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Abstract: A novel process path is proposed to produce glycolic acid (GA) from CO2 as the feedstock,
including CO2 capture, power-to-hydrogen, CO2 hydrogenation to methanol, methanol oxidation
to formaldehyde, and formaldehyde carbonylation units. The bottlenecks are discussed from the
perspectives of carbon utilization, CO2 emissions, total site energy integration, and techno-economic
analysis. The carbon utilization ratio of the process is 82.5%, and the CO2 capture unit has the largest
percentage of discharge in carbon utilization. Among the indirect emissions of each unit, the CO2

hydrogenation to methanol has the largest proportion of indirect carbon emissions, followed by the
formaldehyde carbonylation to glycolic acid and the CO2 capture. After total site energy integration,
the utility consumption is 1102.89 MW for cold utility, 409.67 MW for heat utility, and 45.98 MW for
power. The CO2 hydrogenation to methanol makes the largest contribution to utility consumption
due to the multi-stage compression of raw hydrogen and the distillation of crude methanol. The unit
production cost is 834.75 $/t-GA; CO2 hydrogenation to methanol accounts for the largest proportion,
at 70.8% of the total production cost. The total production cost of the unit depends on the price
of hydrogen due to the currently high renewable energy cost. This study focuses on the capture
and conversion of CO2 emitted from coal-fired power plants, which provides a path to a feasible
low-carbon and clean use of CO2 resources.

Keywords: CO2 capture; renewable hydrogen; glycolic acid synthesis; process modeling; process analysis

1. Introduction

Polyglycolic acid (PGA) is the simplest linear aliphatic polyester in terms of chemi-
cal structure [1]. Compared to polyhydroxyalkanoates such as polylactic acid and poly
(3-hydroxybutyric acid, PGA has strong intermolecular hydrogen-bond interaction, a
highly regular molecular structure, and densely packed molecular chains, with character-
istics such as high crystallinity, high density, and brilliant heat resistance [2]. PGA also
exhibits great mechanical properties [3], as well as unique biodegradability, good biocom-
patibility, and a prominent gas barrier [4]. PGA is one of the most widely studied and
applied biodegradable materials [5].

PGA is mainly produced by direct polycondensation of glycolic acid or ring-opening
polymerization of glycolide (i.e., glycolic acid is first cyclized and polymerized into ethylene
cross-ester, which is then ring-opened and polymerized into PGA). At present, there are
four main production methods for the preparation of glycolic acid, namely, the hydrolysis
of chloroacetic acid [6], cyanidation [7], electroreduction of oxalic acid to glycolic acid [8],
and formaldehyde carbonylation [9]. Chloroacetic acid hydrolysis is the most traditional
preparation method, with a long process and low yield, and is only suitable for small-
scale production. Although the cyanidation method has the advantage of steady, handy
operation and high product purity, the safety requirements for production operations are
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high due to the presence of highly toxic cyanide. Electroreduction of oxalic acid to glycolic
acid has certain requirements on the flow rate, current density, and voltage of electrolyte,
and the energy consumption of electroreduction is high. Formaldehyde carbonylation is a
typical Koch reaction over acid catalyst, in which formaldehyde, carbon monoxide, and
water are used as raw materials to synthesize glycolic acid [10]. If solid acid catalysts are
developed with good catalytic performance, the carbonylation reaction of formaldehyde
could be carried out at low pressure, with the advantages of low-cost production of raw
materials and simple separation [11]; this has good development prospects and has thus
been widely considered. Formaldehyde, the raw material for formaldehyde carbonylation,
is mainly produced by the oxidation of methanol. As the most important greenhouse gas
in the atmosphere, CO2 is responsible for more than 60% of the warming effect [12], while
methanol is an important platform product to realize CO2 resource utilization [13].

In this study, a process for transforming CO2 to glycolic acid is proposed, starting
from CO2 capture, including CO2 hydrogenation to methanol, methanol oxidation to
formaldehyde, and formaldehyde carbonylation. Firstly, a detailed process model is
prepared, and the material and energy consumption of the whole system are analyzed. The
bottlenecks are discussed from the perspectives of carbon utilization, energy analysis and
integration, and CO2 emissions. Based on the energy flow data, a detailed energy analysis
of each unit is carried out using the pinch technique, and total site composite curves are
constructed to analyze the maximum energy saving potential in the context of plant-wide
energy integration. Finally, the energy efficiency and economic indicators of the integration
scheme are assessed.

The rest of this paper is organized as follows. The reaction mechanism and process for
transforming CO2 to glycolic acid are described in Section 2. Furthermore, the parameter
optimization of each unit is discussed, to obtain the optimal simulation results. Process
system heat integration to improve the energy efficiency is then considered in Section 3.
The material balance results are introduced, and the carbon utilization, CO2 emissions, and
techno-economic analysis are presented. The conclusions are drawn in Section 5.

