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Abstract: The demand for new novel flavour and fragrance (F&F) molecules has boosted the need for
a systematic approach to designing fragrance molecules. However, the F&F-related industry still relies
heavily on experimental approaches or on existing databases without considering the consequences
resulting from changes in concentration, which could omit potential fragrances. Computer-aided
molecular design (CAMD) has great potential to identify novel molecular structures to be used as
fragrances. Using CAMD for this purpose requires models to predict the olfaction properties of
molecules. A rough set-based machine learning (RSML) approach is used to develop an interpretable
predictive model for odour characteristics in this work. New rule-based models are generated
from RSML based on the dilution and a number of different topological indices which identify the
structure-odour relationship of fragrance molecules. The most prominent rules are selected and
formulated as constraints in a CAMD optimisation model. The combination of several rules was
able to increase the coverage of different classes of molecules. To model the performance indicators
that vary over a range of properties, a disjunctive programming model is also incorporated into
the CAMD framework. A case study demonstrates the utilisation of this methodology to design
fragrance additives in dishwashing liquid. The results illustrate the capability of the novel RSML and
CAMD framework to identify potential fragrance molecules that can be used in consumer products.

Keywords: fragrance molecules; computer-aided molecular design; rough sets; machine learning;
cheminformatics; optimization

1. Introduction

Fragrances are applied extensively as an attractive attribute in the formulation of
many consumer products. The global flavours and fragrances (F&F) market size is ex-
pected to expand from the original value of USD 26.54 billion (2022) to USD 36.49 billion
(2029) at a compounded annual growth rate of 4.7% [1]. The demand for novel fragrance
molecules in the industry is greater than ever due to the stricter safety and environmental
(e.g., biodegradability) regulations, which have led to the obsolescence of some exist-
ing products [2]. Unlike other senses, olfaction is poorly understood [2]. The design of
fragrance molecules still heavily depends on empirical methods, either referring to the
knowledge from experts or through experiments. This trial-and-error approach is too
tedious to allow the exploration of all potential candidates, as fragrance molecules have
complex structures. Thus, there is a risk of missing better fragrance molecules that have
the potential to be incorporated into consumer products [3]. The conventional method is a
resource-intensive process, which makes launching a new fragrance molecule costly and
time-consuming [2]. Moreover, most of the fragrances’ odour descriptions in established
databases are reported without the indication of concentration [2]. This could be another
hurdle as the concentration of fragrance required in various products might be different.
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To address the challenges involved in the design of fragrance molecules, a system-
atic framework should be developed for designing and screening suitable fragrances
that fulfil the product’s requirement before experimental verification. Computer-aided
molecular design (CAMD) approach is a potential tool for the screening and/or design of
fragrance molecules by predicting the molecular structure using a set of desired sensorial
and technical properties. However, a pre-requisite for the initiation of CAMD modelling
is property predictive models. Perceived odours are determined by the structure of a
fragrance molecule, the latter of which can be described using structural, geometrical,
topological, physicochemical, and electronic descriptors [4]. Hence, machine learning (ML)
tools have the potential to develop prediction models by linking the molecular structure to
properties using topological indices as the numerical representation of the structure.

1.1. Computer-Aided Molecular Design (CAMD)

CAMD is a reverse engineering approach to screening novel chemicals by combin-
ing structural groups systematically to yield high-performance molecules [5]. In CAMD,
property prediction models, such as group contribution (GC) models, are required. GC
methods assume that the properties of a molecule can be estimated by the number of
occurrences of different sub-structures, known as “groups”. In addition to GC methods,
topological indices (TIs), one of the structural descriptors, were employed by the quantita-
tive structure-property relationship (QSPR) for property estimation. Some of the common
TIs, which include connectivity index, shape index, etc., can be used to differentiate very
similar structures like isomers [6].

CAMD is applied widely in various applications related to solvent design [7] and
integrated process and product design problems [8]. In recent years, there have been
several developments in the application of these tools in the field of product development
as well. Liu et al. [9] coupled ML-based atom contribution (MLAC) with CAMD to forecast
the surface-charged density profile and construct a solvent for ibuprofen with improved
economic, safety, health, and environmental aspects. An artificial neural network model
was utilized to generate the structure-odour relationship (SOR) model for aromatic compo-
nent mixtures by utilising the profiles of molecular surface charge density (r-profiles) as
the descriptors [10]. It was also employed for the identification of potential solvent candi-
dates that allow bio-oil to satisfy targeted properties with minimal solvent addition [11].
Moreover, Yee et al. [12] developed a framework for personal care product design by incor-
porating safety, health, and performance aspects in CAMD. By imposing constraints for
safety and health hazards in CAMD, molecules generated were less harmful while possess-
ing excellent product performance. There are some recent works in the CAMD field related
to fragrance products. MILP/MINLP models for the design and screening of fragrance in
shampoo were developed by Zhang et al. [3]. The CAMD model was utilised to remove the
molecules that are out of the range of the constraints and properties of fragrant molecule
design. In addition, fragrances in body lotion were modelled using rules generated with
an enhanced hyperbox ML coupled with CAMD [13]. The hybrid CAMD framework was
able to produce a variety of viable compounds that met all structural and physical property
requirements. In both works, CAMD was proven to be effective in developing potential
fragrant molecules for consumer products. Comprehensive reviews of the latest develop-
ments in this field can be found in the review articles by Chemmangattuvalappil [14] and
Zhang et al. [15].

A recent contribution has demonstrated that rough set-based machine learning (RSML)
can be used to develop a model to predict the fragrance of molecules and used the devel-
oped model for identifying novel fragrant molecules [16]. In this previous work, a single
molecular descriptor called molecular signature was used to build a predictive model for
fragrance. However, the different molecular characteristics cannot be covered using a
single descriptor. Moreover, the presence or absence of certain molecular signatures was
used in building the predictive model. The shortcoming of such an approach was that
typical databases contain different types of molecules with very few common signatures
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appearing in the different molecules. Therefore, the model had to be developed using a
very small subset of the database. While this approach can develop models with a low
number of false positives, it leads to a high percentage of false negatives. Finally, the
dilution of the fragrance molecule was not incorporated in the development of the model.
However, from the fragrance molecule database, it is clear that the same molecules possess
different fragrance characteristics at different concentrations. To address the limitations
of the previous RSML approach, there is a need for a model that makes use of various
molecular descriptors that consider a variety of structural characteristics and also the ability
to make use of the available data. The approach developed in this model has attempted to
address these research gaps.

To conclude, CAMD is an important approach to expanding the portfolio of chemical
product design. Prediction models for scent and physical properties must be available so
that the desired attributes can be incorporated as constraints in CAMD. However, due to
the lack of established mechanistic odour predictive models, it is necessary to develop an
empirical model for aroma using ML. This approach can generate models from data by
detecting and summarising the underlying patterns. The potential of ML to generate odour
predictive models can address the inherent lack of understanding of the olfaction process.

1.2. Topological Indices (TIs)

In general, the models of group contribution (GC) are extensively applied to describe
the pure component properties based on molecular structure. However, differentiation of
molecule position in a compound cannot be achieved by the additive group contribution
methods. Even a small distinction of group position in isomers might affect the odour
characteristic of molecules [17]. Since fragrances are made up of multiple building blocks,
there should be other structural attributes that contribute to fragrance in addition to the
groups [3]. Thus, topological indices, the most used descriptors for chemical structure,
have been used in this study to relate molecular structure to their fragrance.

Topological indices (TIs) are molecular structure descriptors that are generated from
a chemical molecular graph that characterises its topology. There are a huge number of
topological indices, which can be further categorised into a few groups such as degree,
spectrum and distance [18]. Representing the chemical species using Tis provides conve-
nience as they encode the topological structure into a mathematical form. TIs are applied
extensively in developing QSPRs, which are mathematical correlations between molecular
structures and molecular properties [19]. For instance, TIs were utilised in QSPR modelling
to predict the biodegradability of the molecules for the development of safer fragrance
molecules [20]. The results have shown that there are two remarkable TIs that contribute to
the biodegradability of the molecules studied.

In a related study, De Mello Castanho Amboni et al. [21] explained that the structural
parameters, including TIs, are related to the odour of aliphatic esters. From the QSAR
study, it is notable that the TIs such as the electro topological state index and second
order shape index, Kappa 2, are the relevant molecular descriptors for odour prediction.
Nevertheless, the study conducted by Chacko et al. [22] has shown that the third-order
shape index, Kappa 3, is one of the most crucial TIs for the categorisation of distinct
odours. From the study by Ham and Jurs [23], the first-order chi connectivity index and
molar refractivity are the distinguishing characteristics of musk and non-musks. Therefore,
several TIs are used in this study for the development of odour-predictive models as they
can shed light on the structure-odour relationship of fragrance molecules. Since there are no
comprehensive predictive models for fragrance prediction, machine learning approaches
have been explored to relate topological indices to olfaction.

