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Abstract: Based on the nonlinear piezomagnetic equation, the piezomagnetic effect of prismatic
iron-cobalt alloy is analyzed by using the ANSYS finite element simulation platform. The variation of
the dynamic piezomagnetic coefficient of the iron-cobalt alloy under different bias magnetic fields and
different stress was studied through simulation. Referring to the working condition of the tractor force
sensor and according to the principle of magnetic circuit superposition, a piezomagnetic force sensor
was designed and manufactured using iron-cobalt alloy. According to the electromagnetic theory and
piezomagnetic effect, the three-dimensional model and magnetic circuit mathematical model of the
sensor are established, and the system simulation model of the piezomagnetic sensor was established
based on the MATLAB/Simulink module. The experimental platform of the magnetostrictive force
sensor was built to verify the correctness of the simulation model, and the effects of bias magnetic field
and force on the output characteristics are studied. The simulation and experimental results show
that the maximum piezomagnetic coefficient was 9.2 T/GPA when the bias magnetic field intensity
was 14.74 kA/m. The force measuring range of the sensor is 0–120 kN, and the sensor has high
sensitivity within 0–80 kN. The sensor has a simple structure, is suitable for the force measurement
and control of an electro-hydraulic lifter under heavy load, and can better adapt to the harsh working
environment.

Keywords: piezomagnetic coefficient; magnetostriction; nonlinear constitutive model; mathematical
model of magnetic circuit

1. Introduction

Iron-cobalt alloy is an important metal soft magnetic material with good magnetic
properties and high magneto-mechanical coupling coefficient, which has high Curie tem-
perature and saturated magnetic induction intensity at room temperature. It also has
the advantages of high permeability and low coercivity [1–5]. Compared with rare earth
magnetostrictive material (Terfenol-D) and piezoelectric material, the iron-cobalt alloy
has better magnetic stability [6,7]. It is widely used in transformers, motors, telephone
diaphragms, embedded iron of high-speed printers, receiver coil, switches, and storage iron
core current transformers (see transformer) [8]. Magnetostrictive displacement sensors [9],
magnetostrictive strain sensors [10], and magnetostrictive pressure sensors [11] can be
developed by using the piezomagnetic effect of the iron-cobalt alloy.

The piezomagnetic coefficient refers to the change of magnetic induction intensity of
magnetostrictive material caused by unit stress, so the piezomagnetic coefficient is closely
related to the sensitivity of the magnetostrictive pressure sensor [12,13]. Tong Jie, the Chi-
nese Academy of Electric Power Sciences, and others designed a saw current transformer
based on the magnetostrictive effect of iron-cobalt materials [14]. Yang et al. deduced
the relationship of piezomagnetic coefficient and bias magnetic field under zero stress by
using a magnetostrictive nonlinear constitutive model and determined the influence law
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of bias magnetic field on magnetoelectric effect and vibration frequency of magnetostric-
tive materials [15]. In the literature [16], the effect of compressive and tensile stress on
the piezomagnetic coefficient was studied. The experimentally obtained piezomagnetic
coefficient could then be obtained through the fitting of the appropriate data. Cui et al. [17]
and others designed a force sensor using flake iron calcium alloy and iron-cobalt alloy
materials, revealing the physical mechanism of the magnetostrictive force sensor and the
influencing factors of sensor output characteristics.

Based on the nonlinear piezomagnetic equation, this paper studies the influence of
stress and bias magnetic field on piezomagnetic effect by using finite element simulation
software, analyzes the variation law of piezomagnetic coefficient as a function of stress and
bias magnetic field, and obtains the bias magnetic field corresponding to the maximum
piezomagnetic coefficient under each stress. In view of the more and more extensive
application of high-power tractors in modern agricultural machinery, the current tractor
lift force sensor cannot meet the needs of the harsh working environment, referring to
the working conditions of the tractor force sensor [18–20], a piezomagnetic effect force
sensor [21–25] is designed and manufactured for the detection of elevator force of large
tractor.