2. Procedure Description and Parameter Optimization

The process proposed in this study for transforming carbon dioxide into glycolic
acid based on hydrogen production from renewable energy sources is shown in Figure 1.
It mainly consists of five units: electrolytic water to hydrogen, carbon dioxide capture,
carbon dioxide hydrogenation to methanol, methanol oxidation to formaldehyde, and
formaldehyde carbonylation to glycolic acid.
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Figure 1. Carbon dioxide to polyglycolic acid process.

The flue gas emitted from coal-fired power plants is captured and purified through
carbon capture (CC unit) to obtain high-purity carbon dioxide, which is then synthesized
through methanol synthesis (MS unit) with hydrogen produced by electrolytic water to
get methanol, followed by oxidation with oxygen to gain formaldehyde via formaldehyde
synthesis (FS unit), and finally, with carbon monoxide and water in the presence of a
catalyst, glycolic acid synthesis (GAS unit) to obtain the end product of glycolic acid.

Proton exchange membrane water electrolysis is selected for the transformation of
electrolytic water to hydrogen, the phase change solvent is used for CO2 capture, and direct
CO2 hydrogenation to methanol with a Cu/Zn/Al/Zr catalyst is selected for the MS unit.
Meanwhile, formaldehyde production over iron-molybdenum oxide as the catalyst is used
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for the FS unit, and a metal solid acid catalyst is used for formaldehyde carbonylation to
glycolic acid in this study.

2.1. Electrolytic Water Hydrogen Production

Water electrolysis has benefits over other traditional hydrogen-generation technologies
associated with fossil energy due to the reduced carbon emissions when it is integrated with
a renewable source of energy. At the technical level, water electrolysis is mainly divided
into alkaline water electrolysis (AWE) [14], proton exchange membrane (PEM) water
electrolysis [15], solid polymer anion exchange membrane water electrolysis [16], and solid
oxide water electrolysis [17]. Among them, both AWE and PEM have been widely used
for large-scale industrial applications. Specifically, PEM water electrolysis is a promising
technology for hydrogen-generation applications, with good chemical stability, proton
conductivity, and electrolytic pollution-free corrosion. The intermittency and volatility of
wind and solar power are major obstacles to generating large amounts of electricity from
renewable sources. Yet, PEM water electrolysis hydrogen production technology can adapt
to the intermittency and fluctuation of renewable energy generation. The electrolytic water
hydrogen production process is shown in Figure 2, which first vaporizes the desalinated
water and then mixes it with the back-loop cooling products. The mixed material is further
heated to 100 ◦C, and then it is partially decomposed into hydrogen and oxygen in the
electrolyzer. The generated gas is cooled to 40 ◦C and enters the flash evaporator, where
most of the unreacted water is separated. The hydrogen (99.9 vol.%) is fed into the methanol
synthesis unit through the gas treatment system. The key parameters of the electrolyzer are
shown in Table 1.
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According to electrochemical principles, the rate of hydrogen production from water
electrolysis is proportional to the current magnitude. Since there is a loss of current during
hydrogen production by water electrolysis, this reduces hydrogen production. Hence, the
actual hydrogen production rate of the electrolyzer can be expressed as [18]:

qH2 = 1800ηFnc
Ielec

F
(1)

where qH2 is the hydrogen production rate, mol/h, ηF is the current density of electrolytic
cells, F is Faraday’s constant, C/mol, Ielec is the current value, and nc is the number of
electrolytic cell arrays.
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Table 1. Key technical parameters of the electrolysis [19].

Parameter Value

power consumption production 4.50 kWh/Nm3 H2
unit cost of hydrogen production 3.13 $/kg H2
hydrogen purity 99.99%
working pressure (bar) 30.00
energy efficiency 80.00%

2.2. CO2 Capture by Phase Change Absorbent (CC Unit)
2.2.1. Reaction Mechanism of CO2 Capture by Phase Change Absorbent

CO2 capture technologies mainly include physical adsorption [20], chemical absorp-
tion [21], membrane separation [22], low-temperature distillation [23], etc. Among carbon
capture technologies, the most mature applied technology for CO2 capture is chemical
absorption/desorption using an aqueous amine solution of monoethanolamine (MEA) [24].
The reaction of MEA and CO2 consists of the following instantaneous reactions:

H2O↔ H3O+ + OH− (2)

CO2 + 2H2O↔ HCO3
− + H3O+ (3)

HCO−3 + H2O↔ CO3
2− + H3O (4)

MEACOO− + H2O ↔ MEA + HCO3
− (5)

MEAH+ + H2O↔ MEA + H3O+ (6)

The reaction models of the absorber/stripper use power-law expressions and the
following finite rate reactions, with the parameters required by the expressions shown
in Table 2.