1.3. Rough Set-Based Machine Learning (RSML)

ML is a subset of artificial intelligence (AI) and consists of techniques to discover
patterns in data, which can then be used for future prediction or other related tasks [24].
Artificial neural networks (ANNs) and support-vector machines (SVMs) are particularly
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versatile and popular supervised ML techniques [25]. Despite the extensive applications
of SVM and ANN in QSPR, QSAR, and GC modelling, their black box nature is a crucial
weakness. The outputs of ANN and SVM cannot be translated into insights easily, making
it difficult to support the decision provided by the algorithms [26]. This lack of inherent
interpretability can only be addressed using additional algorithms [27]. One alternative
approach is the utilisation of inherently interpretable models [28]. For example, hyperbox
and RSML techniques can generate rule-based predictive models that are directly inter-
pretable because they readily map to human thought processes. Because of this feature,
they are better alternatives for the prediction of olfaction characteristics. Hyperbox ML
has significant potential due to its ability to provide intuitive prediction accuracy in the
identification of disjoint data regions [29]. However, there are computational challenges
with large datasets with imperfections (e.g., non-deterministic patterns). On the other hand,
RSML has advantages for the determination of more odour characteristics. RSML has
proven to be especially robust for dealing with vagueness, imprecision, inconsistency and
uncertainty in datasets [30].

Rough set theory (RST) which was first introduced by Pawlak [31], possesses the
rough equality key concept for the designated sets in a given space. An approximation
space is considered a pair (U, R), where U is a certain set known as the universe and
R ⊂ U2 is an indiscernibility relation [31]. In RST, any vague concept will be substituted by
a pair of precise concepts, which is known as the lower and upper approximation of the
vague concept [32]. The major advantage of utilising RST is that there is no preliminary
or additional information required regarding the data [33]. RST has been applied in the
areas of decision making, pattern recognition and knowledge acquisition. The very few
early applications of rough set theory are mainly in the medical field for clinical data
reduction applications and decision-making scenarios [34], rough classification of highly
selective vagotomy (HSV) patients [35], reduction in information systems for medical
diagnosis [36], etc. Recently, RSML has been employed to determine secure geological
reservoirs to minimize the unintended release of CO2 by analysing data from secure and
insecure storage sites of CO2. The results showed the prediction models generated from
RSML are comparable with the site selection rules that were constructed based on proficient
knowledge [37]. In addition, the RST was utilised as the front-end processor for deep
learning to reduce the redundant influencing factors and to identify the critical factors of
building energy consumption [38].

The key concept of RST is its indiscernibility relation, which could be tabulated into
an information table. It is also known as an information system or attribute-value table,
which consists of objects and their corresponding attributes [32]. The latter is comprised
of conditional attributes (inputs) and decision attributes or classes of the object (outputs).
An information system is defined by a pair (U, A), where U is the finite nonempty set of
objects (universe) and A is the objects ‘attributes. For every attribute a ∈ A, it has a value
set defined by a value, Va as shown in Equations (1) and (2) [39].

a : U → Va (1)

α = (U, C ∪ {D}) (2)

where C is the set of conditional attributes, and D is the decision attribute.
Furthermore, RST also enables the identification of reducts, defined as a minimal

subset of attributes that preserve the indiscernibility relation. In the context of RSML, a
reduct is a reduced set of attributes that can be used to generate a rule-based model. It
should be noted that there may be more than one reduct set in a single dataset. Therefore,
further analysis is required to determine which reduct can generate more feasible rules.
Another important concept in RST is the intersection of all reducts, which is known as
the core. It is the most important subset of attributes that contribute to classification
accuracy [32].
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For every information system, there is a set of decision rules known as a decision
algorithm. Each decision algorithm reveals certain properties that fulfil both the total
probability theorem and Bayes’ theorem [40]. Hence, these properties provide a new
method for concluding the data by using three terms, namely strength (σx), certainty (cerx)
and coverage (covx), as presented in Equations (3)–(5). Let S = (U, C, D), where C is the
conditions and D is the decisions [33].

σx(C, D) =
suppx(C, D)

card(U)
(3)

cerx(C, D) =
card(C(x) ∩ D(x))

card(C(x))
=

suppx(C, D)

card(C(x))
=

σx(C, D)

π(C(x))
(4)

covx(C, D) =
card(C(x) ∩ D(x))

card(D(x))
=

suppx(C, D)

card(D(x))
=

σx(C, D)

π(D(x))
(5)

where π(C(x)) = card(C(x))
card(U)

and π(D(x)) = card(D(x))
card(U)

.
The strength represents the total number of samples that follow the generated rule

divided by the total number of samples. The certainty factor is defined as the frequency
of samples having the decision, D, in the sets of samples that fulfil conditions, C. Lastly,
the coverage factor is the frequency of samples possessing conditions, C in the decision
class. The former measures the predictive reliability of a rule, whilst the latter measures the
generalisation power of a rule. A higher certainty indicates a lower chance of a molecule
being misclassified, whereas a high coverage suggests that a rule is a good approximation of
an underlying general principle. These three parameters will provide quantitative evidence
to help select the most useful rule-based models.

In this work, a predictive model for olfaction has been developed through RSML
using structural attributes and dilution in conditional attributes. Subsequently, the most
promising deterministic rules generated from RSML were integrated as constraints into
CAMD, along with the structural and physicochemical constraints. For the physical prop-
erties, such as the solubility parameter and LC50, property classification is carried out,
as their impacts towards the functionality of fragrances are significant only when across
ranges. It is to be noted that many of the target properties are not continuous in nature. For
example, the impact of toxicity and volatility does not change continuously. Therefore, the
decisions on these attributes have to be measured based on the classification of toxicity or
volatility classes. Current CAMD approaches only treat the properties that are continuous
in nature. Therefore, disjunctive programming has been used to treat the properties where
the changes over property ranges are significant. The fragrance molecule design using
CAMD is formulated as a multi-objective optimisation (MOO) problem and solved using
the fuzzy optimisation approach.

2. Materials and Methods

For the design of fragrance molecules, an integrated ML and CAMD framework is
developed and divided into 4 main steps, as illustrated in Figure 1. The physical properties
of the fragrance molecules are estimated using GC-based models, whereas predictive
models for sensorial attributes are developed using the RSML algorithm.
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2.1. Step 1: Identification and Translation of Fragrance Attributes into Properties

In various types of consumer products, the role of fragrances in the formulation is
to improve odour qualities. In addition to the odour characteristics and the endurance of
the fragrances, the molecules must also meet several requirements for the product. It has
to be safe for use, must function effectively, and must be able to mix homogeneously. In
terms of safety and health, LC50 is identified as a crucial parameter to ensure the molecule
is within the safety threshold limit and can be applied safely on the skin. Moreover, the
solubility of fragrance is vital to ensure that a homogeneous product is formed. Overall, the
needs required in the design of fragrance molecules are categorised into both technical and
sensorial requirements. Once the target attributes of the fragrance molecules in a specific
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product are identified, they are incorporated into quantitative properties, as shown in
Table 1.

Table 1. Fragrance molecule attributes.

Product Attribute Physicochemical Properties

Diffusion Rate Diffusion Coefficient
Health and Safety LC50
Evaporation Rate Vapour Pressure

Product Form (Liquid) Normal Boiling Point
Solubility Hildebrand Solubility Parameter
Rheology Viscosity, Density

2.2. Step 2: Development of Property Predictive Models for Sensorial and Technical Requirements

Prior to the formulation of the CAMD model, the aforementioned attributes for both
technical and sensorial requirements of fragrances have been approximated using relevant
predictive models of property. There are no adequate existing models that can be imple-
mented to predict the structure/odour relationship. Therefore, rough set machine learning
was applied for the development of predictive models to predict olfaction characteristics
using topological indices.

2.2.1. Step 2(a): Development of Predictive Model for Sensorial Requirements Using
Cheminformatics and ML Tools

Based on the above-mentioned works, topological indices, including connectivity
index, electro-topological state index and second and third order Kappa indices, were
utilised as the numerical representation of odour characteristics to cover the sensorial
requirement in this study. Apart from this, the contributions of functional groups such as
esters, ethers, and aldehydes in fragrance molecules were considered as well. In addition,
dilution (concentration) was taken into consideration as one of the conditional attributes
as it might affect the odour intensity, pleasantness, and familiarity. Moreover, certain
molecules might pose different odour characteristics at different dilutions. For instance, the
five main descriptors for 1-heptanoic acid at high concentrations are “paint”, “chemical”,
“varnish”, “woody” and “musty”, but at low concentrations, the five main descriptors are
“paint-like”, “herbal”, “violets”, “fruity” and “floral” [41]. The conditional attributes used
in this work are summarised in Table 2.

Table 2. Conditional attributes that affect odour.

