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Abstract: As an important combustion aid for aerospace vehicles, subcooled liquid oxygen of high
density can be used to increase loading capacity of a spacecraft. Providing a large amount of cryogenic
propellant in a short time with a strict energy consumption limitation is a challenge in the design
of the fuel filling system. The authors proposed a vacuumed subcooling system combined with an
ejector and liquid ring pump to vacuum a liquid oxygen tank and obtain subcooled liquid oxygen.
After the liquid oxygen tank is vacuumed to an intermediate pressure by the ejector, it is further
vacuumed to 10 kPa using the liquid ring pump. The infinitesimal method was used to simulate the
thermodynamic processes involved. Taking the ejector working fluid mass flow rate, jet pressure,
intermediate pressure, initial tank liquid level, and liquid ring pump speed as optimizing variables,
optimization was conducted to determine the optimal vacuuming time, remaining liquid level in
the tank, pumping speed difference, and nitrogen consumption. The sample set was generated by
the optimal Latin sampling algorithm. The surrogate assisted Non-dominated Sorting Genetic Algo-
rithm (NSGA-III) multi-objective algorithm was used to construct a system optimization framework.
The non-dominated solutions were added to the sample set to improve the generalization ability of
the Gaussian Process Regression (GPR) in the Pareto front. A convergent Pareto solution set was
obtained after multiple iterations. The influence of different optimization variables on each opti-
mization objective was analyzed using the Pearson correlation coefficient method. The optimization
results show that the trade-off scheme can obtain the subcooled liquid oxygen at 10 kPa and 73 K
with a remaining liquid level of 74.84% in a total vacuum time of 19.93 h. The efficiency of the liquid
oxygen vacuum subcooling system can be improved significantly.

Keywords: cryogenic aerospace vehicle; vacuum subcooling system; many-objective optimization;
surrogate model

1. Introduction

In aerospace cryogenic engineering, the use of subcooled liquid oxygen as a com-
bustion aid can significantly increase the loading capacity of the rocket owing to its high
density. The Soviet Union “Soyuz” rocket used a 70 K subcooled liquid oxygen filling
system [1–3], and the “Энергия” rocket used a 57 K liquid oxygen subcooling system [4].
In a combined saturated liquid nitrogen and vacuumed subcooling liquid-nitrogen system,
the liquid-nitrogen bath is evacuated to obtain subcooled liquid nitrogen. Then, liquid
oxygen is subcooled by heat exchange with the subcooled liquid nitrogen. The NASA
Glenn Center obtained 66.67 K subcooled liquid oxygen using this method [5,6]. Different
subcooling methods have been proposed, and they have advantages and disadvantages
in terms of safety and engineering difficulty. When a nitrogen ejector is used to vacuum
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the tank containing liquid oxygen, the vacuuming speed is high, but the consumption
of high-pressure nitrogen is considerable. Moreover, accurate control of the temperature
fluctuations is required if appropriate levels of subcooled liquid oxygen are to be obtained
from heat exchange with subcooled liquid nitrogen. The “Falcon 9” rocket once carried
liquid helium to cool liquid oxygen, but the subcooling was too difficult to control, causing
the liquid oxygen freezing and the rocket explosion [7]. Thus, a number of cryogenic
propellant filling systems with low energy consumption and high energy efficiency are
needed at launch sites worldwide. In order to investigate the subcooling cryogenic liquid
by vacuuming, Zuo [8] designed and built a visualized cryogenic fluid evaporation test
bench to measure the interfacial temperature profile of evaporating liquid oxygen in atmo-
spheric pressure. The modified KTG model has a good agreement with experiment data.
The present authors proposed a subcooling system combined with an ejector and liquid
ring pump to vacuum a liquid oxygen tank and obtain subcooled liquid oxygen. After the
liquid oxygen tank is vacuumed to an intermediate pressure by the ejector, it is further
vacuumed to 10 kPa by The liquid ring pump. The subcooled liquid oxygen at 73 K is to be
yielded in the subcooling system. Here, the optimal operation conditions for the ejector
and liquid ring pump will be determined, and a highly efficient optimization method is
proposed in this study.