CO2 + OH− → HCO3
− (7)

HCO3
− → CO2 + OH− (8)

MEA + CO2 + H2O→ MEACOO− + H3O+ (9)

MEACOO− + H3O+ → MEA + CO2 + H2O (10)

r = Aiexp(
−Ei
RT

)
N

∏
i=1

(χiγi)
αi (11)

where r is the reaction rate, Ai is the pre-exponential factor, T is the absolute temperature,
K, Ei is the activation energy (kcal/mol), R is the universal gas constant (cal/(mol K)), χi
is the mole fraction of the component, γi is the activity coefficient of components in the
reaction equation, αi is the stoichiometric coefficient of component i in the reaction, and N
is the number of components.

Table 2. Reaction kinetic parameters Ai and Ei in finite rate reactions.

Reaction Pre-Exponential Factor Ai Activation Energy Ei (kcal/mol)

7 1.33 × 1017 13.249
8 6.63 × 1016 25.656
9 3.02 × 1014 9.8558
10 (absorber) 5.52 × 1023 16.518
10 (stripper) 6.50 × 1027 22.782

The high energy consumption of the MEA absorbent absorption process is still a major
obstacle to further development [25]. To improve the cyclic capacity and reduce the energy
consumption of desorption, Zheng et al. proposed a new CO2 absorbent, the phase change
absorbent [26]. From this, a phase change absorbent based on MEA was proposed [27],
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where the desorption energy consumption can be reduced from 3.99 GJ/t-CO2 of MEA
absorbent to 2.4 GJ/t-CO2. The conceptual model is shown in Figure 3.
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When 1-propanol is added to the aqueous solution of MEA, as the CO2 absorption
reaction proceeds, ionic species, carbamate, and protonated MEA are formed, which could
be regarded as MEA salt. With the addition of salt, phase separation occurs for a water-
miscible organic liquid from its aqueous solution, known as the salt-out effect. As the
initial 1-propanol concentration increases, the water concentration decreases, and the
concentration of MEA salt on the water base increases after CO2 absorption. More water
clusters gradually evolve around the MEA salt, and the n-propanol molecules are excluded
by the water and form clusters. When the MEA salt reaches a certain concentration, the
number of water molecules that evolve around the MEA salt increases, and in this case,
the water available to interact with 1-propanol decreases. As a result, more 1-propanol is
forced to the upper phase, which causes the 1-propanol concentration to increase in the
upper phase and decrease in the lower phase, as shown in Figure 3.

In comparison to conventional aqueous solutions, the lower phase solution, which is
rich in carbamate and protonated MEA, enters the desorption unit. The potential advan-
tages of the phase change absorbent include not only the higher CO2 cyclic capacity but
also the lower liquid flow rate in the stripper. Herein, the regeneration energy consumption
will be significantly reduced. The separation of the two phases by decantation can reduce
the solvent mass flow rate at the stripper; meanwhile, the richer CO2 loading can lower
the energy consumption of sensible heat and water vaporization heat. According to the
volume fraction of the upper phase and CO2 distribution in biphasic solvent (illustrated
in Figure S1), a phase change absorbent of MEA/n-propanol/water with a mass ratio of
3/3/4 is chosen for the unit [28].

2.2.2. Procedure for CO2 Capture by Phase Change Absorbent

The flue gas composition in this study is shown in Table 3, based on data provided
by the National Energy Laboratory for a 550 MW coal-fired power plant. The operating
conditions of the absorber in this unit are 1.1 bar and 40–60 ◦C. The heat loss and pressure
loss in the absorber are negligible, and the operating conditions of the stripper are 1.1 bar
and 90–130 ◦C. The pressure loss in the stripper is also negligible. The cooler is used to
ensure that the temperature of the solution entering the absorber tower is 40 ◦C, and the
heat exchanger is used to maximize the heat exchange between the hot and cold streams.

During the CO2 absorption as shown in Figure 4, the flue gas from the coal-fired power
plant is washed by the water washing tower (removing solid impurities and sulfide in the
flue gas), then the flue gas temperature is controlled at about 40 ◦C. The flue gas enters the
absorber from the bottom of the column, and the lean phase enters the absorber from the
top of the column, so the two streams are in counter-current contact. The net flue gas after
decarbonization is discharged from the top of the absorber tower, and the rich phase is
discharged from the bottom of the absorber. The rich phase forms two phases in the phase
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separator: the upper phase is the CO2-lean phase, and the lower phase is the CO2-rich
phase. The CO2-rich phase is pressurized by the pump and then enters the heat exchanger,
then sprays into the top of the stripper, where CO2 in the CO2-rich phase is desorbed by
the heat provided by the reboiler at the bottom of the stripper, before the desorbed CO2
is separated by condensation at the top of the stripper. The CO2-lean phase discharged
from the bottom of the stripper is cooled by the heat exchange with the CO2-rich phase and
then reenters the absorber for recycling. A comparison of the experimental density and
model density of the MEA/1-propanol system with different CO2 loading levels (at 293 K)
is shown in Table S1.

Table 3. Composition of the flue gas.

