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Abstract: Protective coal seam mining can not only effectively prevent coal and gas outbursts in
mines, but also provide stress unloading space for the protected coal seam. The coal body in the
protected coal seam might undergo deformation, internal damage and structural damage, which
changes its gas seepage characteristics. This study aims to explore the variations of permeability of
the coal body in the protected coal seam under axial unloading. With the coal body from the outburst
coal seam in the Huaibei mining area as the research object, experiments were conducted to explore
the gas seepage characteristics of axially unloaded coal body under different confining pressures and
gas pressures, using the TAWD-2000 coal-rock mechanics-seepage experimental system. According
to the results, with respect to the gas seepage, the variations of permeabilities of axially unloaded
coal samples are closely related to their deformation and damage. As the confining pressure and
gas pressure rise, the difference between the permeability at the final failure point and the initial
permeability rises at a decreasing rate. The experiments fully demonstrate that the protective coal
seam is technically important for the unloaded gas drainage and the coal and gas outburst prevention
of the protected coal seam. Under different confining pressures and gas pressures, the permeability
of axially unloaded coal varies to different extents and at different rates. The mining scheme for the
protective coal seam should be designed in accordance with its confining pressure and gas pressure.
This study is of guiding significance for the prevention and control of coal and gas outbursts in coal
seam groups.

Keywords: gas drainage; unloading axial pressure; coal body; permeability characteristics; perme-
ability enhancement

1. Introduction

China is a country with a large consumption of coal. Coal plays an important role
in its energy structure and can promote economic development. As coal mining in China
continues, the shallow coal resources are beginning to be exhausted, so coal enterprises
are resorting to deep mining. The mining depths of the coal mines in China are increasing
at a rate of 8–12 m per year. Consequently, the gas content and gas adsorption in the coal
seams strengthen, while the permeability of the coal seams weakens. Coal and gas outburst
accidents are more likely to occur, seriously affecting safe production in coal mines [1–4].

To prevent and control gas accidents in a safe, economical and effective way, scholars
have carried out extensive experimental and theoretical research, and put forward effective
prevention and control measures. Among them, the technology of protective coal seam
mining is an effective method that was put into practice [5–9]. The stress states of the coal
seams differ. The mining activities in a specific coal seam inevitably affect the stress and
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gas pressure (GP) distribution in other coal seams. Hence, a reasonable mining sequence is
the key to the production safety of coal seam groups. In the laboratory, the stress state of
protected coal seams can be simplified to a condition that the confining pressure (CP) is
constant, while the axial pressure (AP) is unloaded [10]. At the same time, the gas perme-
ability of coal is an important physical property of coal. This property is greatly affected
by the in situ stress state of the coal body, and the degree and pressure of gas enrichment
in the coal body. Therefore, the experimental study on the gas seepage characteristics of
axially unloaded coal under different confining pressures and gas pressures is of theoretical
and practical significance for both the determination of a reasonable mining sequence
for multiple coal seams, and the effective on-site implementation of protective coal seam
mining schemes [11–14].

Zhang et al. [15] found that permeability was negatively correlated with AP and CP
and positively correlated with GP, and it varied exponentially with GP. Pan et al. [16]
designed a stress path of reducing CP stepwise, while loading AP stepwise. The results
revealed that, in the initial stage of loading and unloading, the permeability of the intact coal
body weakens; when the stress difference exceeds the yield strength of the coal sample, the
fracture volume increases, resulting in capacity expansion and permeability enhancement
of the coal sample. Guo et al. [17] found that the cyclic loading and unloading could
cause damage to the intact coal body; the permeability of the coal sample is enhanced
when the stress exceeds its yield strength; as peak stress rises and damage in the coal
sample accumulates, the stress sensitivity of the intact coal body gradually decreases.
Cheng et al. [18] designed mining stress paths for three stages (loading, unloading and
recovery), according to different stress concentration coefficients. They found that the
permeability of coal remained almost unchanged and as low as the original value in the
loading stage; however, it increased exponentially in the unloading stage and decreased
exponentially in the recovery stage. Li et al. [19] compared the permeability variations
of different coal samples, set a stress path for cyclic stepwise loading and unloading of
AP, and obtained the variations in permeability values and stress sensitivity coefficients of
different coal samples. Kong et al. [20] designed an experimental path for cyclic stepwise
loading and unloading of AP and CP, and analyzed the seepage law of coal samples under
this path. They concluded that under the same stress state, the permeability of the fractured
coal sample was two orders of magnitude higher than that of the intact coal sample, and
the permeability loss of the former was significantly greater than that of the latter.