In the field of thermodynamic process optimization, the optimization frameworks,
such as GA (Genetic Algorithm), are used to connect the steady-state thermodynamics
solver [9]. Khan [10] investigated a multi-optimization of a dual-mixed refrigerant natural
gas liquefaction process based on NSGA-II (Non-dominated Sorting Genetic Algorithm II,
NSGA-II), where having the specific compression power and the heat exchanger area as
objectives results in savings of 36% and 15% respectively. Song [11] optimized a nitrogen
expansion LNG process with carbon dioxide expansion precooling with NSGA-II for the
objective of specific energy consumption and liquefaction rate; the result shows an increase
of 5.19% (0.77–0.81) of liquefaction rate and a decrease of 10.1% of energy consumption.
Mofid [12], using GA and MOPSO (multi-objective particle swarm optimization) to opti-
mize a nitrogen expansion LNG process, takes the energy consumption and the liquefaction
rate as objectives separately, and the result shows that MOPSO obtained better Pareto fronts
in comparison of GA.

For most multi-objective optimization problems, the objectives are conflicting, and the
improvement of one objective may lead to the degradation of the other objectives. It is
impossible to optimize multiple objectives simultaneously, and only coordinated trade-offs
and compromises can be made among the objectives to make all objective functions as
optimal as possible. The optimal solution could not maximize all objective functions under
a given constraint. Instead, a set of Pareto optimal solutions could be obtained.

A multi-objective optimization problem (MOP) can be expressed as follows:

min
x∈D

y = f (x) =
[

f1(x), . . . , fj(x)
]

s.t. gi(x) ≤ 0, I = 1, 2, . . . , p (1)

D =
[

xlb, xub
]
,

where the space of global solutions D = [xlb, xub] represents the lower bound and upper
bound of x, objective functions y = f , inequality constraints g, and j is the number of
objectives. f (x) as a high-precision simulation function is expensive to calculate in order to
accelerate the optimization process, therefore, it is efficient to use a data-driven surrogate-
assisted optimization framework based on high-precision simulation samples [13].

So far, there are not many theoretical studies on operation conditions optimization
for a cryogenic liquids subcooling system by vacuuming. This study proposed a simple
prediction method for a liquid oxygen subcooling system on the basis of the quasi-steady
state assumption in a micro time step. The heat and mass balances in the liquid oxygen
subcooling system were simulated using an infinitesimal method. The thermodynamic
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model was verified by a liquid nitrogen vacuumed subcooling system with a maximum
pressure deviation of 10.17% and a maximum liquid level deviation of 7.02%. A four-
objective optimization algorithm based on NSGA-III and a Gaussian process regression
optimized by a Bayesian optimization algorithm were used as the surrogate model to
accelerate the optimization calculation. The adopted optimization algorithm efficiently
obtains the four-objective Pareto frontier. If the vacuum ejector is operated at a multi-
objective trade-off optimal conditions, i.e., a working fluid mass flow rate of 1 kg/s and
a pressure of 5 Mpa, an intermediate pressure of 16.09 kPa, if the pump speed of liquid
ring pump is 12.96 m3/min, 74.84% of the liquid oxygen remains at subcooled state in
19.93 h and the consumption of high pressure nitrogen is 2267.3 standard cubic meters
(Sm3), it can meet the engineering limitation. The present study provides a reference for
the multi-objective optimization of similar cryogenic liquid subcooling systems.

2. Methodology

This study aims to design a subcooling system combined with an ejector and liquid
ring pump to vacuum a liquid oxygen tank and obtain subcooled liquid oxygen at 73 K.
The volume of the liquid oxygen tank is assumed to be 60 m3. In order to yield the largest
amount of subcooling liquid oxygen with the smallest energy consumption while in the
shortest total vacuuming time, optimal operation parameters need to be determined based
on this test system. Energy consumption contains the maximum available nitrogen storage
and maximum available power. A previous investigation demonstrated that the high
pumping speed of the ejector and the stable pumping speed of the liquid ring pump can
optimize the vacuuming process. Therefore, the combined vacuum system with an ejector
and liquid ring pump was adopted. A diagram of the proposed system is shown in Figure 1.

Figure 1. Ejector/liquid ring pump vacuum subcooling system.

The liquid oxygen vacuum process is shown in Figure 1. At the beginning of the
vacuuming process, the liquid oxygen stored in the tank is vacuumed by the ejector when
valve SV4 is turned off and other valves are opened. The liquid oxygen is vacuumed
to an intermediate pressure ps, then valves SV2 and SV3 are closed and SV4 is opened.
The vacuum system shifts to the liquid ring pump mode. The liquid oxygen tank is
vacuumed with the liquid ring pump until the tank reaches the target pressure of 10 kPa
to obtain subcooled liquid oxygen at 73 K. A heat exchanger is used to superheat the
vacuumed cryogenic oxygen vapor before entering the liquid ring pump. To optimize
the performance of the combined vacuum system, it is necessary to determine the key
parameters of the system (nitrogen flow rate and jet pressure of the ejector, intermediate
pressure ps, initial tank liquid level, and liquid ring pump speed) and the total working
time, nitrogen consumption, remaining liquid level, and pumping speed difference of the
ejector and liquid ring pump.
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2.1. Heat and Mass Balance of the Vacuumed Subcooling Process