List of Conditional Attributes

Connectivity index of order 2
Connectivity index of order 3

E-state index
Second order Kappa index
Third order Kappa index

Presence of functional groups
Dilution

Data Cleaning

To develop an ML predictive model that relates the structure of fragrance to its odour,
an existing database was required for the training and validation of the conditional at-
tributes. In this work, a database that consists of 55,000 entries from Keller and Vosshall [42]
was used. Of the 55,000 entries, there are a total of 480 molecules with different dilutions.
A total of 55 subjects rated their perception on the most dominant odour characteristic
for 480 molecules, each present at two distinct dilutions. The odour characteristics were
classified into 20 semantic descriptors, namely “edible”, “bakery”, “sweet”, “fruit”, “fish”,
“garlic”, “spices”, “cold”, “sour”, “burnt”, “acid”, “warm”, “musky”, “ammonia/urinous”,
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“decayed”, “wood”, “grass”, “flower” and “chemical”. Based on the subjects’ ratings, the
odour characteristic of each molecule was converted on a scale of 0 to 100. A score of
“0” indicates that the specific descriptor is not applied to the smell of the tested molecule,
whereas a score closer to “100” represents the descriptor is more suited to the molecule’s
smell. For each entry, there was information on whether the molecules were odourless
or vice versa. For those with detectable smell, these were listed as “can smell” whereas
the molecules with no detectable smell were regarded as “cannot smell” by each subject.
Since the focus is on those molecules with detectable smell, the percentage of the total
number of entries for each molecule at 2 different dilutions with a detectable smell was
evaluated for further analysis. For those molecules with detectable smells equal to or
larger than the lower boundary of 70%, the semantic descriptor with the highest value
was classified as their final odour. The final descriptor for each molecule was then further
categorised into 3 main classes: pleasant, no smell, and unpleasant, as shown in Table 3.
In the classification, a 0.1 extra score was added for the unpleasant class descriptor to
minimise false positive results. Each molecule at the specific dilution can be classified
under one odour characteristic only.

Table 3. Classification of molecules.

Odour Characteristic Semantic Descriptor Number of Molecules

Pleasant (1) Sweet, Fruit, Flower, Edible, Bakery 153
No Smell (2) - 366

Unpleasant (3)
Warm, Spices, Grass, Cold, Wood,

Garlic, Fish, Burnt, Acid, Ammonia,
Sweaty, Sour, Musky, Decayed

435

Evaluation of Topological Indices and Presence of Functional Groups

The topological indices used in this work are listed in Table 4. Firstly, the connectivity
index, 1χv, which is defined as the sum of specific bond contributions estimated from the
hydrogen suppressed molecular graph’s vertex degrees, δi, was developed from Randi’s
branching index [43]. The identification of the atoms, as well as their connectivity in the
molecular skeleton, are encoded by the 1st-order chi index [44]. The bond contributions to
the connectivity index, 1Cs

v, can be calculated using Equation (6). Here, 1χv is a first-order
connectivity term that may be defined as the sum of edges (bond) terms, 1Cs

v, represented
in Equations (7) and (8).

Table 4. Topological indices.

Topological Indices Equation

Connectivity Index, Chi 1v (1χv)

1Cs
v =

(
δv

i δv
j

)
s
− 1

2
(6)

1χv = ∑ 1Cs
v (7)

1χv = ∑
(

δv
i δv

j

)
s
− 1

2
(8)

Electro-topological State Index (Si)

Si = Ii + ∆Ii
(9)

Ii =

[(
2

Ni

)2
δi

v+1
]

δi

(10)

∆Ii = ∑
j 6=i

(
Ii − Ij

)
/r2

ij
(11)

Second-Order Shape Index, Kappa 2 (2κ) 2κ = (A + α− 1)(A + α− 2)2/
(2P i + α

)2 (12)

Third-Order Shape Index, Kappa 3 (3κ)

3κ = (A+α−1)(A+α−3)2

(3P i+α)2 , A is odd (13)

3κ = (A+α−2)(A+α−3)2

(3P i+α)2 , A is even (14)



Processes 2022, 10, 1767 9 of 29

Next, the electro-topological state (E-state) index is an atom-level descriptor that
encodes an atom’s inherent electronic state while taking into account the electronic effect of
other atoms in the molecule [45]. Equation (9) expresses the E-state index for the atom i.
In a molecule, the presence of other atoms causes disturbance to the intrinsic value of the
atom since different atoms might have different electronegativities [46]. Thus, the intrinsic
value, Ii of an atom can be determined from Equation (10), where Ni indicates the principal
quantum number, and δi

v and δi are valence electron counts and sigma electron number in
the hydrogen suppressed graph. The perturbation factor, ∆Ii, shown in Equation (11), can
be used to assess the influence of a molecule’s electronic field on a given atom inside that
molecule, where rij represents the graph separation factor, which is the number of skeletal
atoms in the shortest path between atoms i and j [45].

The Kappa shape index takes into account the spatial density of atoms and encodes
information on the size, cyclicity degree, and centralization degree or branching separation
degree [47]. The second-order shape index, 2κ, refers to the count of two-bond paths,
2P i and is represented in Equation (12), where A is the number of atoms present in the
molecule, 2P i is the number of two-path fragments (two adjacent bonds), and α is the
increment or decrement of the counting of a particular atom based on its size contribution
relative to C(sp3) [44]. The basis of the third-order shape index, 3κ, is the count of three
contiguous paths, 3P i, and is presented in Equations (13) and (14), respectively, where 3P i
is the number of three-path fragments [45].

Furthermore, molecular groups which consist of an aromatic ring and oxygen, such as
esters and ethers, are commonly present in fragrance molecules, wherein the ether groups
assist in differentiating sweet and non-sweet molecules, whereas ester groups assist in
identifying fruity odour compounds [3,23]. The evaluation of these topological indices and
identification of the presence of functional groups of fragrance molecules were done by
using RDKit. It is an open-source chemoinformatic tool used in descriptor generation for
machine learning which assists in the calculation of topological indices.

Construction of RSML Property Predictive Model

As mentioned earlier, RSML was selected to develop predictive property models for
sensorial requirements as it is an interpretable model. Table 5 tabulates a simplified version
of the fragrance information system, where C1 is a continuous attribute, whereas C2 and
C3 are integer attributes.

Table 5. Simplified information system.

Molecule
Conditional Attributes Decision Attribute

C1 C2 C3 D

X1 1.65 1 1 1
X2 3.59 1 1 2
X3 3.59 0 0 1
X4 7.88 0 0 3
X5 1.89 1 1 1
X6 3.67 1 1 2
X7 9.42 0 0 3
X8 3.18 1 1 2

After completing the information system, the input data were used to conduct the
attribute reduction to minimise the unnecessary attribute subsets that enable the same
element classification. In Table 5, U = {X1, X2, . . . , X8} is the finite non-empty set,
whereas R = {C1, C2, C3} is the attribute set. The indiscernibility (I) of complete relation
R, C1&C2, C1&C3 and lastly, C2&C3 are displayed in Equations (15)–(18) individually.

I(R) = {X1, X5}, {X2, X6, X8}, {X4, X7}, {X3} (15)
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I(R− {C3}) = I(R) (16)

I(R− {C2}) = I(R) (17)

I(R− {C1}) = {X1, X2, X5, X6, X8}, {X3, X4, X7} (18)

From Equations (16)–(18), attributes C2 and C3 are superfluous, as their removal
from the relation R would not affect the results. Attribute C1, therefore, can be stated as
indispensable. Hence, it can be concluded that the classification power of all conditional
attributes C1, C2, C3 is identical to the attribute classification pairs of C1&C2 or C1&C3. C1
poses as the reduct intersection; thus, it is also identified as the core of attributes. Since
the pairs of I(C1, C2) 6= I(C1) and I(C1, C2) 6= I(C2), attributes C1&C2 are classified
as independent and { C1&C2} is generalised as a reduct of R. Similarly, { C1&C3} is also
proven to be a reduct by using the same approach. Next, each reduct was utilised to
generate a set of deterministic rules separately by omitting the superfluous attribute. For
example, attribute C3 was omitted during rule generation for reduct { C1&C2}. A total of 4
rules were generated in this example, as described:

1. Rule 1: (C1 < 2.535)⇒ (D = 1)
2. Rule 2: (C1 < 3.63) & (C2 < 1)⇒ (D = 1)
3. Rule 3: (C1 ≥ 2.535) & (C2 ≥ 1)⇒ (D = 2)
4. Rule 4: (C1 ≥ 5.775)⇒ (D = 3)

For this study, in the actual information table, there are 8 conditional attributes and
1 decision attribute with 3 categories, namely “pleasant”, “no smell” or “unpleasant”. In
this work, out of 954 molecules (477 molecules at two distinct dilutions), 207 molecules were
utilised as a training set, whereas 88 were used as the validation set. Some of the molecules
are excluded because the original dataset contains a large number of molecules with no
smell, or the scores given by the subjects were inconclusive. Reducts were generated from
training data inputted and applied to the decision algorithm to generate decision rules.
Subsequently, the rules generated were then validated using the validation dataset to
evaluate the coverage and certainty of each rule. Based on the rule validation results using
the validation dataset, those rules with higher coverage and certainty higher than or equal
to 75% were selected to be used as the constraint for sensorial requirements in CAMD. The
complete coverage of molecules is not possible as the condition of all molecules satisfying
one rule is unreasonable. The lower bound of certainty was set as bigger than or equal
to 75% after accounting for the possibility of variation due to olfaction subjectivity. The
reducts and rule generation were conducted using ROSE2 [48].

