AC is a highly efficient removal reagent of TC.

In this study, the orange peel was used as a carbon source to obtain biomass-activated
carbon (OAC) by KOH activation and high-temperature carbonization. The adsorption
capacities of OAC to MB, NaFL, and TC were examined.

2. Materials and Methods
2.1. Material Preparation

Tangerine peels are from leaf tangerines purchased in Wal-Mart supermarkets. Potas-
sium hydroxide (GR95%), methylene blue, and sodium fluorescein (≥99.5%) are all pur-
chased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China) Tetra-
cycline (≥99.5%) is supplied from Shanghai Makclin Biochemical Co., Ltd. (Shanghai,
China) 10 mg L−1 of MB, NaFL, and TC solutions were prepared in ultrapure water.

The orange peels were washed with plenty of water and dried naturally to remove
moisture. The samples were cut into small pieces, placed in a drying oven at 60 ◦C for
24 h, and then ground in a grinder to obtain the powder. The orange peel powder obtained
above was placed in the quartz tube of a tubular furnace. It was first aired by N2 for 20 min,
then heated to 400 ◦C at a heating rate of 2.5 ◦C min−1, and kept at 400 ◦C for 2 h under
nitrogen atmosphere to obtain orange-peel-activated carbon (named OC).

An appropriate amount of OC powder was dissolved into KOH solutions with differ-
ent concentrations of 6 mol L−1, 7 mol L−1, and 9 mol L−1, respectively, and stirred for 6 h.
The solution was then treated by ultrasonic at 80 ◦C for 2 h. The collected powder after
filtration was placed in a drying oven at 60 ◦C and kept for 24 h. Nitrogen was introduced
into the tubular furnace over 20 min to ensure the air was empty thoroughly. The samples
were heated to 800 ◦C under a nitrogen atmosphere at 5 ◦C min−1 and kept at 800 ◦C for a
period of 1 h. The pH value of these three samples was adjusted to 7 with 2 mol L−1 HCl.
After drying at 60 ◦C for 24 h, the dried samples were denoted as OAC−6, OAC−7, and
OAC−9, respectively, corresponding to the activation concentration of KOH.
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2.2. Characterization of Adsorbents

The microstructure of all the samples was investigated with scanning electron mi-
croscopy (SEM, JSM-7410F, Tokyo, Japan, JEOL). Phases in the adsorbents were identified
by X-ray diffraction (XRD, D8, Germany BRUKER-AXS). An N2 desorption test was used to
determine the specific surface area and pore size structure of the samples (BET, ASAP2020,
Norcross, GA, USA, American Micromeritics Instrument Corporation). A Fourier transform
infrared spectrometer was used to analyze the functional groups on the sample surface (FT-
IR, Spectrum, PerkinElmer, Waltham, MA, USA). The chemical composition of the material
surface was measured by X-ray photoelectron spectroscopy (XPS ESCALAB250Xi, Thermo
Fisher Scientific, Waltham, MA, USA). The absorbance of pollutant aqueous solution
was measured by ultraviolet spectrophotometer (UV-Vis-NIR, Lambda 750, PerkinElmer,
Waltham, MA, USA). The absorption wavelengths of the three pollutant aqueous solutions
are MB (664 nm), TC (360 nm), and NaFL (493 nm), respectively.

2.3. Adsorption Capacity Analysis

In this study, the adsorption equilibrium of three different types of pollutants, MB,
TC and NaFL, was determined by porous carbon materials. The sample usage amount
was 0.2 g, the volume of polluted water was 20 mL, and the pollutant concentration was
10 mg L−1. The removal rate (R) (%) of the pollutants in the equilibrium state can be
calculated by the following formula:

R(%) =
(C 0 − Ct)

C0
× 100 (1)

Among them, C0 (mg g−1) is the initial concentration and Ct (mg g−1) is the concen-
tration of the solution at a given time.

2.4. Adsorption Kinetic Model

The sample has been tested for adsorption kinetics. In the kinetic test, the adsorption
capacity can be calculated by the following formula:

qt =
(C 0 − Ct)V

W
(2)

Among them, qt (µg g−1) is the adsorption amount of the sample to the pollutants.
C0 (µg L−1) is the initial concentration; Ct (µg L−1) is the concentration of the solution at a
given time t. V (L) is the volume of the solution. W (g) is the mass of the sample.