In a micro time step of the vacuuming process, it can be regarded as being in a quasi-
equilibrium state, and the mass conservation of the vacuum process can be expressed as:

δ
.

ms + mr = minit (2)

δ
.

ms = qiδt, (3)

where minit (in kg) is the initial liquid oxygen mass at the beginning of the vacuuming
process, and δ

.
ms (in kg) determined by Equation (3) is the mass of the liquid oxygen

vacuumed from the initial pressure (p1) to p2 in the time step (δt = 0.1 s). qi (in kg/s)
represents the effective vacuuming mass flow rate. The remaining liquid oxygen mass
(in kg) in the tank at the end of the time step, mr, can be determined by Equation (2).

The effective pumping speed is calculated by:

qi =
qeUt

Ut + qe
, (4)

where qi is the vacuum speed (or the effective vacuuming mass flow rate) in kg/s. qe is the
pump speed of the ejector and qp is the pump speed of the liquid ring pump, and Ut is the
flow conductance of the system.

Here, qe can be determined by:

qe = µδ
.

mN2 /δt, (5)

where µ is the average ejection ratio of the pressure interval in the time step, µ = δ
.

ms/δ
.

mN2 ,
and δ

.
mN2 is the mass of nitrogen entering the ejector in the micro time step. The perfor-

mance of the ejector can be calculated based on an isobaric mixing model [14]. According to
the working fluid pressure (pe) of the ejector, nitrogen mass (mN2 ), efficiency of the nozzle,
efficiency of the mixing chamber, efficiency of the expansion section (ηN, ηm, ηd), and other
parameters, the vacuumed fluid pressure ps (i.e., the liquid oxygen storage tank pressure)
can be calculated.

For the liquid ring pump, the effective pump speed under different storage tank
pressures (qp) can be determined. Therefore, the mass of the vacuumed gas can be calculated
as follows:

δ
.

ms = δ
.

Vexρg = qpδtp, (6)

where ρg is the average density of the gas in the time step.
The vacuumed gas in the micro time step (δ

.
ms) is vaporized by two mechanisms.

δ
.

ms = δ
.

mflash + δ
.

mheatleak, (7)

where δ
.

mflash is the mass of liquid oxygen flashing caused by the pressure drop, and δ
.

mheatleak
is the mass of liquid oxygen evaporation caused by heat leakage, and it can be determined
by the daily evaporation rate of the liquid oxygen tank (0.5%).

δ
.

mheatleak =
0.005minitδt
24× 3600

. (8)

The energy conservation equation for the vacuumed subcooling process can be ex-
pressed as:

δ
.

mflashγ2 = mr∆hl1−2 + δ
.

mO2∆hg1−2 + CsmW∆T , (9)

where γ2 is the latent heat of liquid oxygen at pressure p2; ∆hl1−2 is the liquid-phase
enthalpy difference in the time step; δ

.
mO2 is the mass difference of the gas-phase in the

time step; ∆hg1−2 is the gas-phase enthalpy difference in the time step; Cs is the tank wall
heat capacity;

.
mW is the mass of the tank inner wall, and ∆T is the tank wall temperature

difference in the time step.
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The total vacuuming time is:
tT = te + tp. (10)

The working time of the liquid ring pump (tp) is npδtp, and ne and np are the iteration
times of the ejector and liquid ring pump program, respectively. Here, δte and δtp are the
micro time steps of the operation of the ejector and liquid ring pump, respectively. The total
nitrogen consumption Vtc (Sm3) can be determined by

(∫
δ

.
mN2 δte

)
/ρstd and the nitrogen

density under standard conditions (ρstd) is 1.2504 kg/m3.
The tank pressure and remaining liquid oxygen mass at different time steps can be

determined by solving the mass and energy conservation equations. Then, the volume
of the remaining liquid oxygen in the storage tank (Vr,LO2) can be calculated using the
equation VrLO2 = mr/ρi, where ρi is the liquid oxygen density at the corresponding pressure
and is determined by the thermal properties database of Refprop. Thus, the final remaining
tank level (levelr) can be calculated by Vr,LO2/Vtan k.

To utilize the maximum vacuuming capacity of the ejector, the vacuum speed of the
ejector should be as high as possible, although it gradually decays with decreasing of the
tank pressure. Therefore, the differential pressure drop rate of the element (δsp) was chosen
as a coefficient to assess the vacuuming process.