2.2.2. Step 2(b): Development of Predictive Property Model for Technical Requirements
Using Group Contribution (GC) Method and Connectivity Indices

GC methods were utilised for the prediction of technical attributes, which are identified
in Step 1. The general form of the property estimation model is depicted in Equation (19).

f (X) = ∑
i

NiCi (19)

where C is the property contribution of group i, and N is the group occurrence number in
the molecule. All the property models for desired attributes are depicted in Table A1 of
Appendix A.

However, for some properties, there are several missing group contributions. There-
fore, the atom-connectivity index-based method introduced by Gani et al. [49] was em-
ployed to calculate the corresponding missing group contributions. Equation (20) dictates
the pure-component property model used for viscosity [50].

F(θ) = ∑
i
(ai Ai) + b

(
0χv
)
+ 2c

(
1χv
)
+ d (20)
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where F(θ) is the viscosity function, 0χv and 1χv are the zero and first-order connectivity
indices, Ai is the number of occurrences of the ith atom in the molecule, ai is the atom
contribution, b and c are the adjustable parameters and d is a constant.

Disjunctive Programming Algorithm

To ensure that the generated fragrance molecules will result in a homogeneous mixture
and will be non-hazardous, the property constraints of the solubility parameter and LC50
were incorporated. However, there is no advantage in maximising the solubility parameter
or minimising LC50 directly. This is because the generated fragrance molecule is considered
feasible if its solubility parameter and LC50 fall within the ranges. Therefore, the solubility
parameter and LC50 constraints were represented through the property range, whilst the
property value must fall within this range to make sure the molecules fulfil the specified
requirements. In these property ranges, there exist several property intervals, and the
property is considered to be of the same level of acceptability within that interval. Those
intervals have produced a disjunction for the constraint. Disjunctive programming is one of
the modelling approaches that utilises discontinuous functions to overlap abrupt changes
over decision variables [51]. Thus, it is suitable to be applied for these properties.

Let the property class change to a different class above a boundary value pswitch. A
score of IA is allocated below pswitch. Meanwhile, another score, IB, is assigned above or
equal to pswitch. A general equation to illustrate the classification score model is shown in
Equation (21) [52].

Ip =

{
IA p < pswitch
IB p ≥ pswitch

(21)

The functions are then converted into mixed-integer formulation by incorporating a
binary integer variable, I, as listed in Equation (22).

Ip = IA ∗ I + IB ∗ (1− I) (22)

subjected to I =
{

0 p ≥ pswitch
1 p < pswitch

.

Therefore, in the CAMD modelling, the constraint shown in Equation (23) is included
to ensure that the correct value of I is being assigned to satisfy the condition above.

(pL − pswitch) ∗ (1− I) ≤ p− pswitch < (pU − pswitch) ∗ (I) I ∈ {0, 1} (23)

where pL and pU refer to the lower and upper boundaries for a feasible p value. When p
is smaller than pswitch, the term “p− pswitch” becomes negative, causing I to be 0 to fulfil
the constraint. In contrast, the term “p− pswitch” becomes positive when p is larger than
pswitch, forcing I to be 1.

2.3. Step 3: Design of Fragrance Molecule Using CAMD Model

In the formulation of a fragrance design problem, a mixed integer linear program
(MILP) is used. The objective function of the CAMD model was laid out based on property
and structural constraints. The generated RSML algorithm decision rules were then in-
cluded based on the sensorial requirements in Step 2(a). Since there can be numerous rules
generated to classify a “pleasant” molecule, the rules with the highest degree of coverage
and certainty were utilised as the constraint in the optimisation model.

2.3.1. Step 3(a): Formulation of Structural Constraints

For a set of building blocks, some structural constraints are defined to generate feasible
molecules that do not contain any free bonds. The first step is to determine a set of suitable
first-order molecular groups that form the potential building blocks for fragrance molecule
design. The first-order molecular groups considered in this design are shown in Appendix B.
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The structural constraints in the optimisation model are formulated in Equations (24)–(27).
The following sets are defined:

G1 = {i|i is a first-order group};
ID = {id|id is a first-order group}.
Next, the binary variable yi1,id1,i2,id2 indicates whether a group i1 with id id1 (i1, id1) is

attached to another group i2 with id id2 (i2, id2), in which i1, i2 ∈ G1 and id1, id2 ∈ ID, as
shown in Equation (24).

yi1,id1,i2,id2 =

{
1, group (i1, id1) is connected to group (i2, id2)
0, otherwise

(24)

Besides that, another binary variable, zi1,id1 , was utilised to describe the existence of a
group (i1, id1) in the generated molecule, as depicted in Equation (25).

zi1,id1 =

{
1, group (i1, id1) exists in the molecule
0, otherwise

(25)

Based on the valencies of various structural groups, the octet rules display a simple
relation for the structural feasibility of a molecule, which are further described using
Equations (26) and (27) [53].

∑
i∈G1

(2− vi)ni = 2q (26)

∑
i1 6=i2;i1, i2∈G1

ni1 ≥ ni2
(
vi2 − 2

)
+ 2 ∀i2 ∈ G1 (27)

where vi is the valency of group i, ni is the number of occurrences of first-order group i and
q is 1, 0, or −1 for acyclic, monocyclic, and bicyclic compounds, respectively. In addition,
Churi and Achenie [54] mathematical constraints were incorporated to ensure that a single
molecule was generated.

2.3.2. Step 3(b): Multi-Objective Optimisation (MOO)

In the design of optimal fragrance molecule using CAMD, the objective comprises
several important properties that may conflict with each other when they are optimised
simultaneously. Therefore, fragrance molecule design is a multi-objective optimisation
(MOO) problem, whereby a certain balance of objectives is required to obtain a compromise
solution. To solve the MOO problem, fuzzy optimisation is used since it is applicable in
situations with vague and uncertain data. Besides, with its flexible decision boundaries,
it is characterised by the ability to adjust to a specific domain of application and more
accurately reflect its particularities [55].

In fuzzy optimization, degree of satisfaction, λp, is introduced for each objective
function, as shown in Equations (28) and (29), depending on whether the objective is to be
maximised or minimised. The objective is to maximise the degree of satisfaction for each
design objective. When maximisation of Vp is desired, any Vp higher than VUpper

p will have
λp of 1 (Equation (28)) and vice versa for minimisation of Vp (Equation (29)). It should be
noted that λp is a continuous variable which ranges from 0 to 1 as shown in Equation (30).
A λp value of 0 implies that the judgements are satisfied at the boundaries, whereas a λp
value of 1 indicates perfect consistency. The pattern of the degree of satisfaction curve is
formulated as follows λ [56]:

λp =



0, Vp ≤ VLower
p

Vp −VLower
p

VUpper
p −VLower

p

, VLower
p ≤ Vp ≤ VUpper

p ∀pεP

1, Vp ≥ VUpper
p

(28)
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λp =



0, Vp ≥ VUpper
p

VUpper
p −Vp

VUpper
p −VLower

p

, VLower
p ≤ Vp ≤ VUpper

p ∀pεP

1, Vp ≤ VLower
p

(29)

0 ≤ λp ≤ 1 ∀pεP (30)

With that, the max-min aggregation method is applied to maximise the least satisfying
degree of satisfaction in ensuring that all λp are partially fulfilled to the least degree of
λ [56]. Thus, the objective function is written as shown in Equations (31) and (32).

maxλ (31)

λp ≥ λ ∀pεP (32)

The MILP formulation is then solved to obtain optimal fragrant molecules. A case
study on the design of fragrances for cosmetic products is presented based on the CAMD
framework. However, if no feasible solution can be found, then the constraints are checked
to ensure that none of them are too strict. If so, then the constraints can be relaxed by
modifying the membership functions. If all the constraints are within an acceptable range,
then the predictive models should be revised to generate the molecule.

2.4. Step 4: Verification

After generating a fragrance molecule from CAMD, it was checked against the ex-
isting database to verify its scent. If the generated molecule is absent in the database, a
literature review was performed extensively to determine its odour characteristic. The
model is considered to have an error in identifying suitable fragrance candidates if the
generated molecule identified as fragrant is reported to be a different class. This is known
as a false positive result, where the fragrance classification is given to the generated un-
pleasant molecule.

In contrast, if the generated molecule from CAMD can neither be found in the avail-
able databases nor in the literature, this demonstrates the ability of the RSML model to
anticipate undiscovered novel molecules which exhibit the potential to be used as a fra-
grance. Therefore, further verification via experimental methods, which is beyond the
scope of this study, would be necessary to validate the molecule property. If the designed
molecules cannot meet the desired properties, the rule-based model is modified to enhance
the accuracy and reliability of prediction.

3. Case Study

Dishwashing detergent is a useful product that enhances domestic hygiene and cleanli-
ness in daily life [57]. Fragrances are often incorporated in the formulation of dishwashing
detergents to enhance consumers’ sensorial properties [58]. In this work, the desired fra-
grance molecules that can be used in liquid dishwashing products have been designed.
These molecules must meet several properties along with the constraints for both technical
and sensorial requirements, as tabulated in Table 6.
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Table 6. Target Properties and their Constraints.