2. Principle and Model of Piezomagnetic Effect

The piezomagnetic effect means that when a material is subjected to an external force,
the internal stress changes the magnetization of the material. Concomitantly the material
permeability will also change. Magnetostriction can be explained by domain theory from
the microscopic point of view. For ferromagnetic materials, its interior can be regarded
as composed of several magnetized regions, and each small, magnetized region is called
a magnetic domain. When the ferromagnetic material is not magnetized, the magnetic
moment of each small magnetic domain is evenly distributed in all directions. When the
ferromagnetic material is affected by the magnetic field, the internal magnetic domain will
deflect under the action of the external magnetic field, and the deflection of the magnetic
domain affects the magnetization [5]. This characteristic of magnetostrictive materials can
be used to convert mechanical signals into magnetic signals.

When the prismatic iron-cobalt alloy material used in this study is subjected to a force
perpendicular to the surface as shown in Figure 1, the internal magnetic domain will change
due to the applied stress. The coil with DC current provides a bias magnetic field along the
axial direction for the prismatic iron-cobalt alloy material. Figure 1a shows that when the
iron-cobalt alloy is not stressed, the magnetic domain directions on the alloy section are
arranged along the direction of the bias magnetic field. Figure 1b shows that when a force
F is applied along the direction of the applied magnet, and perpendicular to the circular
surface, as indicated in Figure 1b, the magnetic domain structure in the iron-cobalt will
change in response to the applied force, resulting in the reduction of its internal average
magnetic induction intensity.
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Based on the piezomagnetic equation of magnetostrictive materials, the magnetic
induction intensity can be expressed as [26].

B = d∗33σ + µH (1)

where, B is the magnetic induction intensity in the iron-cobalt alloy; d∗33 is the piezomag-
netic coefficient; σ is the stress; µ is permeability; H is the bias magnetic field strength. The
magnetic induction intensity B is affected by the magnetic field and stress with the bias
magnetic field intensity H and σ. The piezomagnetic coefficient d∗33 is also affected by the
bias magnetic field H and stress σ.

The piezomagnetic coefficient can directly reflect the magneto-mechanical conversion
efficiency of iron-cobalt alloy and affect the output characteristics of the sensor. The larger
the piezomagnetic coefficient, the greater the change of magnetic induction intensity of
iron-cobalt alloy caused by unit stress. In order to obtain iron-cobalt alloy piezomagnetic
coefficient d∗33 and the bias magnetic field H and stress σ. In the nonlinear constitutive
model proposed in reference [27], the model formula of iron-cobalt alloy is derived:

ε =
σ

E
+ λ0(σ) +

λs − λ0(σ)

M2
s

M2 (2)

H =
1
η

f−1
(

M
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)
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s

M (3)
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x
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where, E is the strain; M is magnetization; Ms is saturation magnetization; λs is the sat-
uration magnetostrictive strain coefficient; χm is the initial magnetic susceptibility; σs
is saturated pre-stress; µ0 is vacuum permeability; E is Young’s modulus. Based on the
principle of electromagnetism, combined with Equation (3), the piezomagnetic coefficient
of the iron-cobalt alloy is:

d∗33 =
dB
dσ

=
dµ0(H + M)

dσ
(4)

Formula (2) and Formula (3) show that there is a complex coupling relationship
between magnetostriction and magnetization and stress and magnetic field. Therefore,
it is of great significance for the design and structural optimization of magnetostrictive
sensors to study the influence of bias magnetic field and stress on the piezomagnetic effect
of iron-cobalt alloy and to apply the iron-cobalt alloy to large tractor force sensors. This
paper solves the dynamic piezomagnetic coefficient d∗33 through the simulation software
ANSYS.