δsp =
δpel
δte
−

δppf

δtp
, (11)

where δpel is the pressure drop at the last micro time step using the vacuuming ejector,
and δppf is the pressure drop of the first micro time period employing the liquid ring pump.
When δsp is negative, the vacuuming scheme is unreasonable.

The aim of this study was to determine an optimal operating condition for a liquid
oxygen vacuumed subcooling system. The limitations of the available conditions are listed
in Table 1.

Table 1. Limitations of engineering conditions.

Engineering Conditions Limitation

Storage of N2 (Nm3) 2300
Available motor power (kW) <110

Total vacuuming time (h) <24
Volume of LO2 tank (m3) 60

2.2. Validation of the Simulation Method

A liquid nitrogen vacuumed subcooling test system was used for experimental val-
idation. The schematic diagram and the test set of the vacuumed subcooling system are
shown in Figures 2 and 3. The tank pressure and the remaining liquid level were used
as the verifying indicators. The above mentioned quasi-equilibrium model was used to
simulate the vacuumed subcooling of liquid nitrogen. Due to the high thermodynamic
similarity of nitrogen and oxygen, the validated model can be used for the simulation of
the vacuumed subcooling of liquid oxygen.

Figure 2. Schematic diagram of the liquid-nitrogen vacuumed subcooling system.
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Figure 3. Image of the liquid nitrogen vacuumed subcooling test set.

Although only the liquid ring pump was verified, both the simulation models for
ejector and liquid ring pump were given in the abovementioned model, and the vacuuming
speed for different devices has been specified in Equation (4). The vacuuming performance
of the ejector can be correctly predicted by the validated simulation model using the
specification of the vacuuming speed of the ejector.

The test conditions were specified as follows. The liquid nitrogen storage tank was
60 m3. The diameter of the exhaust gas pipeline connecting the heat exchanger was 0.08 m,
the pipe length was 20 m, and the pressure drop in the pipe was 2.44 kPa. The diameter of
the nitrogen channel in the heat exchanger was 0.018 m, the total length of the pipeline was
84 m, and the pressure drop was 38.17 kPa. The liquid ring pump speed was 0.25 m3/s.
Nitrogen was heated to 283 K in the heat exchanger. The simulation results and experimen-
tal data are shown in Figure 4.

Figure 4. Comparison of simulation and experimental data: (a) tank pressure deviation and (b) tank
liquid level deviation.
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As shown in Figure 4, the liquid nitrogen tank was vacuumed to a lower pressure,
and the simulated tank liquid level deviated from the experimental results considerably.
This may be because the liquid level fluctuates violently, but the simulation data cannot
reflect the dynamic fluctuation of the liquid level, resulting in a maximum deviation of
7.02%. The simulation results for the tank pressure agreed well with the experimental
data. When the vacuum time was approximately 10,000 s, the deviation of the simulated
pressure was less than 10.17%. The pressure in the vacuumed tank can be measured more
accurately than the liquid level. On the basis of the micro time discretization, the vacuumed
tank pressure can also be simulated correctly. So, the simulated pressures matched the
experimental data well. However, cryogenic liquid level measurement is very challenging,
and there is an unclear phase interface in the tank due to the rapid evaporation of cryogenic
liquid, and a relatively large uncertainty exists in the cryogenic liquid level measurement.
On the other hand, the present simulation was based on the quasi-steady state assumption
and the heat and mass transfer are ignored.

2.3. Surrogate Based Multi-Optimization

The optimization of the liquid oxygen vacuumed subcooling process can be formulated
as follows:

min
x∈D

= f (x) = [ f1(x), f2(x), f3(x), f4(x)] = [tT, |Vtc − 2300|,−levelr,−δsp]

x =
[
mN2 , pe, ps, sp, levelinit

]
D =

[
xlb, xub]. (12)

In the optimal operation of the vacuumed subcooling process, the remaining liquid
oxygen level should achieve the maximum value in the shortest period. So, the optimization
of tT and levelr are in opposite directions. The difference between the consumed nitrogen
volume (Vtc) and the maximum nitrogen storage (2300 Sm3) is one of the optimizing
objectives. −δsp is another objective of the optimization. The lower and upper bounds are
shown in Table 2.

Table 2. Range of sampling variables.