Working Condition and Composition Value

N2 (mol.%) 77.90
CO2 (mol.%) 14.60
O2 (mol.%) 3.30
H2O (mol.%) 4.20
temperature (◦C) 42.00
Pressure (kPa) 101.33
molar flow rate (kmol/h) 40,000.00
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Figure 4. CO2 capture based on a phase change absorbent.

2.2.3. Parameter Optimization for CO2 Capture by Phase Change Absorbent

According to the recommended requirements of the U.S. Department of Energy (DOE)
for CO2 capture, there should be a 95% CO2 recovery purity and 90% capture rate [29].
Therefore, this study mainly analyzes and optimizes the factors influencing the CO2 purity
and CO2 capture rate. The corresponding equations are shown as follows:

α =
M2

M1
× 100% (12)

ψ =
M2

M3
× 100% (13)

where α is the purity; ψ is the desorption rate; M1 is the mass flow rate of product gas at
the top of the stripper, kg/h; M2 is the mass flow rate of CO2 contained in the product
gas at the top of the stripper, kg/h; M3 is the mass flow rate of CO2 contained in the flue
gas, kg/h.
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The reflux ratio and reboiler duty are the key parameters affecting the CO2 purity and
capture rate in the stripper. The relationship between the impacts of the reflux ratio and
reboiler duty on the CO2 purity and desorption rate is shown in Figure 5.
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As the CO2 desorption rate increases, the CO2 purity in desorption gas decreases,
especially when the CO2 desorption rate exceeds 90%, and the CO2 purity in desorption
gas decreases significantly. For example, when the desorption rate increases from 90% to
90.5%, the CO2 purity in desorption gas decreases by about 0.1%. Accordingly, the CO2
purity in desorption gas decreases by about 0.2% when the desorption rate increases from
90.5% to 91%. In industrial production, the CO2 desorption rate should be weighed against
the CO2 purity in the desorption gas. The desorption rate is also the main factor affecting
the reboiler duty. As the desorption rate increases, the reboiler duty of the desorption
column increases, especially when the desorption rate exceeds 90%, and the reboiler duty
rises apparently. Therefore, the CO2 desorption rate is specified as 90% in this study, while
the calculated desorption energy consumption is 150 MW, equivalent to a unit energy
consumption of 2.42 GJ/t-CO2. The flow rate results for the carbon capture are shown in
the supporting information (illustrated in Table S2).

2.3. CO2 Hydrogenation to Methanol (MS Unit)
2.3.1. Reaction Mechanism for CO2 Hydrogenation to Methanol

The CO2 to methanol process is categorized as direct CO2 hydrogenation to methanol [30]
and CO2 hydrogenation to form methanol via a reverse-water-gas-shift reaction (CAMERE) [31].
The direct CO2 hydrogenation to methanol process uses CO2 and H2 as the feedstock and
synthesizes methanol directly through a catalytic reaction, which is also known as the direct
or one-step process. The CAMERE process also uses CO2 and H2 as the feedstock and
converts CO2 to syngas via a reverse-water-gas shift (RWGS) reaction, and then synthesizes
methanol; this technology is also known as the indirect or two-step process. The direct
process has lower fixed cost investment, lower product costs, and simpler process control
than the indirect process.

The main reactions involved in the hydrogenation of carbon dioxide to methanol include:

CO2 + 3H2 → CH3OH + H2O (14)

CO2 + H2 → CO + H2O (15)

CO + 2H2 → CH3OH (16)

The influence of temperature and pressure on the equilibrium composition has a
thermodynamic root cause, which can be analyzed by the influence of reactions (14)–(16).
Lowering the temperature promotes reactions (14) and (16) to proceed in the positive direc-
tion, and the conversion rate of CO2 increases. At the same time, due to the exothermicity
of the main reaction (14) or (16) and endothermic characteristics for reaction (15), a low
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temperature is favorable to methanol formation, and the selectivity of methanol increases
when the temperature decreases. But from a dynamic perspective, a low temperature will
reduce the catalytic reaction rate. An increasing pressure favors the reaction proceeding in
the positive direction because the number of molecules decreases in the CO2 hydrogenation
primary reaction. However, high pressure increases the compression power consumption
and the operation cost.