The adsorption kinetics of activated carbon is usually simulated by pseudo-first [18]
and pseudo-second [19] kinetic models.

The pseudo-first order adsorption kinetic equation is as follows:

ln(q e − qt) = ln(q e
)
− k1t (3)

Among them, qe is the amount of adsorption at equilibrium (µg g−1), qt is the amount
of adsorption at any moment (µg g−1), and k1 is the adsorption rate constant of the pseudo-
first order kinetic equation (L min−1).

The pseudo-second order adsorption kinetic equation is:

t
qt

=
1

k2q2
e
+

t
qe

(4)

Among them, k2 is the adsorption rate constant of the pseudo-second order kinetic
equation [g (mg min−1)].
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3. Results and Discussion
3.1. Characterization of Absorbents

The microstructures of OC, OAC−6, OAC−7, and OAC−9 were characterized using
SEM analysis, as shown in Figure 1. As shown in Figure 1a, the surface of OC initially
carbonized at 400 ◦C was relatively smooth, only showing the tubular channels of orange
peel itself, and the pore size was large, which was not conducive to the adsorption of
pollutants in water. After carbonization at 800 ◦C, the pore distribution on the OAC surface
increases with KOH concentration. After carbonization at 800 ◦C, the pore distribution on
the OAC surface increases with the increase of KOH concentration, as shown in Figure 1b–d.
After 9M KOH treatment, the surface of OAC−9 has the most abundant pore structure.
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Figure 1. SEM images of (a) OC, (b) OAC-6, (c) OAC-7, and (d) OAC-9.

The crystal types of OC, OAC−6, OAC−7, and OAC−9 were tested by XRD. It can
be seen in Figure 2 that the XRD patterns of the four materials are seriously broadened,
indicating that all the samples have poor crystallinity and are primarily amorphous. The
two broad peaks at 26◦ and 44◦ correspond to the (002) and (100) characteristic crystal planes
of graphite, respectively, indicating that the four materials have been initially graphitized.
The diffraction peak intensity of OAC−6, OAC−7, and OAC−9 is significantly stronger
than that of OC, indicating that the higher temperature carbonization treatment can improve
the graphitization degree of samples.
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Figure 3 shows the N2 adsorption/desorption isotherm and the pore-size distribution
of the adsorbents, which are summarized in Table 1 in detail. Generally speaking, some
substances in the carbon structure evaporate at high temperatures, increasing the specific
surface area [20]. KOH and carbon generate K2CO3, which is pyrolyzed at a high tempera-
ture to generate carbon dioxide, resulting in pores in the carbon structure and increasing
the defects of activated carbon.
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Table 1. N2 sorption data and pore size data.

Sample Specific Surface Area
(m2 g−1)

Aperture
(nm)

OC 0.90 147.57
OAC-6 7.84 8.61
OAC-7 723.68 3.49
OAC-9 1046.51 3.30

The surface molecular structure of the adsorbents was examined by Fourier infrared
spectroscopy (FT-IR), as shown in Figure 4. The diffraction peaks of C=O (1565 cm−1), C-O
(1043 cm−1), -CH (862 cm−1) O=C-O (1408 cm−1), and -OH (3464 cm−1) make the activated
carbon have a certain physical and chemical adsorption capacity [21]. The functional
group stretching vibration peak intensity of OAC−9 is stronger than OAC−7 and OAC−6,
making the adsorption capacity of OAC−9 stronger than other samples.

Processes 2022, 10, x FOR PEER REVIEW 5 of 11 
 

 

Figure 3 shows the N2 adsorption/desorption isotherm and the pore-size distribution 
of the adsorbents, which are summarized in Table 1 in detail. Generally speaking, some 
substances in the carbon structure evaporate at high temperatures, increasing the specific 
surface area [20]. KOH and carbon generate K2CO3, which is pyrolyzed at a high temper-
ature to generate carbon dioxide, resulting in pores in the carbon structure and increasing 
the defects of activated carbon. 

 
Figure 3. (a) N2 sorption isotherms and (b) pore size distributions of OC, OAC−6, OAC−7, and 
OAC−9. 