Optimization Variables Sampling Lower Bound Sampling Upper Bound

mN2 (kg/s) 0.1 1
pe (MPa) 1 5
ps (kPa) 10 90

levelinit (%) 83 95
sp (m3/min) 5 25

The simulation (infinitesimal solver) is a time consuming unsteady thermal dynamics
solver, and it is necessary to call the solver repeatedly during the optimization process.
Thus, a surrogate model was established to accelerate the optimization process. Thus,
the multi-objective optimization problem can be reformed as:

min
x∈D

y = fs(x), (13)

where the surrogate model fs(x) is a black box function based on a data-driven approach.
Generally, the establishment of a surrogate model has four steps, ensuring the sampling
boundary, sampling, selecting the surrogate model, and hyperparameter optimization.

First, the actual product parameters are used to obtain the sampling boundary. The op-
timization variables are shown in Equation (12). The sampling ranges of the optimization
variables are listed in Table 2.
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Then, the samples (X =
[

x(1) . . . x(i)
]T

) were generated by the optimal Latin hy-
percube sampling method [15]. Simulations were performed for each sample and then
regression responses y = f (x) were obtained as:

y = f (x) =


f1

(
x(1)

)
. . . f1

(
x(i)
)

f2

(
x(1)

)
. . . f2

(
x(i)
)

f3

(
x(1)

)
. . . f3

(
x(i)
)

f4

(
x(1)

)
. . . f4

(
x(i)
)



T

. (14)

Sample set D consists of optimization variables and a regression response. D = [X, y].
Based on the sample set D, linear regression [16], regression trees [17], support vector
regression (SVR) [18], Gaussian process regression (GPR) [19], ensemble trees [20] and the
fivefold cross validation were used to obtain the surrogate model performance, as shown
in Table 3.

Table 3. Comparison of the R-squared of surrogate models.

Regression
Response

Linear
Regression

Regression
Trees

Support Vector
Machine

Gaussian Process
Regression

Ensemble
Trees

tT (s) 0.83 0.68 0.94 0.95 0.64
levelr (%) 1.0 1.0 0.99 1 0.77
δsp (Pa/s) 0.84 0.72 0.97 0.99 0.87
Vtc (Sm3) 0.96 0.77 0.99 1 0.91

The R-squared of five surrogate models are listed in Table 3. It can be seen that
GPR and SVR present the best regression performance among the five surrogate models.
The R-squared approximately equals one for every regression response. The GPR exhibited
a better performance than the SVR model. So, the GPR was chosen as the best surrogate
model in this study.

GPR is a classical small-sample machine-learning model that performs well in low-
dimensional nonlinear prediction. In the calculation of GPR, two equations should be
clarified, the mean function m(x) and the covariance function COV(x, x′).

m(x) = E[ f (x)] (15)

COV
(
x, x′

)
= E

[
( f (x)−m(x))

(
f
(

x′
)
−m

(
x′
))]

, (16)

where x and x′ are random variables.
A Gaussian process with m(x) and COV(x, x′) is represented as:

f (x) ∼ GP
(
m(x), COV

(
x, x′

))
, (17)

where COV(x, x′) can be calculated by a kernel function.

K
(
X, X′

)
=


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

...
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

. (18)

The covariance function k(x, x′) is usually parameterized by a set of kernel parameters
or hyperparameters, θ. Often k(x, x′) is written as k(x, x′ | θ) to explicitly indicate the
dependence on θ. For a regression model,

y = f (x) + ε, (19)
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where ε is noise or residual. It is assumed that ε follows a normal distribution ε ∼
(
0, σ2).

If the form of f (x) is indeterminate, it is called latent function, a latent function g(x) can
be obtained using a set of basis functions:

g(x) = h(x)T β + f (x). (20)

The Gaussian process can be expressed as:

g(x) ∼ GP
(

h(x)T β, COV
(

x, x′
)
+ h(x)T βh

(
x′
))

, (21)

where h(x) is the basis function, β is the estimated basis function coefficient, and σ2 is the
error variance.

In vector form, this model is equivalent to:

P(y | f , X) ∼ N
(

y | Hβ + f , σ2 I
)

, (22)

where H is the vector of explicit basis functions. The basis function h(x), the coefficient β, θ,
kernel function k(x, x′), and error variance σ2 are hyperparameters that affect the perfor-
mance of GPR.

In this study, Bayesian optimization [21] was used to optimize the hyperparameters in
the GPR. Bayesian optimization can obtain the best hyperparameter with less calculation
than other hyperparameter selection methods. The Bayesian optimization process of
hyperparameters is illustrated in Figure 5.

Figure 5. Bayesian optimization process.