The Langmuir–Hinshelwood (LHHW) model is chosen for the reaction kinetics [32],
and the reaction equilibrium constants are based on those used in the study of Lim et al. [33]
and the experimental data of Graaf et al. [34]. The CO2 hydrogenation to methanol is based
on the Redlich–Kwong–Soave thermodynamic model. The kinetic rate expressions are as
follows for reactions (14)–(16) and the parameters required by the expressions are shown in
Tables S3–S5. Fugacity (f ) is used because of the high pressure in the reactions.

rCH3OH = k1

KCO

[
fCO f 3/2

H2
− fCH3OH/KA

√
fH2

]
(1 + KCO fCO + KCO2 fCO2)

[√
fH2 +

(
KH2O/

√
KH
)

fH2O

] (17)

rCO = k2
KCO2

[
fCO2 fH2 − fH2O fCO/KB

]
(1 + KCO fCO + KCO2 fCO2)

[√
fH2 +

(
KH2O/

√
KH
)

fH2O

] (18)

rCH3OH = k3

KCO2

[
fCO2 f 3/2

H2
− fH2O fCH3OH/

(
f 3/2
H2

KC

)]
(1 + KCO fCO + KCO2 fCO2)

[√
fH2 +

(
KH2O/

√
KH
)

fH2O

] (19)

The comparison between the experimental data and simulation results (illustrated in
Table 4) shows good agreement, with less than a 5% error around the operating process
conditions, indicating correct implementation of the kinetics.

Table 4. Comparison of experimental data with simulation results.

CO2 Conversion Methanol Yield Based on CO2 Feed

T [K] Experimental data [32] Simulation results Experimental data [32] Simulation results

483 0.170 0.175 0.110 0.105
503 0.225 0.211 0.155 0.145
523 0.255 0.229 0.178 0.166
543 0.250 0.241 0.140 0.126

SV [mL/g cat·h] Experimental data [32] Simulation results Experimental data [32] Simulation results

1000 0.262 0.254 0.193 0.183
2000 0.260 0.248 0.191 0.176
4000 0.256 0.243 0.180 0.168
6000 0.250 0.240 0.166 0.154
8000 0.243 0.235 0.153 0.151
10,000 0.230 0.228 0.134 0.144

2.3.2. Parameter Optimization for CO2 Hydrogenation to Methanol

The CO2 hydrogenation to methanol is limited by the thermodynamic equilibrium.
Increasing the per-pass conversion of the reactor is beneficial for reducing the cycle volume
and energy consumption. In this paper, the impact of the temperature and pressure of
the methanol synthesis reactor on the methanol yield is analyzed, as shown in Figure 6.
As the temperature rises from 200 to 260 ◦C, the methanol molar flow rate at the reactor
outlet increases and then decreases, at its maximum when the reaction temperature reaches
220 ◦C. The reactor pressure increases from 30 to 7 bar, and the methanol molar flow rate
increases. When the pressure reaches 50 bar, the continued increase in pressure lowers the
methanol molar flow rate increase, and a too-high pressure requires a higher intensity of
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the reactor. Hence, the temperature and pressure in the reactor are chosen to be 220 ◦C and
50 bar, respectively.
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Figure 6. Impact of temperature and pressure on the molar flow rate of methanol. 
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Direct CO2 hydrogenation to methanol is selected in this study, which mainly con-

sists of raw gas compression, methanol synthesis, gas separation, and crude methanol dis-

tillation, as shown in Figure 7. The feed H2 is gradually pressurized to 50 bar using a multi-

stage compressor with an inter-cooler and mixed with the gas recycled back into the 
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2.3.3. Procedure for CO2 Hydrogenation to Methanol

Direct CO2 hydrogenation to methanol is selected in this study, which mainly con-
sists of raw gas compression, methanol synthesis, gas separation, and crude methanol
distillation, as shown in Figure 7. The feed H2 is gradually pressurized to 50 bar using a
multi-stage compressor with an inter-cooler and mixed with the gas recycled back into the
reactor with a Cu/Zn/Al/Zr catalyst [32]. The reaction products are separated by high- and
low-pressure flash distillation, the unreacted feed gas is recycled back to the reactor, and
the liquid phase is purified via crude methanol distillation for product extraction. Methanol
is extracted from the top of the tower, and the bottom of the tower holds wastewater. The
reactor for CO2 hydrogenation to methanol is a multi-tube catalytic reactor with a tube
length of 12 m, tube diameter of 0.06 m, and a catalyst bed void ratio of 0.5. Due to the
low per-pass conversion in the reactor, the reaction products include large amounts of
residual CO2, CO, and H2 in addition to the target product methanol. Hence, the gas needs
to be separated; most is recycled back, and the remaining liquid is passed to the distillation
column for purification. The flow rate results for the CO2 hydrogenation to methanol are
shown in the supporting information (illustrated in Table S6).
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2.4. Methanol to Formaldehyde (FS Unit)
2.4.1. Reaction Mechanism for Producing Methanol from Formaldehyde

The main industrial production methods to obtain formaldehyde from methanol are
formaldehyde production over an iron-molybdenum oxide catalyst [35] or silver oxide
catalyst [36]. The advantages of formaldehyde production over a silver oxide catalyst are
a short, mature process, low investment, and low electricity consumption. However, the
disadvantages are low methanol conversion, high energy consumption, a short catalyst
life, and more methanol residue in the product formaldehyde solution. Compared to the
formaldehyde production over a silver oxide catalyst, an iron-molybdenum oxide catalyst
has the benefits of a low reaction temperature, low cost, few side reactions, high selectivity,
and high yield, especially the high formaldehyde concentration, which is beneficial for
reducing the energy consumption of the subsequent glycolic acid separation [37].