Scholars have explored the gas seepage characteristics of coal samples under different
conditions, yet few researched the seepage characteristics of the axially unloaded fractured
coal body [21–24]. With the axially unloaded coal body as the research object, this study
is aimed at exploring the influence of axial unloading on the permeability characteristics
of the coal body under different GPs, and analyzing the pressure relief and permeability
enhancement effect of axial unloading on the coal body. The research results can provide
theoretical support for the analysis of the characteristics of fractures and permeability
variations of protected coal seams, as well as the effective implementation of an on-site
mining scheme in protective coal seams.

2. Engineering Background

Zouzhuang Coal Mine of the Huaibei Mining Co., Ltd. is located in the southeast
of the Huaibei mining area. Its east is bounded by the Shuangdui fault and the F22 new
stratum; the west is bounded by the Nanping fault; the south is bounded by the outcrop line
of the first limestone layer at the top of the Carboniferous Taiyuan formation, and the north
is bounded by No. 27 exploration line. The mine has a simple terrain (generally high in the
northwest and low in the southeast) and a single landform (mainly river plain). The mine is
located in the fault block sandwiched by the northeast-trend between the Shuangdui fault
and the Nanping fault. The syncline axis and the east and west wings are characterized by
a high gas content, a concentrated tectonic stress and a high risk of coal and gas outbursts.
The gas occurrence in the mine is obviously affected by faults. The coal-bearing strata
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of Zouzhuang Coal Mine belong to the Carboniferous and Permian systems. The coal
seam of the Carboniferous system is too thin for mining. The lower Shihezi formation of
the Permian system is the main coal-bearing stratum in the mine, followed by the Shanxi
formation. It has over 30 coal seams whose total thickness is 23.39 m on average, of which
the main minable coal seams are the 32, 62, 72 and 82 coal seams.

At present, the main minable coal seam in Zouzhuang Coal Mine is the 72 coal seam,
which is located in the lower part of the lower Shihezi formation, 7.86–13.88 m away from
the 82 coal seam, with an average distance of 10.22 m. The geographical location of the coal
seams is shown in Figure 1. The 82 coal seam has a poor permeability, and the GP and gas
content there reach 1.24 MPa and 10.80 m3/t, respectively, so conventional borehole gas
drainage can hardly achieve a satisfactory gas disaster control effect, or effectively realize
gas drainage. In the 72 coal seam, the GP is 1.01 MPa and the gas content is 8.53 m3/t.
Hence, its GP and outburst risk are both lower than those of the 82 coal seam. To improve
the permeability of the 82 coal seam, the 72 coal seam serves as the upper protective seam
for mining, to prevent coal and gas outburst accidents.
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Figure 1. Geographical location and sampling site of the 72 and 82 coal seams in Zouzhuang Coal Mine.

3. Experimental Materials and Methods
3.1. Experimental Materials

Experimental coal samples are from the 82 coal seam of the Zouzhuang Coal Mine
in Huaibei Mining Co., Ltd., China. The maximum original GP on the sampling site
is 1.24 MPa. Coal blocks were selected from different sampling points in the same coal
seam of the same mining area, sealed, saved and sent to the laboratory. According to the
experimental platform and specifications, the processed coal samples were processed into
cylinders with a height of 95 mm–102 mm, a diameter of about 50 mm, a parallelism of
below ±0.05 mm between the upper and lower ends and a flatness of below 0.02 mm
between the ends (Figure 1).

3.2. Experimental Equipment and Principle

The experiments adopted the TAWD-2000 coal rock mechanics-seepage test system of
the China University of Mining and Technology (Figure 2). The system consists of a pressure
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host system, a pressure and temperature control system, a micro-computer operating
system, etc. It can determine rock permeability under different pressures. The maximum
working pressures for CP, injection pressure and AP are 70 MPa, 70 MPa and 800 MPa,
respectively. The pressure fluctuation within 48 h is below 0.5%. The specifications of
the TAWD-2000 device are shown in Table 1. Experiments were carried out at a constant
temperature of 25 ◦C with CH4 as the seepage medium.
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Figure 2. Coal rock mechanics-seepage test system (TAWD-2000).

Table 1. The specifications of TAWD-2000 device.