Then the expected value of prediction ynew at a new sample xnew, the given y, X,
and hyperparameters β, θ, and σ2 of the GPR surrogate model can be determined by:

fs(xnew) = E(ynew
∣∣y, X, xnew, β, θ, σ2)

= h(xnew)T β + K(xT
new, X|θ )α

= h(xnew)T β +
n
∑

i=1
αiK(xnew, xi|θ )

(23)
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α = (K(X, X|θ ) + σ2 In)
−1

(y− Hβ). (24)

2.4. Many-Objective Optimization Algorithm NSGA-III

To improve the performance of the optimization algorithm in the many-objective
optimization problem, Deb et al. [22] proposed the NSGA-III algorithm in 2014. The frame-
work of NSGA-III is basically the same as that of NSGA-II, and it uses fast nondominated
sorting to classify the population into different nondominated frontiers. The selection of
the nondominated layer of the NSGA-III is different. NSGA-II used crowded comparison
operations to maintain the diversity of the population, but NSGA-III used well-distributed
reference points to maintain population diversity. The detailed algorithm is provided in
Appendix A.

The four GPR surrogate models were embedded into NSGA-III as objective functions.
With the iterating of the NSGA-III, the set of non-dominated solutions x∗ were added to
the sample set to improve the generalization ability of the surrogate model on the Pareto
frontier. The samples addition process can be expressed as:

Diter = Diter−1 ∪ [x∗iter , f (x∗iter)]. (25)

The surrogate-assisted optimization process is shown in Figure 6.

Figure 6. Optimization process of surrogate-assisted NSGA-III.
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3. Results and Discussion

The initial sample set (I = 88) was generated by a sampling method, and the sample
set size increased as non-dominated solutions were added to the sample set, and the final
sample set size was 616. The settings of NSGA-III are shown in Table 4.

Table 4. Settings of NSGA-III.

Option Value

Reference point number 50
Number of iterations 100

Population size 100
Crossover percentage 50%
Mutation percentage 50%

Mutation rate 0.02
Mutation step 0.5

3.1. The Simulation Results

Figure 7 shows the variation in µ with an increase in the tank pressure. When the
tank pressure decreases from 101 to 90 kPa, µ decreases from 0.48 to 0.083 by 82.7%.
When the tank pressure decreases from 90 to 70 kPa, µ decreases from 0.083 to 0.037 by
55.42%. When the tank pressure is lower than 80 kPa, the decaying trend of µ becomes
smooth. Owing to the decreasing of the tank pressure, the velocity of nitrogen at the nozzle
decreases sharply, and the eject coefficient µ decreases correspondingly. At the beginning
of the vacuuming processes, the vacuuming speed of the ejector decreased rapidly with a
decrease in tank pressure.

Figure 7. The variation of µ with the tank pressure.

When the intermediate pressure ps is 40 kPa, the total vacuuming time is gradually
shortened with an increase in the differential pressure drop rate of the element (δsp) as
shown in Figure 8. When δsp is −1.8 Pa/s, the pump speed of the ejector is lower than that
of the liquid ring pump, i.e., the ejector does not play a major role in the whole vacuum
process, which means that the large pump speed feature of the ejector is not well utilized.
When δsp is 0.26 Pa/s, the pressure drop curve of the intermediate pressure transition
point is smooth. With the increase in δsp, the pump speed of the ejector increases gradually,
and the ejector plays an important role in the vacuuming process, and the total vacuuming
time is greatly saved.

3.2. Surrogate Model Performance

The performance of the GPR optimized by Bayesian optimization is shown in Figure 9,
which illustrates the prediction of GPR with the simulation results of the solver. The black
line represents perfect prediction. When the observed results are closer to the black line,
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the prediction results are more accurate. As non-dominated solutions are added to the
sample set in each generation, the prediction accuracy for GPR is gradually improved by
optimizing the hyperparameter. The results showed that it takes 0.045 s for GPR to predict
the simulation results, whereas the simulation of the solver takes 100–200 s. The prediction
speed of GPR is 2000–4000 times faster than that of the simulation solver.

Figure 8. Pressure drop curve for different δsp.

Figure 9. Final surrogate model performance.

The optimized surrogate models showed a significant decrease in the RMSE of the
prediction errors except for the δsp model, as shown in Table 5. However, compared to
other GPRs, the δsp model RMSE of the optimized GPR is the smallest on the final sample
set (RMSE of rational quadratic GPR = 0.4946, RMSE of squared exponential GPR = 0.5796,
RMSE of exponential GPR = 1.069, RMSE of optimized GPR = 0.479).
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Table 5. The RMSE of the prediction errors.