Target Property Objective Constraint

Odour Character (OC) - Pleasant
Vapour Pressure - 0 ≤ Psat ≤ 100 kPa

Diffusion Coefficient Maximum DAB ≥ 0.15 m2/h
Lethal Concentration 50 Minimum − log(LC50) ≤ 4.2

Hildebrand Solubility Parameter Maximum 13 ≤ Sp ≤ 25 MPa0.5

Normal Boiling Point - Tb ≥ 373.15 K
Viscosity Minimum µ ≤ 2cP
Density - 800 ≤ ρ ≤ 1000 kg/m3

The objective is to maximize the diffusion coefficient and solubility parameter classifi-
cation score, while the viscosity and −logLC50 classification score should be minimized to
ensure that the fragrances will be suitable for dishwashing liquid detergents. The diffusion
coefficient is prioritised as diffusion governs the motion of fragrance molecules in the
air [59]. A fragrance with a high diffusion coefficient is desired so that the aroma scent can
be perceived from a longer distance. In addition, the viscosity of the fragrance molecule is
minimised to prevent drastic disruption to the viscosity of the final product. Fragrances
usually decrease the viscosity but occasionally will increase the viscosity in a surfactant
system [60].

Most of the common solvents that are available at a lower cost, such as ethanol
(21.87 MPa0.5), propylene glycol (25.45 MPa0.5), or phenoxyethanol (22.47 MPa0.5), have
higher solubility parameters. On the contrary, some specialty solvents such as 3-methoxy-3-
methyl-1-butanol, which can be applied for dishwashing detergents, have a lower solubility
parameter of 19.87 MPa0.5. Therefore, a higher solubility parameter for the fragrance
molecule is desired so that common and cheaper solvents can be used. For both −log
(LC50) and the solubility parameter, a disjunctive programming algorithm is conducted to
convert the input molecular property values into their corresponding classification scores,
which will be further discussed in detail in Section 4.

4. Results and Discussion

Since the development of fragrance predictive models is a pre-requisite for CAMD
formulation, the deterministic rules generated from RSML will be discussed thoroughly
before incorporating them as constraints into the CAMD model. Next, the generation of
fragrance molecules for dishwashing liquid additives will be presented.

4.1. Development of Odour Predictive Model Using RSML

The RSML algorithm was applied to develop odour predictive models, which were
then used as the constraint for generating potential fragrances candidates. The detailed
discussions include the generation of the core and the reducts, training the model to
generate the rules, model validation, and final selection of the most prominent rules.

4.1.1. Cores and Reduct Sets Generation

In this case study, the information system was made up of the conditional attributes
shown in Table 2, whereas the column on decision attribute has three different categories:
pleasant (class 1), no smell (class 2), and unpleasant (class 3) molecules based on the
olfaction database. Two reduct sets were generated from the training data inputted. Reduct
1 consisted of dilution, E-state index, and third order Kappa index, while reduct 2 was
made up of dilution and Chi 1v. Hence, dilution was determined to be the core along with
the classification quality of 98.07%. However, the rules generated from reduct 2 were not
extended further in this work as the certainty was low.
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4.1.2. Rules Generated from Reduct Set

The reduct is composed of dilution, the third-order Kappa index, and the electro-
topological state index. A total number of 66 deterministic rules were generated; 26 rules
belong to decision class 1, 20 rules belong to decision class 2, and 20 rules belong to decision
class 3. Table 7 provides sample rules from each decision class. It should be noted that
variables A, B, C, and D indicated in the dilution column represent 1/10, 1/1000, 1/100,000
and 1/10,000,000, respectively.

Table 7. Sample rules generated from reduct 1.

Rule Decision Dilution Kappa 3 E-State Strength Coverage Certainty

11 Pleasant A, B ≥2.05 24.75 to 27.58 4.40% 10.28% 100%
29 No Smell C 3.65 to 5.37 11.92 to 34.92 2.40% 12.00% 100%
53 Unpleasant A, B, C & D ≥0.58 14.08 to 17.50 4.00% 20.00% 100%

Referring to Table 7, rule 11 is demonstrated by 11 out of 250 molecules in the training
set and thus has a strength of 4.40%. It can be used as a constraint in the optimization
model, ensuring that Kappa 3 and the electro-topological index fulfill the values indicated
in Rule 11. Besides that, it also indicates that the molecule generated from this rule might
be a pleasant molecule only at low dilution or high concentration (i.e., 1/10 or 1/1000).
Subsequently, other rules can be interpreted in a similar manner. Since there are many rules
generated for the pleasant class, further analysis and interpretation of the rules must be
made to select the most plausible rules.

From the rule generation, a noteworthy observation is that almost all the rules gener-
ated are comprised of Kappa 3 value but not dilution and e-state value, except for rules 28,
52, 58 and 66. In decision class 1, all the rules generated are comprised of Kappa 3. The
possible reason which led to such results is that for two molecules with an identical set of
building blocks, they could exhibit the exact same e-state value but distinct Kappa 3 values.
The full set of rules generated for 3 different classes is listed in Table A3 in Appendix C,
along with their respective strength, coverage, and certainty.

In addition, Table A4 summarises the strength, coverage, and certainty of the rules
generated that correspond to each class. It can be noticed that the coverage of the rules
is considered low. The main reason is the large dataset, and all the molecules inside the
training set were selected randomly. The chemical structures are diverse for the molecules
in the dataset. Furthermore, it should be noted that the exact same molecule could be
found in more than one rule under the same decision class if the range of e-state and/or
Kappa 3 overlap. Additionally, it should be noted that the certainty of all the rules in the
training set is 100%. Since only the rules with high certainty are used in CAMD, it can be
guaranteed that the identified molecules have a very high potential to be used in fragrant
products. In general, it can be summarised that RSML exhibits high potential to generate
plausible rules for odour predictive models in designing fragrant molecules. The combined
coverage of the rules used in CAMD is more than 50%, and all the rules have a certainty of
more than 83%.

4.1.3. Evaluation of Model Performance Based on Validation Set

Next, all the generated rules from the reduct set were tested using the validation
dataset, which was comprised of 88 molecules. The molecules were classified into one of
the classes (pleasant, no smell, or unpleasant). If a molecule satisfies one or more of the
rules in one of the decision classes, it would be classified into that decision class. A rule
is used for classification only if the certainty is high. Since the major focus was pleasant
molecules, only rules in decision class 1 will be further analysed in this section. Figure 2
illustrates the coverage and certainty of molecules in the validation set. It should be noted
that rules that were not matched by any molecule in the validation data set were eliminated
from further analysis. Coverage indicates the percentage of predicted molecules that fall
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in decision class 1, as shown in Equation (5). On the other hand, certainty denotes the
accuracy of the rules in classifying the molecules. For instance, 4 molecules in the validation
set fulfil the range of dilution, Kappa 3, and electro-topological indices dictated by rule
2. However, only 3 out of 4 of these molecules are classified into class 1 accurately, which
means that the prediction accuracy of the RSML algorithm is 75% for this rule.
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Referring to Figure 2, there are 4 rules (rule 4, 11, 14 and 18) with coverage higher
than 10% and certainty higher than or equal to 75%, with rule 4 having a certainty of 100%.
Table 8 summarises the performance of these rules when tested using the validation dataset.
Although there are 6 other rules (rules 8, 13, 16, 19, 24 and 25) having a prediction certainty
of 100%, their coverage is lower than 10%; thus, they are not considered in this work.

Table 8. Performance of rules 4, 11, 14 and 18 in validation.

Rule No. Dilution Kappa 3 Estate Strength Coverage Certainty

4 3.09 to 3.65 19.25 to 29.38 6.82% 13.04% 100.00%
11 A, B ≥2.05 24.75 to 27.58 13.64% 19.57% 75.00%
14 <1.87 ≥27.92 10.23% 15.22% 77.78%
18 A, B 4.29 to 5.64 20.75 to 30.83 6.82% 10.87% 83.33%

It is noticed that rules 4 and 14 do not use dilution as a necessary condition for
classification. This could be explained by the range of Kappa 3 and the electro-topological
state values in both rules being applicable for fragrance molecules, which are dilution-
independent. This statement can be supported by the observation that the “sweet” odour
character is dilution-independent [22]. The main reason might be that the “sweet” odour
is associated with the molecule despite the changes in dilution, even though it might not
be the most dominant characteristic. Among these 4 rules, rule 11 exhibited the highest
coverage, while rule 4 showed the highest certainty. Interestingly, it can be seen that rules
4 and 18 impose similar e-state values but totally distinct Kappa 3 values. It is deduced that
isomers with the same combination of groups but different branching can be generated
through these two rules.

4.2. Generation of Fragrance Molecules

The aim of this case study is to design fragrances with pleasant smells, which will be
suitable as an additive in dishwashing liquid. Therefore, rules 4, 11, 14, and 18 were added
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as constraints to the CAMD model for solving the optimisation problem. Additionally, the
physicochemical constraints, as shown in Table 6, and structural constraints, which have
been discussed in Section 2.3.1, were included in the model as well. Table A2 in Appendix B
lists out all the first-order groups that are utilised as the building blocks in this work.

4.2.1. Disjunctive Programming for Classification

In the objective functions, the solubility parameter and LC50 are bound by lower and
upper boundaries. Therefore, their property range can be divided into several intervals,
with each interval denoted by several classifications. As mentioned in Section 2, the
solubility parameter and LC50 were evaluated using the GC method, whilst disjunctive
programming was employed to convert them into classification scores. Table 9 displays the
classification for solubility parameter and −log (LC50).