3. Simulation Results and Analysis

The iron-cobalt alloy prism is modeled by ANSYS simulation software. The prism size
is 28 mm × 33 mm × 96 mm. By adjusting the coil current to change the bias magnetic
field applied to the prism and setting different forces on both sides of the prism, the force
working condition of the sensor is simulated, as shown in Figure 2.
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Figure 2. Magnetic force model of iron-cobalt alloy prism.

In Ansys software, the parameter in Equations (2) and (3) is defined as: Ms = 1.92 × 106

A/m, λs = 74× 10−6, χm = 200, σs = 55 MPa, µ0 = 4π× 10−7 T·m/A, E = 76× 109 Pa [28], the
number of turns of the excitation coil is n = 130, the external force is 0 and the coil current
is 5A. The magnetic field distribution diagram of the longitudinal section of the prism is
obtained by simulation, that is, the simulated magnetic field distribution diagram of the
x-z plane, as shown in Figure 3. It can be seen from the figure that the magnetic induction
intensity at the center of the iron-cobalt alloy prism is the largest, which can reach 1.4 T, and
the magnetic induction intensity gradually decreases from the center to both sides. This is
due to the influence of the biased magnetic field generated by the coil. The bias magnetic
field in the middle part is larger and the bias magnetic field on both sides is smaller.
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Figure 3. Magnetic field distribution in x-z plane of iron-cobalt alloy prism.

Adjusting the solution domain in the Ansys magnetic field module and setting the
incoming DC current of the coil to 0–10 A can make the prismatic iron-cobalt alloy produce a
magnetic field strength of 0–134.78 kA/m. Adjusting the solution domain in the Ansys solid
mechanics module, setting the point load conditions, and applying a force of 0–120 kn at
both ends of the prismatic iron-cobalt alloy can produce compressive stress of −128–0 Mpa
in the prismatic section. The simulation results show the simulation relationship between
magnetic induction intensity and compressive stress under different bi-as magnetic fields,
as shown in Figure 4. When the bias magnetic field intensity is less than 3.11 kA/m, the
change rate of magnetic induction intensity with compressive stress is small, because the
stress has little effect on domain deflection under a weak magnetic field. When the bias
magnetic field intensity is in the range of 3.11–84.56 kA/m, the change rate of magnetic
induction intensity is large, and the magnetic induction intensity decreases gradually with
the increase of compressive stress. When the bias magnetic field intensity is greater than
84.56 kA/m, the change rate of magnetic induction intensity with compressive stress is
small, mainly because the influence of stress on domain deflection becomes smaller due to
the excessive magnetic field intensity.
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By deriving the points in Figure 4, the variation curve of the piezomagnetic coefficient
d∗33 and compressive stress under different bias magnetic fields was obtained, as shown in
Figure 5. d∗33 is a function of bias magnetic field and stress. By extracting the piezomagnetic
coefficient under different stress in Figure 5, the relationship curve between d∗33 and bias
magnetic field under different stress is drawn, as shown in Figure 6. Through the analysis
of Figures 5 and 6, with the increase of the magnetic field strength, the piezomagnetic
coefficient first increases, then decreases, and finally, tends to be stable. This is because the
magnetic domain deflection angle of the material first increases according to the increase of
the magnetic field strength. After reaching a certain degree, the influence of the magnetic
field strength on the magnetic domain begins to decrease. Figure 7a,b show the changes of
the same force on the domain deflection direction under the bias magnetic field of 105.35
kA/m and 14.74 kA/m, respectively. Under the bias magnetic field of 14.74 kA/m, the
deflection angle of the magnetic domain is larger, so the piezomagnetic coefficient of the
material is larger. In addition, with the increase of compressive stress, the maximum
value of the piezomagnetic coefficient gradually decreases and shifts to the right. This is
because the saturated magnetic field of iron gallium alloy increases with the increase of
compressive stress, but the saturated magnetic induction intensity is basically unchanged.
Before saturation, the magnetic induction intensity of iron gallium alloy decreases with the
rate of change of magnetic field intensity, that is, the permeability decreases. Therefore,
there is an optimal bias magnetic field for the magnetostrictive force sensor of a specific
material. When the force sensor works at this optimal bias magnetic field, the output
voltage and sensitivity of the force sensor reach the maximum. When no stress is applied,
the bias magnetic field intensity is 14.74 kA/m, and the piezomagnetic coefficient reaches
the maximum value of 9.2 T/GPa. Since the working range of the sensor is mainly 0–80
kN, when the iron-cobalt material is used to design the column sensor, in order to increase
the sensitivity of the sensor, the bias magnetic field corresponding to the maximum value
of piezomagnetic coefficient should be selected, that is, 14.74 kA/m.
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4. Design of Magnetostrictive Force Sensor
Sensor Structure