Original RMSE Optimized RMSE Improvement Rate

tT 2557.6 819.69 −67.95%
levelr 0.0315 0.02308 −26.73%
δsp 0.42 0.479 +14.04%
Vtc 37.67 28.269 −24.95%

3.3. Analysis of Optimization Results

The Pareto frontier for the four optimization objectives was obtained using surrogate-
assisted NSGA-III, as shown in Figure 10.

Figure 10. Pareto frontier of surrogate model.

The shape of the interpolation surface of the scattered points of the 3D Pareto front
is regular. It can be seen that the optimization results have converged. The solution
of the Pareto front represents the optimal solution of each optimization objective under
different weights, and the required working parameters can be selected from the Pareto
front according to the design requirements.

Considering the limitation of the available conditions, several optimal operation
conditions are listed in Table 6. The bounds on the optimization objective are the total
vacuum time (tT) of less than 24 h and the nitrogen consumption of less than 2300 Sm3.

Table 6. Optimizing solutions for the liquid oxygen vacuumed subcooling system.

Case mN2

(kg/s) pe (MPa) ps
(kPa) levelinit (%)

sp
(m3/min)

tT
(s) levelr (%) δsp

(Pa/s)
Vtc

(Nm3)

1 1 5 16.56 86.97 15.05 65,968 70.75 1.16 2152.42
2 1 5 16.09 91.99 12.96 71,756 74.84 1.18 2267.3
3 1 5 19.45 92.95 13.25 84,127 75.54 2.02 1350.9

As shown in Table 6, mN2 and pe are located at the upper sampling limit of 1 kg/s and
5 MPa, and the intermediate pressure ps is approximately near 20 kPa, which indicates that
the ejector is the dominant factor in the vacuum process, and the liquid ring pump plays a
supplementary role after the high-pressure nitrogen is depleted. The working conditions of
Case1 represent the global shortest total vacuum time scheme, and the vacuuming time
is 65,968 s (18.32 h), and the remaining liquid level is 70.75%. The working conditions
of Case2 represent the trade-off scheme of total vacuuming time and remaining liquid
level. The vacuuming time of Case2 is 19.93 h, which is 8.77% longer than that of Case1,
and the remaining liquid level is 4.09% higher than that of Case1. The optimal solution of
Case3 represents the scheme with the global maximum remaining liquid level, which is
75.54% and is 0.7% higher than that of Case2, and the vacuum time is 23.38 h and 17.3%
longer than that of Case2.



Processes 2022, 10, 1188 14 of 16

3.4. Pearson Correlation Analysis

The Pearson correlation coefficient is the most commonly used correlation analysis
method. For columns Xa and Xb in matrix X, Xa = ∑n

i=1(Xai)/n, Xb = ∑n
j=1(Xbi)/n, n is

the length of each column, and Pearson’s correlation coefficient rho(a, b) is defined as:

rho(a, b) =

n
∑

i=1
(Xa,i − Xa)(Xb,i − Xb){

n
∑

i=1
(Xa,i − Xa)

2 n
∑

j=1
(Xb,i − Xb)

2
}1/2 . (26)

The Pearson’s correlation coefficient varies from −1 to +1. If the rho(a, b) is −1, there
is a completely negative correlation between a and b. If the rho(a, b) is +1, it presents
a completely positive correlation between a and b. If the rho(a, b) is zero, there exists
no correlation between the columns. Pearson correlation analysis was performed on the
sample set, and the detailed results are given in Appendix B.

The ps is the independent variable that has the greatest correlation with total vacuum
time tT, and the Pearson’s correlation coefficient is 0.71. Because the ps determines the
vacuuming time of the ejector, it influences the total vacuuming time greatly. The vac-
uuming time of the ejector increases with a decrease in the ps, and the total vacuuming
time is shortened due to the relatively high vacuuming speed of the ejector. It can also
be found that the vacuuming speed of the liquid ring pump is negatively related to the
total vacuum time. The correlation coefficient between levelr and levelinit is the highest
value of 0.99, and there is a strong positive linear relationship between levelr and levelinit.
The pump speed of the liquid ring pump (sp) is negatively correlated with the remaining
liquid level levelr (−0.49), because the vacuuming process with the liquid ring pump in a
low vacuuming speed causes a large amount of gas to be exhausted. More liquid oxygen
evaporates, resulting in a decrease in the remaining liquid level. The greatest correlation
coefficient between the δsp and ps is 0.83. The ps is the intermediate pressure at which the
vacuuming ejector is replaced by the liquid ring pump. Because of the rapid attenuation
of the pumping speed of the ejector, there exists an obvious disturbance caused by the
pump speed difference between the two vacuuming devices. The nitrogen consumption
has a very small positive correlation with the nitrogen mass flow mN2 , and it has a negative
correlation with the nitrogen pressure pe (−0.194). The higher nitrogen pressure may
induce the lower nitrogen consumption in the vacuuming process. The greatest negative
correlation between Vtc and ps is −0.83. The nitrogen consumption is directly related to the
working time of the ejector. The smaller ps means the working of the ejector is prolonged,
and the nitrogen consumption increases correspondingly.