Maximum
Axial

Pressure/MPa

Maximum
Confining

Pressure/MPa

Maximum Air
Pressure/MPa

Maximum
Axial Displace-

ment/mm

Force Value
Test Accuracy

Value/%

Displacement
Test Accuracy

Value/%

Overall
Stiffness of the
Device/(GN/m)

800 70 70 50 ±0.5 ±0.5 10

The experimental principle to measure coal permeability is shown in Figure 3. According
to the principle of this test system, the steady-state method was used for the permeability test.
Specifically, GPs with a constant pressure difference were applied at both ends of the coal
sample, so that a certain pressure gradient was maintained in the coal sample to promote
gas flow through the coal fractures; meanwhile, the quantity of gas flowing through the coal
sample was measured. When the flow in the coal sample stabilized to form a steady flow, the
quantity of gas flowing through the coal sample in the time period was recorded, and the
permeability was calculated, using the control Equation (1) [5]:

K =
2p0QLcoalµCH4

A
(

p2
1 − p2

2
) (1)

where K is permeability, 10−15 m2; p0 is atmospheric pressure, 0.1 MPa; Q is the quantity of
gas flowing through coal briquette, cm3/s; Lcoal is the length of standard briquette, mm;
µCH4 is the dynamic viscosity coefficient of gas, MPa·s; A is the cross-sectional area of
briquette, mm2; p1 is the inlet pressure, MPa; p2 is the outlet pressure, MPa.
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3.3. Stress Path and Experimental Scheme

The coal body in the 82 coal seam has experienced loading and unloading under the
mining disturbance of the 72 coal seam (Figure 4). That is, before its mining, the 82 coal
seam had experienced mining disturbance once, followed by the development of primary
fractures and the emergence of new fractures. With the advancement of the 72 coal seam,
the upper stress decreased and the pressure on the 82 coal seam was relieved. Under the
influence of mining, the 82 coal seam successively experienced axial compression (loading) and
pressure-relief-induced dilatancy (unloading). The stress loading path is shown in Figure 5.
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The physical and mechanical parameters of the experimental coal sample are listed
in Table 2. During the experiment, first, AP (σ1) and CP (σ2 = σ3) were loaded to 4 MPa
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(hydrostatic pressure) in the control mode of 0.01 mm/s. After the pressures became stable,
gas with different pressures or the same pressure was introduced. AP was continuously
applied to 80% of the compressive strength of the experimental coal sample in the control
mode of 0.01 N/s, in accordance with the stress path in Figure 5 and the requirements in
Table 3. After the deformation and seepage of the coal sample stabilized, the GP or CP was
kept unchanged. Next, AP was unloaded in the control mode of 0.01 mm/s until the coal
sample finally failed, and the data collected by the data monitoring and control system
were stored and analyzed.

Table 2. Physical and mechanical parameters of the experimental coal sample.

Elastic
Modulus/GPa Poisson’s Ratio Tensile

Strength/MPa Cohesion/MPa Internal Friction
Angle/◦

Compressive
Strength/MPa

1.60 0.15 1.09 1.14 36.61 14.73

Table 3. Scheme for unloading experiments.

Scheme No. Experimental Scheme Experiment No. GP/MPa CP/MPa
Mode of Failure

Before Failure After Failure

1
Constant GP
Different CPs

XW-1 1.5 4

0.01 N/s 0.01 mm/s

XW-2 1.5 5
XW-3 1.5 6
XW-4 1.5 7

2
Constant CP
Different GPs

XP-1 0.5 4
XP-2 1.0 4
XP-3 1.5 4
XP-4 2.0 4

4. Experimental Results and Analysis
4.1. Influence of CP

According to the stress path in Figure 5 and the requirements of Scheme 1 in Table 3,
the curves of stress difference and permeability variations with the axial strains of the
axially unloaded coal samples under a constant GP (p = 1.5 MPa) and different CPs (4 MPa,
5 MPa, 6 MPa and 7 MPa in sequence) are shown in Figure 6. In the process of axial stress
unloading under different CPs, the axial strains all decline at a decelerating rate, but as CP
rises, the axial strain at the final failure point displays a rising trend.