According to the working conditions of the tractor lifter, referring to the KMB force
sensor [29] on the market, a new piezomagnetic sensor, which is an improvement based on
KMB, is designed by using iron-cobalt material to improve the defect that the KMB sensor
can only receive one-directional force and has insufficient sensitivity. The sensor can be
installed on the lifter through a suit. When the sensor is working, the external radial force
along the sleeve acts on the sensor through the groove on the sleeve, and then the sleeve
transmits the force to the iron-cobalt alloy. The sensor assembly and its stress diagram are
shown in Figure 8. The sensor structure is shown in Figure 9.
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coil1, 2, 3, 4.

The working principle of the sensor is: under no-load conditions, a symmetrical
magnetic field is formed through the primary coil between the excitation cores; when the
sensor is subjected to external force, the permeability of the horizontal excitation magnetic
core and the vertical excitation magnetic core changes, resulting in the change of the
magnetic field and becoming an asymmetric state, resulting in the change of the magnetic
flux passing through each induction magnetic core, the magnetic potential difference is
formed between the secondary coils, so that the magnetic flux flows through the secondary
circuit, resulting in the output voltage on the induction coil after differential connection,
which reflects the size of the external force. The magnetic fields generated by vertical
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excitation core I and vertical excitation core II and horizontal excitation core I and horizontal
excitation core II of the piezomagnetic force sensor designed in this paper are superimposed
with each other, which increases the magnetic flux in the induction coil, together they
constitute the output signal of the sensor and increase the sensitivity of the sensor.

5. Mathematical Analysis of Magnetic Circuit

Figure 10 shows the schematic diagram of the magnetic circuit. The magnetomotive
force generated by the excitation core includes two parts: the magnetomotive force FMz
generated by the vertical coil and the magnetomotive force FMp generated by the horizontal
coil. The horizontal coil axis and the induction magnetic pole axis are located on the same
plane, and the magnetic flux direction is parallel to the plane. The coil axis in the vertical
direction is perpendicular to the axis of the induction magnetic pole, and its magnetic
flux direction is perpendicular to the plane where the axis of the induction magnetic pole
is located so that the number of turns of the winding coils in the horizontal and vertical
directions of the two excitation magnetic cores is n, and the coils in the horizontal and
vertical directions of each excitation magnetic core are connected in series, and the two
excitation magnetic cores are connected in series:

FMZ = FMP = NI, FM = FMZ + FMP = 2NI (5)

where I—excitation current, FM—total magnetomotive force of each excitation core
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5.1. Horizontal Magnetic Circuit Structure

For the excitation pole in the horizontal direction, the total flux generated by the
magnetomotive force of the excitation coil in the horizontal direction without considering
the influence of magnetic leakage—φ0p—enters four induction magnetic poles through the
sleeve:

φ0p = φ1p + φ2p + φ3p + φ4p (6)

φnp—Magnetic flux flowing from the excitation core to the induction pole n in the
horizontal direction (n = 1, 2, 3, 4).