Table 1. N2 sorption data and pore size data. 

Sample 
Specific Surface Area 

(m2 g−1) 
Aperture 

(nm) 
OC 0.90 147.57 

OAC-6 7.84 8.61 
OAC-7 723.68 3.49 
OAC-9 1046.51 3.30 

The surface molecular structure of the adsorbents was examined by Fourier infrared 
spectroscopy (FT-IR), as shown in Figure 4. The diffraction peaks of C=O (1565 cm−1), C-O 
(1043 cm−1), -CH (862 cm−1) O=C-O (1408 cm−1), and -OH (3464 cm−1) make the activated 
carbon have a certain physical and chemical adsorption capacity [21]. The functional 
group stretching vibration peak intensity of OAC−9 is stronger than OAC−7 and OAC−6, 
making the adsorption capacity of OAC−9 stronger than other samples. 

 
Figure 4. (a) FT-IR spectra of OC, and (b) FT-IR spectra of OAC−6, OAC−7, and OAC−9. 

X-ray photoelectron spectroscopy (XPS) was used to characterize the elements con-
tained in the adsorbents and the chemical states of the elements (Figure 5). Peaks of C and 
O were detected in all samples. These adsorbent materials all contain C and O elements. 

Figure 4. (a) FT-IR spectra of OC, and (b) FT-IR spectra of OAC−6, OAC−7, and OAC−9.

X-ray photoelectron spectroscopy (XPS) was used to characterize the elements con-
tained in the adsorbents and the chemical states of the elements (Figure 5). Peaks of C and
O were detected in all samples. These adsorbent materials all contain C and O elements.
As shown in Figure 5b, the OAC−9 C1s spectrum exhibits four prominent peaks at 284.8,
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285.5, 286.3, and 289.3 eV, which can be assigned to C-C, C-OH, C=O, and COOH [22],
respectively. The species of reactive oxygen functional groups contained in these adsorbent
materials were consistent with FI-TR test results. Figure 5c shows high-resolution O1s
spectra of the adsorbents. Two characteristic peaks at 531.3 eV and 532.3 eV are attributed
to C-OH and C=O functional groups, respectively. The surface of OAC contains a large
number of hydroxyl and carboxyl functional groups, which is beneficial to produce good
chemisorption of various polar organic compounds. The XPS element contents of OC,
OAC−6, OAC−7, and OAC−9 are summarized in Table 2.

Processes 2022, 10, x FOR PEER REVIEW 6 of 11 
 

 

As shown in Figure 5b, the OAC−9 C1s spectrum exhibits four prominent peaks at 284.8, 
285.5, 286.3, and 289.3 eV, which can be assigned to C-C, C-OH, C=O, and COOH [22], 
respectively. The species of reactive oxygen functional groups contained in these adsor-
bent materials were consistent with FI-TR test results. Figure 5c shows high-resolution 
O1s spectra of the adsorbents. Two characteristic peaks at 531.3 eV and 532.3 eV are at-
tributed to C-OH and C=O functional groups, respectively. The surface of OAC contains 
a large number of hydroxyl and carboxyl functional groups, which is beneficial to produce 
good chemisorption of various polar organic compounds. The XPS element contents of 
OC, OAC−6, OAC−7, and OAC−9 are summarized in Table 2. 

 
Figure 5. (a) Full-survey XPS spectra of OC, OAC−6, OAC−7, and OAC−9. High-resolution XPS 
spectra of (b) C 1s, (c) O 1s for OAC−9. 

Table 2. XPS element content of OC, OAC−6, OAC−7, and OAC−9. 

Sample C (%) O (%) 
OC 80.80 14.54 

OAC-6 87.05 10.80 
OAC-7 88.94 10.06 
OAC-9 84.78 11.32 

3.2. Adsorption Performance of the Adsorbents 
3.2.1. Adsorption Equilibrium 

As shown in Figure 6, OAC−9 has the best adsorption effect on the three pollutants. 
In the MB solution, the adsorption rate of OAC−9 is up to 99.17%. In TC and NaFL solu-
tions, the adsorption rates reach 73.50% and 94.24%, respectively. The reason why OAC-
9 has excellent adsorption capacity is mainly due to the large specific surface area of OAC-
9, which significantly improves the contact area between OAC−9 and the target pollutant. 
Moreover, the wealthy oxygen-containing functional groups on the surface of OAC-9 
have a synergistic effect on the adsorption of contaminants. 