Table 9. Classification for solubility parameter and −log (LC50).

Parameter Score Information Classification

Solubility Parameter, Sp

(MPa0.5)

13 ≤ Sp < 16 1
16 ≤ Sp < 19 2
19 ≤ Sp < 22 3
22 ≤ Sp ≤ 25 4

−log (LC50)

0.01 ≤ −logLC50 < 1 1
1 ≤ −logLC50 < 2 2
2 ≤ −logLC50 < 3 3

3 ≤ −logLC50 ≤ 4.2 4

Disjunctive programming on the solubility parameter is shown in this section. Refer-
ring to the score information in Table 9, the solubility parameter classification score, ISp
may be 1, 2, 3 or 4 depending on the solubility parameter of the molecule. The ISp function
was converted to the following mixed-integer formulation using three integer variables
(ISp1, ISp2 & ISp3), as shown in Equation (33).

ISp = 1 + ISp1 + ISp2 + ISp3 (33)

It was then subjected to the following conditions:

ISp1 =

{
0 Sp < 16
1 Sp ≥ 16

ISp2 =

{
0 Sp < 19
1 Sp ≥ 19

ISp3 =

{
0 Sp < 22
1 Sp ≥ 22

To ensure that the correct values of ISp1, ISp2 and ISp3 were allocated to be either 0 or
1, satisfying the conditions above, the following constraints were imposed in CAMD as
depicted in Equations (34)–(36).

(13− 16)×
(
1− ISp1

)
≤ Sp − 16 < (25− 16)×

(
ISp1

)
ISp1 ∈ {0, 1} (34)

(13− 19)×
(
1− ISp2

)
≤ Sp − 19 < (25− 19)×

(
ISp2

)
ISp2 ∈ {0, 1} (35)

(13− 22)×
(
1− ISp3

)
≤ Sp − 22 < (25− 22)×

(
ISp3

)
ISp3 ∈ {0, 1} (36)

Similarly, the same approach was applied to the classification score of −log (LC50),
I−logLC50

using disjunctive programming.



Processes 2022, 10, 1767 18 of 29

4.2.2. Optimisation Model

Fuzzy optimisation is applied to solve the MOO problem. In this method, the so-
lution generated by the optimisation model achieves Pareto optimality since the level
of satisfaction of the least-satisfied target property is maximized, λ [56]. Four objectives
were targeted in this MOO problem, as depicted in Table 6. Equations (37)–(40) show the
individual objective function for maximisation of diffusion coefficient, minimisation of
viscosity, maximisation of solubility parameter classification score and minimisation of
−log (LC50) classification score, respectively.

λ1 =



0, DAB ≤ DLower
AB

DAB − DLower
AB

DUpper
AB − DLower

AB

, DLower
AB ≤ DAB ≤ DUpper

AB

1, DAB ≥ DUpper
AB

(37)

λ2 =


0, µ ≥ µUpper

µUpper − µ

µUpper − µLower , µLower ≤ µ ≤ µUpper

1, µ ≤ µLower

(38)

λ3 =



0, ISp ≤ ILower
Sp

ISp − ILower
Sp

IUpper
Sp − ILower

Sp

, ILower
Sp ≤ ISp ≤ IUpper

Sp

1, ISp ≥ IUpper
Sp

(39)

λ4 =



0, I−logLC50 ≥ IUpper
−logLC50

IUpper
−logLC50

− I−logLC50

IUpper
−logLC50

− ILower
−logLC50

, ILower
−logLC50

≤ I−logLC50 ≤ IUpper
−logLC50

1, I−logLC50 ≤ ILower
−logLC50

(40)

Subsequently, the final objective function of the MOO problem is written as shown in
Equations (31) and (32). All the property targets were normalised to be used in the fuzzy
optimisation framework. The CAMD problem was now formulated as an MILP problem
which was solved using a global solver by LINGO extended version 18.0.56. There were
948 variables in total, with 915 integer variables, and the computational time tok around
1 min. The shape index was not included in the CAMD formulation and was instead
used to confirm the validity of generated solutions, which have fulfilled all the desired
requirements. Molecules that did not meet the rules on shape index were removed. To
enumerate all possible feasible candidates, integer cuts were added. The results for fuzzy
optimisation are presented in Table 10. In addition, the Pareto front was generated to obtain
different possible solutions if the designer has different priorities. Figures 3 and 4 illustrate
the Pareto front obtained by using rule 4 and rule 18 as the constraint, respectively.
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Table 10. Fuzzy optimisation results.

Approach Fuzzy Optimisation Fuzzy Optimisation with Loosened Constraint

Rule 4 4 18 18 4 18

Solution Best Second Best Best Second Best Best Best
No. 1 2 3 4 5 6

Molecular name Methyl methoxyacetate Methyl
3-methoxypropionate Methoxymethyl acetate 2-methoxyethyl acetate Sec-butyl acetate Tert-butyl acetate

Molecular structure
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4.3. Verification and Potential of the Model

Referring to Table 10, all the potential candidates generated were not available in the
Keller and Vosshall [42] database. This further indicates the effectiveness and robustness
of the RSML algorithm in designing fragrances. Interestingly, it can be seen that the
best solutions in rules 4 and 18 are isomers (methyl methoxyacetate and methoxymethyl
acetate). Similarly, the second-best solutions in both rules, methyl 3-methoxypropionate
and 2-methoxyethylacetate, are also isomers. The main reason is that the e-state index
ranges in both rules are identical, as shown in Table 8. However, rules 4 and 18 can be
differentiated by the dilution attribute and Kappa 3 index range.

Next, an extensive literature search was performed to verify whether these candidates
are reported fragrances or not. Methyl methoxyacetate was found in the volatile composition
of a green note aroma compound potential source, laksa plant (Polygonum hydropiper L.) [61].
Additionally, methyl metoxyacetate was detected as one of the compounds in the orchid
(Steveniella satyrioides), which is perceived by the antennae of insects [62]. However, it was
reported by Thermo Fisher Scientific [63] that it is odourless at 99 wt%. It was deduced that
at low concentrations, methyl methoxyacetate has a pleasant smell, but at high concentra-
tions, it is odourless. Therefore, this demonstrates the capability of machine-learning-based
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CAMD modelling to correct errors in fragrant databases which are prone to have errors.
Nonetheless, further experimental verification is required when experimental results are
not available. For methyl 3-methoxypropionate, there is no odour information available,
but it has been reported that it is present as a volatile aroma component in the ponkan wine
made from ponkan juice [64].

For feasible candidates in rule 18, there is no information available regarding the
odour of methoxymethyl acetate, while 2-methoxyethyl acetate is reported to have a mild,
ether-like odour [65]. Nevertheless, further experimental evaluation is required to verify
their odour characteristic. Additionally, the constraints used in CAMD formulation are
monitored using dual price values to ensure that there are no highly restricting constraints.
Dual price is the amount that an objective would improve if an increase in one unit in the
constant term of the constraint occurs. From the results obtained, it can be observed that all
the dual prices for physical constraints are 0. This indicates that none of the constraints is
too strict, and similar analyses were conducted for the CAMD problem using other rules as
a constraint as well.

In addition, if the above candidates generated do not fulfill the odour characteristic that
is desired, the redefined constraint can be loosened to generate other potential fragrance
molecules. In this work, the solubility parameter and −log (LC50) classification scores
were loosened. If the solubility parameter classification score is loosened, this indicates
there might be a need for using a more expensive solvent for the homogeneous mixing
of the fragrance in the final product due to the lower solubility parameter. However, this
can be further verified using the literature to check whether the generated candidates are
soluble in water or any conventional solvent such as ethanol. For the −log (LC50), if the
molecule satisfies the constraint of ≤ 4.2, it is considered safe to be used. Therefore, the
fuzzy optimisation of rules 4 and 18 from the loosened constraints was conducted, and the
results are tabulated in Table 10.

Both sec-butyl acetate and tert-butyl acetate are not found in the original database
by Keller and Vosshall [42]. They are isomers with the same molecular formula but
different combinations of bulding blocks and structure. Both molecules have relatively
good diffusion coefficients, vapour pressure, and viscosity if compared to the previous
candidates. The only drawback is they exhibit lower solubility parameters and higher −log
(LC50) values. However, they are soluble in alcohol such as ethanol; thus, they are still
considered prominent candidates in this study. In addition, sec-butyl acetate has a reported
fruity and sweet odour, which can be found in concentrated apple juice [66]. Furthermore,
tert-butyl acetate was determined to be camphoraceous in a study by Rossiter [67] and
fresh fruity in a work by Miyazawa and Hashimoto [68].

In general, the results generated from fuzzy optimisation have proven the exceptional
ability and flexibility of the CAMD model in designing or screening fragrance molecules.
Non-intuitive molecules with favourable features have been found, although they are not
included in the original database. Therefore, the proposed methodology has the potential
to guide the experiments for the development of novel fragrant products.