Because the structure is symmetrical, the I excitation core is analyzed first: As shown
in Figure 10, the distance between induction pole 1 and induction pole 2 from the excitation
core is close, and the magnetic flux is large. The distance between induction pole 3 and
induction pole 4 from the excitation core is far, and the magnetic flux is small.

φI1p = φI2p > φI3p = φI4p (7)
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where φInp—Magnetic flux flowing from excitation core I to induction pole n in the hori-
zontal direction (n = 1, 2, 3, 4).

Among them, the magnetic flux φI1p flowing through the induction magnetic pole 1 is
conducted through the intermediate magnetic circuit and returns to the excitation magnetic
core through the other three induction magnetic poles to form a complete magnetic circuit:

φI1p = φI12p + φI13p + φI14p (8)

where φInp—Magnetic flux (n = 1, 2, 3, 4) generated by horizontal I excitation core from
induction pole 1 to induction pole n. From Ohm’s law of magnetic circuit:

φI1p =
FMP
RZ

=
NI

R1 + R0 + RM + R2//R3//R4
(9)

where Rn—Magnetoresistance of induction pole n (n = 1, 2, 3, 4); RM—Magnetoresistance
of excitation core; R0—the total magnetoresistance of other parts in the magnetic circuit,
including the sleeve and its connection with the excitation core and the induction core; RZ—
total reluctance of magnetic circuit.

Similarly, for the flux φnp flowing from the I horizontal excitation core to other induc-
tion poles, there is: 

φI2p = FMP
RZ

= NI
R2+R0+RM+R1//R3//R4

φI3p = φI31p + φI32p + φI34p

φI3p = FMP
RZ

= NI
R3+R0+RM+R2//R1//R4

φI4p = φI41p + φI42p + φI43p

φI4p = FMP
RZ

= NI
R4+R0+RM+R2//R1//R3

(10)

This is the magnetic flux generated by the horizontal excitation core I. Similarly,
according to the principle of symmetry, the magnetic flux generated by the horizontal
excitation core II for No. 1, 2, 3, and 4 induction poles is obtained:

φII3p = φII4p > φII1p = φII2p

φII12p = φII13p = φII14p =
φII1p

3 =
φI3p

3

φII21p = φII23p = φII24p =
φII2p

3 =
φI4p

3

φII31p = φII32p = φII34p =
φII3p

3 =
φI1p

3

φII41p = φII42p = φII43p =
φII4p

3 =
φI2p

3

(11)

The magnetic flux generated by the horizontal excitation coil and passing through
each induction pole is:

φ10p = φI1p + φII1p −
(
φI21p + φI31p + φI41p

)
−
(
φII21p + φII41p + φII31p

)
= 0

φ20p = φI2p + φII2p − φI12p + φI32p + φI42p − φII12p + φII42p + φII32p = 0
φ30p = φI3p + φII3p −

(
φI13p + φI23p + φI43p

)
−
(
φI13p + φI43p + φI23p

)
= 0

φ40p = φI4p + φI4p −
(
φI14p + φI24p + φI34p

)
−
(
φII14p + φII34p + φII24p

)
= 0

(12)

It can be seen that the total magnetic flux generated by the horizontal excitation coil of
I and II excitation cores and passing through each induction pole is:

ϕ10p = 0
ϕ20p = 0
ϕ30p = 0
ϕ40p = 0

(13)
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5.2. Vertical Magnetic Circuit Structure

For the vertical excitation magnetic pole, it can be seen from Figure 9 that the distance
from its N pole to the four induction magnetic poles is not equal, where:

lI1 > lI2 > lI3 > lI4 (14)

lIn—Distance between vertical I excitation core and induction pole (n = 1, 2, 3, 4).
Therefore, the magnetic flux generated by the I vertical excitation core on the four

induction poles is:
φI1z > φI2z>φI3z>φI4z (15)

where, φImnz—The magnetic flux generated by the excitation core I in the vertical direction
from the induction pole m to the induction pole n, (m, n = 1, 2, 3, 4). Due to the symmetry
of the induction core structure, the magnetic flux from one induction pole to the other three
induction poles can be equal, that is:

φI12z = φI13z = φ14z =
φI1z

3
φI21z = φI23z = φI24z =

φI2z
3

φI31z = φI32z = φI34z =
φI3z

3
φI41z = φI42z = φI43z =

φI4z
3

(16)

Similarly, the magnetic flux generated by the No. II excitation core through the four
induction poles is: 

φII34z = φII31z = φII32z =
φII3z

3 = φI1z
3

φII43z = φII42z = φII41z =
φII4z

3 = φI2z
3

φII12z = φII13z = φII14z =
φII1z

3 = φI3z
3

φII21z = φII23z = φII24z =
φII2z

3 = φI4z
3

(17)

The total magnetic flux generated by the vertical excitation coils I and II and passing
through each induction pole is:

φ10z = φI1z + φII1z − (φI21z + φI31z + φI41z)− (φII21z + φII41z + φII31z)
φ20z = φI2z + φII2z − (φI12z + φI32z + φI42z)− (φII12z + φII42z + φII32z) = − φ10z

φ30z = φI3z + φII3z − φI13z + φI23z + φI43z − φII13z + φII43z + φII23z = φ10z
φ40z = φI4z + φII4z − (φI14z + φI24z + φI34z)− (φII14z + φII34z + φII24z) = − φ10z

(18)

The magnetic field actions in the horizontal and vertical directions are superimposed
on each other, and the total magnetic flux passing through each induced magnetic pole is:

φno = φnoz + φnop (19)

The magnetic flux flowing from the excitation core to each induction pole is:

φmn = φmnz + φmnp (20)

The overall magnetic circuit of the sensor is shown in Figure 10. Therefore, when there
is no force, the output voltage of each induction coil is:

U1 = dφ10
dt = dφ10z

dt
U2 = dφ20

dt = −U1

U3 = dφ30
dt = U1

U4 = dφ40
dt = −U1

(21)
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After differential connection of each induction coil, the output voltage is:

U =
4

∑
i=1

Ui = 0 (22)

5.3. Magnetic Circuit Analysis under Stress

The schematic diagram of the overall magnetic circuit under stress is shown in Fig-
ure 11. When the excitation core is stressed, the magnetic field is biased. Due to the change
of permeability of the excitation core in different directions, the magnetic flux flowing
from the excitation core to each induction pole changes accordingly. Due to the change of
magnetic resistance of the excitation core from RM to RM

′, the magnetic flux φ1
′ flowing

from the excitation core to induction pole 1 becomes:

φ1
′ =

FM
Rz1

=
4NI

R1 + R0 + RM1
′ + R2//R3//R4

(23)
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Among

RM1
′ =

lM

(µM + ∆µM)SM
(24)

∆µM
µM

= 2
λs

B2 σµM (25)

where lM—equivalent length of induction core; SM—equivalent cross-sectional area; µM—
permeability of excitation core; ∆µM—change of magnetic permeability of excitation core
after force; σ—mechanical pressure inside the material.

For the magnetic flux φ3
′ flowing from the excitation core to the induction pole 3, there

is:
φ3
′ =

FM
Rz3

=
4NI

R3 + R0 + RM3
′ + R2//R1//R4

(26)

RM3
′ =

lM

(µM + ∆µM)SM
(27)

From each magnetic flux to φmn′ and φn′ , respectively, therefore, the total magnetic
flux φn0′ of each induction pole becomes:

φ10
′ = φ1

′ − φ21
′ − φ31

′ − φ41
′ = φ12

′ − φ21
′ + φ13

′ − φ31
′ + φ14

′ − φ41
′

φ20
′ = φ2

′ − φ12
′ − φ32

′ − φ42
′ = φ21

′ − φ12
′ + φ23

′ − φ32
′ + φ24

′ − φ42
′

φ30
′ = φ3

′ − φ13
′ − φ23

′ − φ43
′ = φ31

′ − φ13
′ + φ32

′ − φ23
′ + φ34

′ − φ43
′

φ40
′ = φ4

′ − φ14
′ − φ24

′ − φ34
′ = φ41

′ − φ14
′ + φ42

′ − φ24
′ + φ43

′ − φ34
′

(28)

From the above analysis, it can be seen that the change in magnetic permeability µM
of excitation, the core is the factor leading to the change of magnetic flux. The reason for
the change of µM is in addition to the stress σ. In addition to the changes, there is the
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influence of the material itself. The excitation current I, an important factor that can affect
the magnetic flux, can be recorded as:

φ10
′ = f1(µm, I, σ)

φ10
′ = f2(µm, I, σ)

φ10
′ = f3(µm, I, σ)

φ10
′ = f4(µm, I, σ)

(29)

The output voltage of each induction coil is:

U1 = dφ10
′

dt = ∂ f1
∂µM

dµM
dt + ∂ f1

∂I
dI
dt +

∂ f1
∂σ

dσ
dt

U2 = dφ20
′

dt = ∂ f2
∂µM

dµM
dt + ∂ f2

∂I
dI
dt +

∂ f2
∂σ

dσ
dt

U3 = dφ30
′

dt = ∂ f3
∂µM

dµM
dt + ∂ f3

∂I
dI
dt +

∂ f3
∂σ

dσ
dt

U4 = dφ40
′

dt = ∂ f4
∂µM

dµM
dt + ∂ f4

∂I
dI
dt +

∂ f4
∂σ

dσ
dt

(30)

The total output voltage is given by:

U =
4

∑
i=1

Ui = g(µM, I, σ) (31)

6. Sensor Simulation and Experimental Analysis

The system simulation model of the piezomagnetic sensor is established by using
MATLAB/Simulink module, a sinusoidal current is used as the excitation signal in the
simulation, as shown in Figure 12. The magnetostrictive force sensor test platform is shown
in Figure 13. The platform is composed of the designed piezomagnetic sensor, Hall element,
controllable DC power supply, controllable sinusoidal AC power supply, oscilloscope,
pressure application device, data acquisition device, and computer. In order to simulate the
axial pressure on the iron-cobalt alloy prism under actual working conditions, the pressure
regulating device adopts a vertical pressure test platform to apply a force of 0–128 kN to the
magnetic sensor along the axis of the excitation magnetic core in the horizontal and vertical
directions through the pressurizing device. Different bias magnetic fields are generated by
changing the current in the excitation coil through a controllable DC power supply. The
magnetic flux and magnetic field strength on the excitation core are measured by the Hall
element. An oscillograph is used to measure the waveform of output voltage when the
sensor is under force. Each point shall be measured twice and the average value shall be
taken to ensure the reliability of the experimental data.