 
Figure 6. Adsorption equilibrium of the adsorbents for 10 mg L−1 of (a) MB, (b) NaFL, and (c) TC for 
a period of 2 h. 
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Table 2. XPS element content of OC, OAC−6, OAC−7, and OAC−9.

Sample C (%) O (%)

OC 80.80 14.54
OAC-6 87.05 10.80
OAC-7 88.94 10.06
OAC-9 84.78 11.32

3.2. Adsorption Performance of the Adsorbents
3.2.1. Adsorption Equilibrium

As shown in Figure 6, OAC−9 has the best adsorption effect on the three pollutants. In
the MB solution, the adsorption rate of OAC−9 is up to 99.17%. In TC and NaFL solutions,
the adsorption rates reach 73.50% and 94.24%, respectively. The reason why OAC-9 has
excellent adsorption capacity is mainly due to the large specific surface area of OAC-9,
which significantly improves the contact area between OAC−9 and the target pollutant.
Moreover, the wealthy oxygen-containing functional groups on the surface of OAC-9 have
a synergistic effect on the adsorption of contaminants.
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3.2.2. Adsorption Rate

Figure 7 shows the adsorption kinetic properties of OC, OAC−6, OAC−7, and OAC−9
for MB, TC, and NaFL pollutants in water. All the adsorbent samples can achieve fast
adsorption of the target substance; the adsorption rate is very fast in the first 20 min and the
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adsorption equilibrium can be reached within 30 min. By contrast, OAC-9 has the highest
adsorption rates of 99.17%, 73.5%, and 94.24% for MB, OC, and FL, respectively.
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3.2.3. Adsorption Kinetics

The pseudo-first order and pseudo-second order kinetic models are used to fit the ad-
sorption kinetic data and to compare them, in order to provide insights into the adsorption
mechanism. In general, the initial state of the reaction process, especially the initial state of
fast adsorption, is more in line with the pseudo-first order kinetic model [18]. However, the
pseudo-second order kinetic model is consistent with long-term adsorption with chemical
adsorption as a rate-controlled process [19]. Figure 8 shows the simulation results of the
first and second order kinetic models for the adsorption of MB, TC, and NaFL by four
activated carbon materials. From Figure 8a–c, it can be seen that the actual adsorption data
has a high degree of fit with the linear expression of the first-order kinetics. This result is
consistent with the results shown in Table 3, indicating that the first-order kinetic model is
more in line with the activity carbon adsorption kinetic model.

Table 3. Kinetic parameters of the pseudo-first-order models and pseudo-second-order models for
MB, TC, and NaFL adsorption to the carbonaceous materials.

OC OAC−6 OAC−7 OAC−9

MB

qe (µg g−1) 921 938 943 992
First-order kinetic model
k1 (min−1) 0.146 0.144 0.161 0.160
R2 0.971 0.975 0.975 0.976
Second-order kinetic

model
k2 [g (mg min)−1] 1.052 1.100 0.791 0.827
R2 0.939 0.944 0.944 0.945

TC

qe (µg g−1) 503 576 655 735
First-order kinetic model
k1 (min−1) 0.081 0.068 0.060 0.058
R2 0.968 0.967 0.970 0.969

Second-order kinetic model
k2 [g (mg min)−1] 2.500 4.020 5.594 6.865
R2 0.935 0.935 0.941 0.941

NaFL

qe (µg g−1) 193 308 404 942
First-order kinetic model

k1 (min−1) 0.080 0.092 0.109 0.131
R2 0.942 0.952 0.957 0.960

Second-order kinetic model
k2 [g (mg h)−1] 0.977 1.165 1.038 1.490
R2 0.905 0.915 0.921 0.925
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3.2.4. Regeneration of Adsorbents