The curves of permeability and the axial strain of the axially unloaded coal samples
under a constant GP (p = 1.5 MPa) and different CPs (4 MPa, 5 MPa, 6 MPa and 7 MPa
in sequence) are shown in Figure 7. When the CP increases from 4 MPa to 7 MPa, the
permeability at the final failure point (hereafter referred to as the final permeability K f inal )
is enhanced from 1.93 × 10−15 m2 to 2.51 × 10−15 m2, by 30.05%. As the CP rises, the final
permeability grows at a decelerating rate. When the CP rises from 6 MPa to 7 MPa, the final
permeability is enhanced by 0.58 × 10−15 m2. Based on the data, the permeability variation
of axially unloaded coal samples is shown in Figure 8a, and the final permeability K f inal is:

K f inal = 0.9831σ3
0.48022, R2 = 0.98965, (4 MPa ≤ σ2 = σ3 ≤ 7 MPa) (2)
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Figure 8. Permeability variations of axially unloaded coal samples under a constant GP of 1.5 MPa
and different CPs.

In addition, the permeability of the coal sample before axial unloading (hereafter
referred to as the initial permeability K0) presents an asymmetric V-shaped variation with
the increase in CP. The initial permeability reaches the lowest value (0.22 × 10−15 m2) at
5 MPa CP. Based on the data, the initial permeability under different CPs were fitted with
CP (Figure 8b), and Equation (3) was obtained:

K0 = 0.75109σ3
2 − 8.66532σ3 + 27.27307, R2 = 0.85526(4 MPa ≤ σ2 = σ3 ≤ 7 MPa) (3)

The difference between the final permeability K f inal and the initial permeability K0
rises at a decelerating rate. Axial unloading can enhance coal permeability to a certain
extent. As the CP rises, the seepage channels within the axially unloaded coal sample are
gradually compacted. Therefore, the increment of permeability decreases with the increase
in CP. According to the test data, the logarithmic relationship in Equation (4) was obtained
by fitting the permeability difference ∆K with CP under different CPs:

∆K = −11.90948e−
σ3

1.48965 + 2.28153, R2 = 0.99951(4 MPa ≤ σ2 = σ3 ≤ 7 MPa) (4)

The fitting coefficients R2 of the relationships among the final permeability, the initial
permeability, the permeability difference and the CP of axially unloaded coal samples all
exceed 85%, which means that the relationship between CP and the permeability of axially
unloaded coal under a constant GP is well quantified.
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4.2. Influence of GP

According to the stress path in Figure 5 and the requirements of Scheme 2 in Table 3,
curves of the stress difference and permeability variations with axial strains of the axi-
ally unloaded coal samples under a constant CP (σ2 = σ3 = 4 MPa) and different GPs
(p = 0.5 MPa, 1.0 MPa, 1.5 MPa and 2.0 MPa in sequence) are shown in Figure 9. Under dif-
ferent GPs, the axial strains of the axially unloaded coal samples all decline at a decelerating
rate. However, as GP rises, the axial strain at the final failure point increases.
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Figure 9. Curves of stress and permeability variations with axial strains of axially unloaded coal
samples under a constant CP of 4 MPa and different GPs.

The curves of permeability variations with the axial strains of the axially unloaded
coal samples under a constant CP (σ2 = σ3 = 4 MPa) and different GPs (p = 0.5 MPa,
1.0 MPa, 1.5 MPa and 2.0 MPa, in sequence) are shown in Figure 10. When the GP goes
up from 0.5 MPa to 2.0 MPa, the final permeability K f inal rises from 1.40 × 10−15 m2 to
2.17 × 10−15 m2; besides, the permeability difference increases from 0.78 × 10−15 m2 to
1.50 × 10−15 m2 by 51.21% and 92.3%, respectively, satisfying a logarithmic relationship
of surging first and rising slowly later. Based on the test data, the permeability variations
of axially unloaded coal samples are illustrated in Figure 11a, and the final permeability
K f inal is:

K f inal = 1.74635p−0.30173, R2 = 0.98889(0.5 MPa ≤ p ≤ 2.0 MPa) (5)
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Figure 11. Permeability variation of axially unloaded coal samples under a constant CP of 4 MPa and
different GPs.