Through the formaldehyde production over an iron-molybdenum oxide catalyst,
methanol reacts with oxygen to produce formaldehyde, and the main reaction is:

CH3OH + 0.5O2 → HCHO + H2O (20)

The main byproducts are CO and dimethyl ether (DME). Small amounts of other
substances may be produced under different conditions [38], but as these substances are
difficult to detect at such very low concentrations, only the higher concentrations of CO
and DME are considered, with the following side reactions:

HCHO + 0.5O2 → CO + H2O (21)

2CH3OH→ (CH3)2O + H2O (22)

The kinetic rate expressions are shown below. The kinetic parameter regression results
can be seen in the following Table 5. A comparison of experimental and calculated values
for the fraction of each component is shown in Figure S2.

rHCHO =
k1 pCH3OH

1 + k1 pCH3OH/(k2 p0.5
O2
)

(23)

rCO =
k3 p0.5

CH3OH

1 + k1 pCH3OH/(k2 p0.5
O2
)

(24)

rDME =
k4 p2

CH3OH −
k4

Keq
pDME pH2O

1 + k1 pCH3OH/(k2 p0.5
O2
)

(25)

ln(Keq ) = −2.2158 +
2606.8

T
(26)

ki = Ai,0 exp
[
−Ei

R
(

1
T
− 1

T0
)

]
(27)

where T0 is the reference temperature and its value is 573.15 K.

Table 5. Kinetic parameter regression results.

Term Pre-Exponential Factor
Ai,0/(mol·kg−1·s−1·MPa−n) Activation Energy Ei/(KJ·mol−1)

k1 9.928 83.42
k2 0.8994 70.68
k3 7.032 × 10−3 70.42
k4 27.55 65.95
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2.4.2. Procedure for Producing Methanol from Formaldehyde

In this study, the process of formaldehyde production over iron-molybdenum oxide
catalyst is carried out, as shown in Figure 8. The methanol is mixed with air after heat
exchange with the reaction products, and the temperature of the mixture is increased
to 194 ◦C. The reaction mixture then enters the multi-tube catalytic reactor to produce
formaldehyde and water in the presence of a catalyst. The total reaction is strongly exother-
mic, and medium pressure steam is generated on the shell side to extract the reaction heat.
The reaction product leaves the tube side at 392 ◦C and enters the pre-heater to exchange
heat with the incoming reaction raw material mixture. The reaction product after cooling
enters the separator to separate the gas-liquid phase, and the gas phase enters the water
wash tower to separate formaldehyde from oxygen, nitrogen, etc., after which it is mixed
with the previous liquid phase to obtain the aqueous formalin [39].
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The formaldehyde reactor when using an iron-molybdenum oxide catalyst is a multi-
tube catalytic reactor with an inlet pressure of 2.16 bar and an inlet temperature of 192 ◦C.
The reactor has a catalyst bed length of 0.77 m, the diameter in the tube is 0.025 m, and the
bed void ratio is 0.45.

2.4.3. Parameter Optimization for Producing Methanol from Formaldehyde

In methanol oxidation to formaldehyde, the amount of water passing through the
water washing column is an important influencing parameter for the formaldehyde con-
centration and recovery rate. Increasing the amount of water is beneficial for reducing the
amount of formaldehyde loss at the top of the column, but it will cause the formaldehyde
concentration to increase. The formaldehyde concentration is an important, critical influ-
encing factor for the energy consumption of the next formaldehyde carbonylation step. In
this paper, the water feed flow rate of the formaldehyde synthesis water washing column
is optimized, as shown in Figure 9.

The water flow rate rises from 8000 to 16,000 kmol/h, and the molar flow rate of
formaldehyde loss at the top of the water washing column gradually decreases from
42.8 kmol/h to the minimum value of 15.1 kmol/h. However, the variation is inconspic-
uous in the range of 8000–10,000 kmol/h, while the formaldehyde concentration at the
bottom of the column outlet keeps decreasing, but stays the same after 10,000 kmol/h.
Therefore, to meet the requirements of the next step of synthesizing glycolic acid with
a minimum flow rate and energy consumption, the water feed flow rate is chosen as
10,000 kmol/h. The flow rate results when transforming methanol to formaldehyde are
shown in the supporting information (illustrated in Table S7).
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2.5. Formaldehyde Carbonylation to Glycolic Acid (GAS Unit)
2.5.1. Reaction Mechanism for Formaldehyde Carbonylation to Glycolic Acid