Sinusoidal AC power supply is used in simulation and experiment, which can better
compare and observe the change law of each output coil. Therefore, the sinusoidal AC
power supply is used to test the difference between the simulated value and the calculated
value of the sensor, as shown in Figure 14. When the external force is zero, the voltage
of each induction coil presents a periodic distribution, and the voltages of induction coils
1 and 3 are the same, and the voltages of induction coils 2 and 4 are the same. This is
because the net magnetic flux generated by the excitation pole in the horizontal direction
on each induction coil satisfies Equation (12), that is, zero, so the voltage of each induction
coil caused by the excitation magnetic field in the horizontal direction satisfies Equation
(13), that is, zero. The net magnetic flux generated by the vertical excitation pole on each
induction coil meets Equation (18), that is, it is not zero so the voltage of each induction
coil changes under the action of the magnetic field generated by the vertical excitation
pole. Therefore, after the superposition of the horizontal and vertical directions, the voltage
of each induction coil presents the same change as Equation (22), that is, the voltage of
induction coils 1 and 3 is the same, and the voltage of induction coils 2 and 4 is the same.
When the external force is not 0, the net magnetic flux generated by each induction coil
meets Equation (28). After superposition in the horizontal and vertical directions, the
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voltage of each induction coil presents the same change as Equation (29), and the total
output voltage of the sensor meets Equation (31) and Figure 14. The results show that the
derivation of the magnetic circuit of the piezoelectric magnetic sensor is correct.
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simulation, as shown in Figure 12. The magnetostrictive force sensor test platform is 
shown in Figure 13. The platform is composed of the designed piezomagnetic sensor, Hall 
element, controllable DC power supply, controllable sinusoidal AC power supply, oscil-
loscope, pressure application device, data acquisition device, and computer. In order to 
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Figure 14. Voltage of each induction coil of piezoelectric magnetic sensor under different external
forces. (a) Voltage of induction coil 1 when the force is 0 kN, (b) Voltage of induction coil 2 when the
force is 0 kN, (c) Voltage of induction coil 3 when the force is 0 kN, (d) Voltage of induction coil 4
when the force is 0 kN, (e) Voltage of induction coil 1 when the force is 80 kN, (f) Voltage of induction
coil 2 when the force is 80 kN, (g) Voltage of induction coil 3 when the force is 80 kN, (h) Voltage of
induction coil 4 when the force is 80 kN.
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After the DC power supply is connected, the relationship between the sensor output
voltage and force under different bias magnetic fields is tested by changing the current to
change the bias magnetic field, as shown in Figure 15. The sensor sensitivity is obtained by
deriving the points in Figure 15. When the bias magnetic field is 1.23 kA/m and 84.56 kA/m,
the change rate of voltage is small and the sensitivity is small. It can be seen from Figure 15
that when the magnetic field is 1.23 kA/m and 84.56 kA/m, the piezomagnetic coefficient
of the iron-cobalt alloy is low, resulting in a small change rate of voltage. Experiments
show that under the bias magnetic field of 14.74 kA/m, the piezomagnetic coefficient is
the largest and the maximum sensitivity is 0.4394 mV/kN, which is consistent with the
simulation results of iron-cobalt alloy in Section 2.
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When the bias magnetic field is 14.74 kA/m, there is a good linear relationship between
output voltage and force. When the test force is within 0–80 kN, the developed sensor has
high sensitivity and good linearity. When the test force is within 80–120 kN, the sensitivity
of the sensor decreases slightly, but the reduction speed is slow, which proves that the
sensor has no obvious saturation phenomenon. The results verify the correctness of the
simulation and magnetic circuit derivation. The calculated values are basically consistent
with the simulation, indicating that the output voltage of the sensor can be calculated by
Equation (30).

7. Conclusions

Based on the nonlinear piezomagnetic equation, the cylindrical iron-cobalt alloy
material is modeled and simulated by using ANSYS finite element simulation software,
and the effects of bias magnetic field and stress on the piezomagnetic coefficient are studied.
Referring to the working conditions of the tractor force sensor, a new type of piezomagnetic
sensor is designed and manufactured. Using the electromagnetic theory and piezomagnetic
effect, the three-dimensional model of the magnetic structure and the mathematical model
of the magnetic circuit of the sensor are established, and the working principle of the
sensor is expounded. The feasibility of the theory is verified by simulation and experiment.
According to the simulation and experimental results, when the bias magnetic field intensity
is 14.74 kA/m, the piezomagnetic coefficient reaches the maximum value of 9.2 T/GPa. The
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force measuring range of the sensor is 0–120 kN, the force has high test sensitivity in the
range of 0–80 kN, and the test sensitivity of the force in the range of 80–120 kN is slightly
low. The sensor has the advantages of simple structure and high sensitivity. It can meet the
requirements of accurate force sensing and better adapt to the harsh working environment.
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