Besides, with the rise of GP, the permeability of the coal sample before axial unloading
(i.e., the initial permeability K0) presents an asymmetric V-shaped variation (i.e., decreasing
first and then increasing), the critical value being about 1.2 MPa. Based on the test data, the
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initial permeability under different GPs was fitted with GP (Figure 11b), and Equation (6)
was obtained:

K0 = 3.61627p2 − 8.71382p + 9.62887, R2 = 0.99817(0.5 MPa ≤ p ≤ 2.0 MPa) (6)

The difference between the final permeability K f inal and the initial permeability K0
jumps first, and then basically stabilizes. Axial unloading can enhance coal permeability to
a certain extent. As GP rises, the gas adsorption and desorption of the axially unloaded
coal samples gradually reach an equilibrium. Accordingly, the increment of permeability
decreases gradually and stabilizes with the increase in GP. With reference to the test data,
the permeability difference ∆K under different GPs were fitted with GP, and the logarithmic
relationship in Equation (7) was obtained:

∆K = −2.93919e−
p

0.35871 + 1.50853, R2 = 1(0.5 MPa ≤ p ≤ 2.0 MPa) (7)

The fitting coefficients R2 of the relationships among the final permeability, initial
permeability, permeability difference and GP of the axially unloaded coal all surpass
98%, suggesting that the relationship between GP and permeability values of the axially
unloaded coal under a constant CP is well quantified. The fitting function can be used
to predict the variation of the permeability of the axially unloaded coal under different
GPs. It is expected to provide data support for the subsequent characteristic analysis on
the fractures and permeability variation of the protected coal seam, and the on-site mining
scheme of the protective coal seam.

5. Discussion

With respect to seepage, axial unloading exerts a great influence on the coal fracture
structure, which determines gas seepage. Therefore, the study on gas seepage in axially
unloaded coal is of significance to the prevention of coal and gas outbursts.

According to the above results, the coal body in the triaxial state mainly experiences
skeleton deformation with good compactness. Its gas flow channels change slightly, leading
to a low permeability. Axial unloading can cause certain damage to the coal body. As the
axial load gets relieved, cracks and fractures within the coal body are gradually released,
and new cracks and fractures begin to emerge in large quantities, forming a fractured coal
body. As a result, gas seepage channels are released, and the slippage effect gradually
emerges, which greatly enhances the permeability of the fractured coal body. Therefore,
the permeabilities of the coal body under different CPs and GPs are all enhanced with the
unloading of AP.

The results suggest that axial unloading exerts a considerable impact on coal per-
meability under different CPs and GPs, and the variations of permeability differ under
different CPs and GPs. Therefore, it is crucial to establish a model that can uniformly de-
scribe the permeability of axially unloaded coal under different CPs or GPs. Moreover, axial
unloading corresponding to protective coal seam mining provides a stress unloading space
for the protected coal seam. Deformation, internal damage and structural damage occur
within the coal body of the protected coal seam, which alters its gas seepage characteristics.
Protective coal seam mining can compact and enhance the permeability of the protected
coal seam. The protective coal seam, which is technically important for the unloaded gas
drainage and coal and gas outburst prevention of the protected coal seam, can guide the
prevention and control of coal and gas outbursts in coal seam groups. Considering that
different CPs and GPs influence the axial unloading effect in varying ways, the on-site
mining scheme of the protective coal seam should be adjusted, according to different CPs
and GPs.

6. Conclusions and Suggestions

(1) When the GP is constant, the internal seepage channels of axially unloaded coal
gradually get compacted with the gradual increase in CP. The difference between
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the final permeability and the initial permeability rises at a decelerating rate. Un-
der different CPs, the permeability difference follows the evolution law of ∆K =

−11.90948e−
σ3

1.48965 + 2.28153;
(2) When the CP remains unchanged, as GP gradually rises, the gas adsorption capacity

of axially unloaded coal is greater than its desorption capacity, so the difference
between the final permeability and the initial permeability declines first and then
stabilizes. Overall, the relationship between the permeability difference and GP can
be illustrated by ∆K = −2.93919e−

p
0.35871 + 1.50853;

(3) Axial unloading is conducive to the enhancement of coal permeability, while the
permeability of axially unloaded coal varies to different extents and at different rates
under different CPs and GPs. The mining scheme of protective coal seams should be
designed considering the CP and GP of coal seams.
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Notations:

Notation Meaning Company
K permeability 10−15 m2

p0 atmospheric pressure 0.1 MPa
Q the quantity of gas flowing through coal briquette cm3/s
Lcoal the length of standard briquette mm
¯CH4 the dynamic viscosity coefficient of gas MPa·s
A the cross-sectional area of briquette mm2

p1 the inlet pressure MPa
p2 the outlet pressure MPa
σ1 the axial pressure (AP) MPa
σ2, σ3 the confining pressure (CP) MPa
p the stress gas pressure (GP) MPa
σCW compressive strength MPa
Kfinal the final permeability 10−15 m2

K0 the initial permeability 10−15 m2

∆K the permeability difference 10−15 m2
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