The adsorbent should not only have high adsorption capacity, but also have recycling
and regeneration capacity. If the adsorbent can be reused under the premise of achieving
the desired adsorption effect, the preparation cost of the adsorbent will be significantly
reduced. Here, the adsorption cycle experiment of MB was carried out by using OAC−9.
Methanol and glacial acetic acid with the volume ratio of 9:1 were used as the eluent for
OAC−9 after adsorption. After five times of adsorption and desorption, the adsorption
effect of OAC−9 on 10 mg L−1 MB decreased slightly, with a value of 82.34%, which still
has a high adsorption efficiency (see Figure 9). The decrease in the adsorption efficiency of
OAC−9 may be due to the adsorption of MB by OAC−9. MB molecules block part of the
active adsorption sites of the micropores and are a challenge to be eluted by the eluent. In
addition, due to the mass loss of OAC−9 during elution, the adsorption effect is reduced.
Therefore, the reuse of OAC−9 needs to be further improved [23].
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3.2.5. Adsorption Mechanism and Comparison of Adsorption Properties

The most abundant mesoporous structure, graphite crystals, and hydroxyl and car-
boxyl functional groups of OAC−9 result in high adsorption capability. The pseudo-first
order models were well-matched to the adsorption data. For the sake of comparison, the
adsorption rates of some biomass-based activated carbon reported in the literature are
summarized in Table 4. The adsorption rates of OAC−9 for MB, TC, and NaFL pollutants
reach 99.17%, 73.5%, and 94.24%, respectively, which is close to or superior to comparable
reported values [23–28].
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Table 4. Comparison of adsorption properties of biomass-based activated carbon reported in literature.

Raw
Material

Activating
Agent

Processing
Conditions

Specific
Surface Area

Adsorbed
Pollutants and

Dosage

Adsorption
Time

Adsorption
Rate (%) Ref.

Mandarin
peel NaOH 4 h

105 ◦C

MB and MO
(1, 3, 5, 10,
30 mg L−1)

180 min MB: 99.77%
MO: 79.87% [23]

Orange peel ZnCl2 800 ◦C 1439.50 m2 g−1

MB (0, 50, 100,
200, 400, 700,

and
1100 mg L−1)

24 h 99% [24]

Green pea
peels H2SO4

30 min
800 ◦C

316.20
m2 g−1

MB
(50, 100, 150,

and
200 mg L−1)

10 h 96–89.73% [25]

Jack fruit
peel NaOH 0.5 h

700 ◦C
1286.7

m2 g−1
MB

(1000 mg L−1) 25 h 80% [26]

Apricot nut
shells H3PO4

90 min
400 ◦C

307.6
m2 g−1

TC
(100 mg L−1) 24 h 98% [27]

Sugar cane
bagasse ZnCl2

120 min
600 ◦C

831.23
m2 g−1

TC
(120–240 mg L−1) 20 h 96% [28]

Orange peel KOH 1 h
800 ◦C

1046
m2 g−1

MB, TC and
NaFL

(10 mg L−1)
30 min

MB: 99.17%
TC: 73.5%

NaFL: 94.24%

This
work

4. Conclusions

The waste biomass resources in the world are extremely rich, but the utilization rate
of the waste biomass all over the world is very low, which not only causes the serious
waste of biomass resources, but also intensifies the pollution or potential pollution to
the environment. Biomass carbonization technology is a new technology of biomass
resource utilization. It is of great significance to make full use of waste biomass to treat
the pollutants in water to relieve the pressure caused by energy shortages, ecological
imbalances, environmental pollution, and other problems.

In this study, a series of activated carbon materials were prepared by using cheap
and readily available orange peel as raw material. OAC−9 treated with a high concen-
tration of KOH and high-temperature carbonization has the best adsorption effect on the
three target pollutant solutions, 10 mg L−1 of MB, TC, and NaFL. OAC−9 contains many
oxygen-containing functional groups (O=C-O, -OH), which makes it have a strong polarity
adsorption capacity. The adsorption efficiency of MB, TC, and NaFL reaches 99.17%, 73.5%,
and 94.24%, respectively. OAC−9 has a rapid adsorption capacity and can quickly reach
adsorption peak and equilibrium within 20–30 min. OAC−9 can be used as an efficient and
low-cost activated carbon adsorbent for various dyes and antibiotic contaminants in water.
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