As early as the 1940s, DuPont [40] developed technology for carbonylating formalde-
hyde to glycolic acid using H2SO4 as a catalyst, but this method was discontinued in
1968 due to the severe corrosion caused by H2SO4. To solve the corrosion problem, ionic
liquid has been applied in this process. However, there are still disadvantages such as
complexity in preparation and difficulty in separation [41]. In comparison, solid acid
catalysts [42] such as heteropolyacids, zeolite, and acidic resins are less corrosive, envi-
ronmentally friendly, and easily recyclable. Thus, much attention has been paid to solid
acidic catalysts for formaldehyde carbonylation. Yang et al. successfully developed a green
polymetallic solid acid catalyst [43]. It has now been found that it is possible to obtain high
glycolic acid yields through the carbonylation of formaldehyde under low temperature
and pressure conditions by employing a particular reaction medium and particular cata-
lysts. The catalysts have the advantages of no corrosion or environmental emissions, a low
reaction temperature and pressure, high raw material conversion, simple separation and
purification, and high product selectivity. The main reactions involved in the carbonylation
of formaldehyde to glycolic acid are:

HCHO + CO + H2O→ HOCH2COOH (28)

2HCHO + 2CO + H2O→ HOCH2COOCH2COOH (29)

2HOCH2COOH→ HOCH2COOCH2COOH + H2O (30)

2.5.2. Procedure for Formaldehyde Carbonylation to Glycolic Acid

A fixed bed reactor is applied with a molar ratio of formaldehyde to CO of 1:5.
Formaldehyde is mixed with CO and fed through the catalyst bed at a weight hourly space
velocity of 2 h−1, with a formaldehyde conversion of 97.5% and glycolic acid selectivity
of 98.1%. The products are separated at 60 ◦C in the flash, and the separated liquid phase
enters the dehydration tower with a reflux ratio of 0.4 and a tower top product to feed flow
rate ratio of 0.5. The process flow is shown in Figure 10. The formalin, carbon monoxide,
and mixed gas are heated to 60 ◦C by a pre-heater and enter the fixed bed reactor. The
reaction temperature is controlled at 60 ◦C and the reaction pressure is 3 bar. The reaction
products are separated after cooling, and the incomplete reaction gases are circulated. The
liquid phase product (70 wt% glycolic acid solution) enters the distillation column to obtain
81 wt% glycolic acid solution flowing into the crystallizer for crystallization. The liquid-
solid separation is then carried out in a centrifugal filter, and the liquid phase continues to
be circulated back to the distillation column, while the solid phase is the product.
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maldehyde is mixed with CO and fed through the catalyst bed at a weight hourly space 

velocity of 2 h−1, with a formaldehyde conversion of 97.5% and glycolic acid selectivity of 

98.1%. The products are separated at 60 °C in the flash, and the separated liquid phase 

enters the dehydration tower with a reflux ratio of 0.4 and a tower top product to feed 

flow rate ratio of 0.5. The process flow is shown in Figure 10. The formalin, carbon mon-

oxide, and mixed gas are heated to 60 °C by a pre-heater and enter the fixed bed reactor. 

The reaction temperature is controlled at 60 °C and the reaction pressure is 3 bar. The 

reaction products are separated after cooling, and the incomplete reaction gases are circu-

lated. The liquid phase product (70 wt% glycolic acid solution) enters the distillation col-

umn to obtain 81 wt% glycolic acid solution flowing into the crystallizer for crystalliza-

tion. The liquid-solid separation is then carried out in a centrifugal filter, and the liquid 

phase continues to be circulated back to the distillation column, while the solid phase is 

the product. 

CO

Water
Formaldhyde

Recycle gas

Reactor

Purge gas

Glycolic acid 
production

Waste water

Mixture

Off gas

Flash Radfrac

Crystallizer

Centrifuge 
filters

Reboiler

Steam

Steam

Cold 
utility

Heat 
utility

 

Figure 10. Carbonylation of formaldehyde to glycolic acid. 

  

Figure 10. Carbonylation of formaldehyde to glycolic acid.

2.5.3. Parameter Optimization for Formaldehyde Carbonylation to Glycolic Acid

The reaction products of formaldehyde carbonylation include carbon monoxide,
formaldehyde, water, nitrogen, glycolic acid, and diglycolic acid. The main purpose
of the distillation column is to raise the glycolic acid concentration from the flash tank out-
let concentration to about 80 wt%, then crystallization is used for further purification. The
solubility data for glycolic acid in water are crucial when using the crystallization method
to purify glycolic acid, and the solubility model obtained by correlating the solubility data
measured by the static equilibrium method is used for the design calculation of the glycolic
acid crystallization unit [44]. The solubility data for glycolic acid in water are illustrated
in Table S8.

In this paper, the reflux ratio in the distillation column during the synthesis of glycolic
acid is optimized, as shown in Figure 11. The water purity at the top of the column increases
gradually with the rise in the reflux ratio, then when the reflux ratio exceeds 0.4, the water
purity in desorption gas decreases sharply; meanwhile, the duty ascends as the reflux ratio
rises. According to the requirements, and considering that more duty causes more energy
consumption, the reflux ratio of 0.4 and the duty of 180 MW are chosen to obtain water
purity at the top of the column of 0.993.
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Figure 11. Impact of reflux ratio on the water purity at the top of the column and duty.