4.4. Alternative Rule-Based Models

Except for the generation of non-cyclic or linear molecules, several structural con-
straints have been imposed to design cyclic molecules using rules 4 and 18 as the constraints.
Besides that, rules 11 and 14 were utilised in the CAMD model separately to generate po-
tential candidates. Table 10 depicts the feasible fragrances candidates generated using rules
4, 11, 14 and 18. All the generated feasible molecules listed are not in the original database.

For rule 4, all the properties of both generated molecules 7 and 8 fulfill all the con-
straints except for the Kappa 3 index value. Nevertheless, it is noteworthy that their Kappa
3 and e-state values are within the range of rule 20, as listed in Table A3 of Appendix C.
However, rule 20 was not selected as one of the constraints to be incorporated into the
CAMD model because its coverage is relatively low compared to other rules. The main
reason might be due to the random selection of data for both the training and validation
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sets. Some molecules in the database that fulfil rule 20 were not chosen. Molecules 7 and
8 are reported to be fragrant in literature, whereby 2-(methoxyethyl) benzene is found to
have a green and floral scent, and benzyl ethyl ether has a fruity, pineapple-like odour [69].

In addition, molecules 9 to 11 exist in established databases such as PubChem and
ChemSpider, but there are no data available regarding their odour or smell. Molecules 9 and
11 fulfil all the constraints except the Kappa 3 index value in rules 11 and 18, respectively,
whereas molecule 10, which is methyl 2-ethylbenzoate, fulfils all the requirements under
rule 14. Molecule 12 is not available in any database or literature. Even though they do
not have any odour information, they might be new potential fragrance molecules that
can be utilised in different applications. The results illustrate that the integration of the
RSML algorithm with CAMD for the design or screening of fragrance molecules is very
useful. This is because promising candidates for various consumer products can be found,
and a novel molecule that has never been discovered yet could also be designed using
this approach.

4.5. Interpretability of RSML Model

From the CAMD results obtained, it is noteworthy that the design of fragrance
molecules using a hybrid model that integrates the odour predictive models developed
from the RSML algorithm and the physicochemical properties estimated using GC methods
is very powerful. In this work, two topological indices, namely the electro-topological
state index (E-state) and third-order shape index (Kappa 3), as well as dilution, were deter-
mined to be the most crucial attributes for classifying molecules into pleasant, no smell,
and unpleasant categories by RSML. According to Sell [2], olfaction characteristics are
concentration-dependent. A low concentration indicates that the molecule undergoes high
dilution, and the odour description might vary at different concentrations. Despite this,
an issue arises on which descriptor should be utilised for developing the structure-odour
relationship. However, one should remember that some exceptions exist where certain
odours might be concentration-independent, such as a “sweet” odour. Therefore, the
application of the RSML algorithm has demonstrated its capability to generate different
rules for both dilution-dependent and dilution-independent molecules. From a scientific
viewpoint, the rules generated are logical because some fragrances can only be smelled
within a certain dilution range. The majority of the rules for decision class 1 (pleasant) have
an e-state ranging from 20 to 30, indicating that the chances of obtaining functional groups,
such as ethers, esters, and aldehyde, are relatively high.

Based on the intrinsic value given in the literature, it was found that groups such as
aldehyde (-CHO), ether (-COO) and ether (-CH3O, -CH2O, -CH-O, C-O) have relatively
high e-state values [46]. Generally, molecules with esters, ethers and aldehydes groups
have fruity [70], sweet [71], and floras [72] smells, respectively. For instance, ethyl ethanoate
occurs in pineapples, 3-methylbutyl ethanoate occurs in apples and bananas, 3-methylbutyl-
3-methylbutanoate in occurs apples, and octyl ethanoate occurs in oranges. Therefore, with
the e-state ranges, it is likely to obtain a fragrant molecule with different functional groups.
Furthermore, the electro-topological index provides insight into the atom’s availability to
interact with a particular atom or group. It is expressed as the modified intrinsic value
of an atom, whereby the intrinsic value is related to the valence-state electronegativity of
the skeletal atom from the count of p and lone-pair electrons. From the e-state values, the
atoms or groups in the molecule which contribute to the aromatic scent can be determined.
For instance, the position of a widely known functional group that is associated with a
fruity odour, ester, can be predicted using the e-state value. Subsequently, Kappa 3 encodes
the atoms’ spatial density as well as the centrality of branching in a molecule. The value of
Kappa 3 will increase if the length of the linear aliphatic chain increases, while its value
decreases with the growth of branching. Besides that, it will increase if the number of three
path fragments decreases. For example, for two isomers of C6H12O2, which are molecules
5 and 6 in Table 10, molecule 5 depicted a lower Kappa 3 value than molecule 6 despite
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molecule 6 having more branching. This is because the number of three path fragments in
molecule 5 is six, whereas in molecule 6, this number is five.

Meanwhile, for Kappa 3, it is difficult to determine the sensible range for a fragrant
molecule since there are several factors, such as the number of atoms present in the molecule,
the number of three-path fragments as well as the increment or decrement of the counting
of a particular atom based on its size contribution relative to C(sp3). as shown in Equations.
13 and 14. However, it is noteworthy that highly branched structures have lower Kappa
3 indices, which might be applicable to cyclic (aromatic and non-aromatic) compounds.
Taking benzene, which has a sweet scent, as an example, it has a Kappa index of 0.5824 [73].

Additionally, referring to the rules generated from RSML, it can be observed that most
of the rules are comprised of certain ranges of e-state and Kappa 3. Different combinations
of rules dictate distinct molecular structures, whereby a series of patterns can be discovered
from the rules. An interesting example can be demonstrated by rules 4 and 18 as both rules
require very identical e-state ranges but divergent Kappa 3 values. Therefore, the linear
molecules generated from these rules are usually structural isomers, with exactly the same E-
state value but different Kappa 3 due to the difference in the number of branching or length
of the aliphatic chain. Besides that, it is obviously shown that cyclic molecules generally
have a lower Kappa 3 index value due to the aromatic ring itself already contributing
6 three-path fragments.

Since odour has a significant qualitative dimension, a few precautions must be taken
to apply the developed models. Firstly, the organoleptic purity of fragrances should be
noted. All stimuli in the database were applied at a purity of >97%, with a median purity of
98%. Notably, 3% traces of impurity can affect the perception, especially for those odourless
molecules [42]. Furthermore, smell has no fixed reference points with measurable physical
properties, and all the descriptions are associative. An odour can only be described by
referring to other odours [2]. Another issue is the ambiguity of odour classification by
subjects, as it is a subjective sense. Different individuals might have distinct perceptions
of the same fragrance due to differences in age, culture, gender, and background. For
instance, some people might perceive “spices” as a pleasant smell, but the rest might have
the perception of an unpleasant smell. Hence, the misclassification of odour by the subjects
might affect the determination of decision class in this work. Consequently, to extend the
proposed methodology to other applications, a reasonably large set of data is essential to
develop a reliable predictive model using RSML. In addition, those rules with low coverage
and certainty should not be incorporated into the CAMD modelling as the prediction
accuracy is low, which will lead to a false positive result. Finally, the interpretable nature
of the RSML models allows individuals to assess the applicability of the model. If the
interpretation of the developed model cannot be scientifically explained, the designer can
discard the model even if the certainty is higher.

5. Conclusions

A systematic approach that integrates rule-based models from rough-set-based ma-
chine learning (RSML) into optimization models for computer-aided molecular design
(CAMD) has been developed for the design of fragrance molecules. Group contribution-
based methods were used to estimate the physicochemical properties of fragrance molecules,
whereas RSML was utilised to generate deterministic rules that can predict the odour char-
acteristic of the molecules based on their topological indices. Interestingly, some of the
rules generated were related to the dilution of the fragrance molecules, but some were
not. This result further proves that fragrance molecules are dilution-dependent. The rules
were selected based on their coverage and certainty to ensure that they are reliable to be
incorporated as the constraints in CAMD. None of the potential candidates generated
exist in the original database. However, some molecules are reported as fragrances in the
other database, while some potential molecules have odour information in other litera-
ture sources. The identification of molecules that do not have any odour information has
demonstrated the ability of the model to identify new non-intuitive candidates, which
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require further experimental verification. The results show that the methodology devel-
oped here has the potential to be applied in the design of fragrance molecules in industry.
The RSML predictive models were proven to be capable of predicting pleasant molecules’
odour characteristics. To improve the robustness and accuracy of the RSML model, more
attributes that are related to the structure-odour relationship can be included. Additionally,
the molecules could be classified into more specific scent classes, thus allowing specific
odours to be targeted for specific applications. The developed framework can be modified
and extended to discover or design molecules for other applications, provided that there
are readily available predictive models or there are sufficient data to construct predictive
models using machine learning. Using this approach, the time, cost, and resources required
to develop a new product can be reduced significantly.
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Nomenclature

Symbol Description
1χv Connectivity (chi 1v) index
1Cs

v Bond contribution to connectivity index
δv

i δv
j Number of edges in the molecules with bond s terminating on vertices i and j

Si Electro-topological state index of atom i
Ii Intrinsic electronic and topological status
∆Ii Perturbation factor due to the environment
δi

v Number of valence electrons
δi Number of sigma electrons in the hydrogen suppressed graph
Ni Principal quantum number
rij Graph separation factor
2κ Second-order shape index, Kappa 2
A Number of atoms present in the molecule
2P i Number of two-path fragments

Increment or decrement of the counting of particular atom based on its size contribution
α

relative to C(sp3)
3κ Third order shape index, Kappa 3
3P i Number of three-path fragments
pswitch Boundary property value
yi1,id1,i2,id2 Connection between group (i1, id1) and group (i2, id2)

zi1,id1
Existence of group (i1, id1)

vi Valency of group i
ni Number of occurrences of first-order group i
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Appendix A. Group Contribution-Based Models

Table A1. Physical property models.