4. Conclusions

To improve the efficiency of a liquid oxygen vacuumed subcooling system, a vacuum
system with a combination of a liquid ring pump and an ejector was employed to shorten
the total vacuuming time and increase the yield of subcooled liquid oxygen. The heat and
mass balances involved in the vacuuming process were simulated using a quasi-equilibrium
infinitesimal method. The simulation results were compared with experimental data to ver-
ify the reliability of the simulation method. A data-driven surrogate-assisted multi-objective
optimization framework was used to accelerate the optimization process of vacuum sub-
cooling. After the regression accuracies of several surrogate models were compared, GPR
was used as the best surrogate model. Bayesian hyperparameter optimization significantly
improved the regression accuracy of GPR and was embedded in the NSGA-III algorithm to
obtain the Pareto front. The Pearson correlation coefficient method was used to analyze the
correlation between the optimization variables and the optimization objectives.

The trade-off scheme has more advantages in total vacuuming time and remaining
liquid level. It can obtain the subcooled liquid oxygen at 10 kPa and 73 K with a remaining
liquid level of 74.84% in the total vacuum time of 19.93 h, which greatly improves the
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efficiency of the liquid oxygen vacuumed subcooling system. The optimization results
show that the vacuum ejector should be used to vacuum the liquid oxygen tank from
atmospheric pressure to 20 kPa. Liquid ring pump only plays a supplementary role after
the nitrogen is exhausted.

After the correlation analysis of the dataset, it is shown that there is a strong linear
correlation between the initial liquid level and the remaining liquid level. The vacuum
subcooling time has a strong linear correlation with the operating time of the ejector. Thus,
the sufficient storage of high-pressure nitrogen can significantly reduce the total vacuum
subcooling time and lead to an increase in the energy consumption and equipment footprint.
Therefore, the trade-off solutions of multi-objective optimization is necessary.
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Appendix A.

Algorithm A1: “Generation” t “of NSGA-III Procedure”

Input: H structured reference points Zs or supplied aspiration points Za, parent population Pt
Output : Pt+1
1 : St = ∅, i = 1
2 : Qt = Recombination + Mutation (Pt)
3 : Rt = Pt ∪Qt
4 : (F1, F2, . . .) = Non− dominated− sort (Rt)
5 : repeat
6 : St = St ∪ Fi and i = i + 1
7 : until |St| ≥ N
8 : Last front to be included : Fl = Fi
9 : if |St| = N then
10 : Pt+1 = St, break
11 : else
12 : Pt+1 = ∪l−1

j=1 Fj

13 : Points to be chosen from Fl : K = N − |Pt+1|

14 :
Normalize objectives and create reference set Zr :

Normalize(fn, St, Zr, Zs, Za)
15: Associate each member s of St with a reference point:[π(s), d(s)] = Associate (St, Zr)%π(s) : closest
reference point, d: distance between s and π(s)
16: Compute niche count of reference point j ∈ Zr : ρj = ∑s∈st/F1 ((π(s) = j) 1:0)

17: Choose K members one at a time from Fl to construct Pt+1 : Niching
(

K, ρj, π, d, Zr, Fl , Pt+1

)
18: end if
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Appendix B. Pearson Linear Correlation of All Variables

mN2 pe ps levelinit sp tT levelr δsp. Vtc

mN2 1 0.362 0.033 0.049 0.048 −0.209 0.060 0.339 0.025
pe 0.362 1 0.290 0.210 0.005 −0.024 0.213 0.448 −0.194
ps 0.033 0.290 1 0.443 −0.037 0.714 0.414 0.835 −0.835

levelinit 0.049 0.210 0.443 1 −0.486 0.482 0.999 0.365 −0.250
sp 0.0482 0.005 −0.037 −0.486 1 −0.371 −0.494 0.059 −0.028
tT −0.209 −0.024 0.714 0.482 −0.371 1 0.448 0.436 −0.802

levelr 0.060 0.213 0.415 0.999 −0.494 0.448 1 0.347 −0.216
δsp 0.339 0.448 0.835 0.365 0.059 0.436 0.347 1 −0.563
Vtc 0.0255 −0.194 −0.835 −0.250 −0.028 −0.802 −0.216 −0.563 1
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