Target Property Equations References

Normal Boiling Point, Tb

exp
(

Tb
Tb0

)
= ∑

i
NiTb1,i

[74]Tb = Normal boiling point (K)
Tb0 = Universal constant, 244.5165 K
Tb1,i = Contribution of the first-order group of type− i that occurs Ni time

Density

Vm −Vm0 = ∑
i

Nivm1,i

[74]

ρ = Ni Mi
Vm

Vm = Liquid molar volume
(
m3/kmol

)
Vm0 = Universal constant, 0.0160 m3/kmol
vm1,i = Contribution of the first-order group of type i that occurs Ni times
ρ = Density

(
kg/cm3)

Mi = Molecular weight

Hildebrand Solubility Parameter, δ

δ− δ0 = ∑
i

Niδ1,i

[74]δ = Hildebrand solubility parameter
(

MPa0.5
)

δ0= Universal constant, 21.6654 MPa0.5

δ1,i= Contribution of the first-order group of type i that occurs Ni times

Diffusion Coefficient, DAB

DAB =

3.03−

 0.98

M
1
2
AB


(10−3) T

3
2

PM
1
2
ABσ2

ABΩD

MAB = 2
(

1
MA

+ 1
MB

)−1

σ = 1.18V
1
3

m

σAB = σA+σB
2

∈
k = 1.15 Tb

ΩD = A
(T∗)B + C

exp(DT∗) +
E

exp(FT∗) +
G

exp(HT∗)

∈AB= (∈A∈B)
1
2

T∗ = kT
∈AB

With σB = 3.62, ∈B = 97, A = 1.06036, B = 0.1561, C = 0.193,
D = 0.47635, E = 1.03587, F = 1.2996, G = 1.76474, H = 3.89411
DAB = Diffusion coefficient

(
cm2/s

)
T = Temperature (K)
P = Pressure (bar)
MA/MB = Molecular weight of A/B
σAB = Scale parameter
Vm = Liquid molar volume
Tb = Normal boiling point (K)

[75]

Lethal concentration 50, LC50

− log(LC50) = ∑
i

Niα1,i

[76]LC50 = Lethal concentration 50
α1,i = Toxicity contribution of the first-order group of type i that occurs Ni times

Viscosity, η

ln η = ∑
i

NiTη,i

[50]η = Viscosity (cP)
Tη,i = Contribution of the first-order group of type i that occurs Ni times

Vapour Pressure, Psat

logPsat = 5.58− 2.7
(

Tb
T

)1.7

[77]Psat = Vapour pressure (mmHg)
T is the temperature at standard condition (K)

Appendix B. List of First-Order Group

Table A2. First-order groups.

First-Order Groups

CH3 CH2 CH C aCH aC OH COOH CHO COO
CH3O CH2O CH-O C-O CH2 (Cyclic) CH (Cyclic) C (Cyclic) O (Cyclic) -O-



Processes 2022, 10, 1767 26 of 29

Appendix C. Summary of Rules Generated from RSML

Table A3. Rules generated from reduct 1.

Rule Dilution Kappa 3 Estate Strength Strength Coverage Certainty

Pleasant (Decision Class 1)

1 C 4.881 5.399 ≥27.4167 1 0.40% 0.93% 100%
2 2.653 3.262 24.958 29.792 5 2.00% 4.67% 100%
3 C 5.637 7.685 19.250 24.958 5 2.00% 4.67% 100%
4 3.091 3.654 19.250 29.375 7 2.80% 6.54% 100%
5 C 2.054 2.572 ≥26.4167 2 0.80% 1.87% 100%
6 A, C <1.334 ≥17.833 13 5.20% 12.15% 100%
7 C <1.86665 ≥27.583 3 1.20% 2.80% 100%
8 1.349 1.404 3 1.20% 2.80% 100%
9 A, B 2.294 3.262 29.125 42.417 6 2.40% 5.61% 100%

10 A, B ≥4.684 32.500 34.917 4 1.60% 3.74% 100%
11 A, B ≥2.054 24.750 27.583 11 4.40% 10.28% 100%
12 A, B 1.156 1.349 4 1.60% 3.74% 100%
13 A, B 7.351 7.685 9 3.60% 8.41% 100%
14 <1.8667 ≥27.917 16 6.40% 14.95% 100%
15 1.081 1.147 <24.583 5 2.00% 4.67% 100%
16 A, B 3.374 3.871 17.833 38.583 6 2.40% 5.61% 100%
17 B ≥5.637 28.250 32.083 1 0.40% 0.93% 100%
18 A, B 4.292 5.637 20.750 30.833 5 2.00% 4.67% 100%
19 A, B 1.742 1.867 9 3.60% 8.41% 100%
20 B 2.105 2.256 <28.25 3 1.20% 2.80% 100%
21 B 8.371 10.280 1 0.40% 0.93% 100%
22 A 5.573 9.333 4 1.60% 3.74% 100%
23 1.043 3.976 2 0.80% 1.87% 100%
24 B 0.811 1.043 4 1.60% 3.74% 100%
25 <4.249 ≥44.167 4 1.60% 3.74% 100%
26 5.512 5.573 1 0.40% 0.93% 100%

No Smell (Decision Class 2)

27 C ≥3.262 24.958 32.500 8 3.20% 16.00% 100%
28 D ≥15.472 5 2.00% 10.00% 100%
29 C 3.654 5.366 11.917 34.917 6 2.40% 12.00% 100%
30 4.657 6.445 ≥34.917 3 1.20% 6.00% 100%
31 C 2.185 2.653 <29.375 2 0.80% 4.00% 100%
32 C 1.917 2.054 3 1.20% 6.00% 100%
33 2.256 2.472 <38.25 1 0.40% 2.00% 100%
34 C 1.349 4.657 11.917 17.833 1 0.40% 2.00% 100%
35 4.657 5.196 <33.833 3 1.20% 6.00% 100%
36 C 5.476 5.687 2 0.80% 4.00% 100%
37 A 9.570 13.774 1 0.40% 2.00% 100%
38 B, C ≥10.280 6 2.40% 12.00% 100%
39 <3.976 <10.917 6 2.40% 12.00% 100%
40 D ≥3.976 2 0.80% 4.00% 100%
41 2.804 2.845 1 0.40% 2.00% 100%
42 <2.294 ≥38.250 1 0.40% 2.00% 100%
43 3.262 3.288 1 0.40% 2.00% 100%
44 C ≥9.57 2 0.80% 4.00% 100%
45 C 1.334 1.349 1 0.40% 2.00% 100%
46 C <0.581 3 1.20% 6.00% 100%
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Table A3. Cont.

Rule Dilution Kappa 3 Estate Strength Strength Coverage Certainty

Unpleasant (Decision Class 3)

47 ≥7.685 19.833 23.083 2 0.80% 4.00% 100%
48 B 1.867 2.009 ≥24.417 2 0.80% 4.00% 100%
49 1.404 2.105 22.250 22.833 3 1.20% 6.00% 100%
50 A ≥9.333 <44.167 3 1.20% 6.00% 100%
51 A, B 3.755 4.292 28.250 40.833 4 1.60% 8.00% 100%
52 23.750 23.917 2 0.80% 4.00% 100%
53 A, B, C ≥0.5813 14.083 17.500 10 4.00% 20.00% 100%
54 B 1.043 1.156 ≥25.750 2 0.80% 4.00% 100%
55 B, C 3.923 5.476 <20.750 4 1.60% 8.00% 100%
56 C ≥3.663 19.042 19.833 1 0.40% 2.00% 100%
57 B ≥4.336 27.583 28.583 1 0.40% 2.00% 100%
58 22.583 22.833 1 0.40% 2.00% 100%
59 C 2.256 3.288 ≥29.917 1 0.40% 2.00% 100%
60 ≥1.8667 28.250 28.583 1 0.40% 2.00% 100%
61 B 1.404 1.742 19.250 27.917 3 1.20% 6.00% 100%
62 3.755 4.657 33.250 34.583 2 0.80% 4.00% 100%
63 <3.374 18.750 19.250 2 0.80% 4.00% 100%
64 B 0.528 0.811 3 1.20% 6.00% 100%
65 1.582 1.639 <27.583 1 0.40% 2.00% 100%
66 13.333 13.750 1 0.40% 2.00% 100%

Table A4. Summary of generated rules.

Class Average Strength (%) Average Coverage (%) Average Certainty (%)

Pleasant 2.06 4.82 100.00
No Smell 1.16 5.80 100.00

Unpleasant 0.98 4.90 100.00
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