In this paper, the temperature of the crystallizer is optimized as shown in Figure 12.
The yield decreases gradually with the rise in temperature, while the duty increases as
the temperature rises. The analysis shows that the crystallization of glycolic acid is a
dynamic equilibrium process; the lower the temperature, the lower the solubility of glycolic
acid and the more it is crystallized. Considering that the low-temperature operation will
cause a rise in energy consumption, it can be seen from Figure 12 that a crystallization
endpoint temperature of 5 ◦C will obtain crystals with 99% purity and 75% yield, which
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is just enough to meet the requirements. Therefore, it is appropriate to choose 5 ◦C as the
crystallization endpoint temperature [45].
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The flow rate results for formaldehyde carbonylation to glycolic acid are shown in the
supporting information (illustrated in Table S9).

2.6. Comparison of the Simulation Results and Experimental Data

Based on the above optimization conditions, a comparison of the simulation results
and experimental data is presented in Table 6.

Table 6. Comparison of the simulation results and experimental data.

Unit Key Parameters Simulation Results Experimental Data Ref.

CC unit Upper phase volume fraction (%) 41.20 43.60 [28]
Reboiler duty, GJ/t-CO2 2.41 2.40
1-propanol loss ratio (%) 2.56 2.42

MS unit Methanol composition at reactor
outlet (wt%) 12.40 12.00 [32]

Top mass flow rate of the distillation
column, t/h 55.40 55.10

Mass fraction of methanol, % 99.90 99.96
Reactor outlet flow rate, t/h 472.80 467.60

FS unit Methanol conversion (%) 99.00 98.80 [37]
Selectivity of formaldehyde (%) 88.20 85.75
Yield of formaldehyde (%) 96.23 93.33

GAS unit HCHO conversion 0.975 0.961 [42]
Glycolic acid selectivity 0.957 0.943

3. Energy Utilization and Analysis

To improve the energy utilization and reduce the operating costs, heat integration is
carried out based on the pinch point analysis method, and grand composite curves (GCCs)
of the CO2 capture, CO2 hydrogenation to methanol, methanol oxidation to formalde-
hyde, and formaldehyde carbonylation are plotted, as shown in Figure 13. Temperature
parameters for utilities are illustrated in Table S10.

The utilities required for the carbon capture include medium-pressure steam and
circulating cooling water. The medium-pressure steam is used for the reboiler of the
stripper with a load of 166.6 MW. CO2 hydrogenation to methanol mainly uses low-
and high-pressure steam. Low-pressure steam with a load of 43.2 MW is used for the
reboiler of the distillation tower. High-pressure steam is mainly used for heating reaction
raw materials, and the load is 13.0 MW. Transforming methanol to formaldehyde is an
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exothermic process, which releases a large amount of heat. A total heat of 207.0 MW can
be recovered, including 5.5 MW heat from a large amount of medium-pressure steam
and 201.5 MW heat from a small amount of medium-pressure steam. Formaldehyde
carbonylation to glycolic acid mainly uses two grades of low- and medium-pressure steam,
both of which are used in the distillation column of the reboiler. The load of low-pressure
steam is 138.8 MW, and the load of medium-pressure steam is 48.0 MW. Besides this, the
refrigerant reduces some of the energy in the crystallizer to the desired low temperature.
The remaining unrecoverable heat is cooled by circulating cooling water.
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To improve the energy utilization of the entire process system, this study establishes
whole-process heat integration with utility coupling heat exchanger networks from the
perspective of energy allocation of each unit and utilization of waste heat, to match the
flow units within the plant and realize the supply and demand distribution of different
levels of steam between units. Figure 14 shows the total heat source available for all
contributing units (red curve on the left side of the figure) and the total heat sink that
necessarily provides heat from an external heat source (black curve on the right side of
the figure).

As can be seen from Figure 14, the heat released by the total system is 1218.2 MW, while
the heat required by the system is only 415.8 MW. The heat released by the process system
is much higher than the heat required. The main reason is massive exothermic reactions in
the process. As can be seen from Figure 14a, the total heat source curve and the total heat
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sink curve do not intersect, which indicates that the heat section is not fully utilized, and
the process system has the potential to improve the recovery of part of the steam. The use
of steam can be reduced by thermal integration between units. As shown in Figure 14b,
the heat generated by transforming methanol to formaldehyde can be provided to other
units in the process, including the medium-pressure steam required for carbon capture and
formaldehyde carbonylation to glycolic acid, and the low-pressure steam required for CO2
hydrogenation to methanol and formaldehyde carbonylation to glycolic acid.
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Figure 14. Total site heat integration ((a) before total site heat integration; (b) after total site
heat integration).

The energy consumption distribution of the four units is shown in Figure 15a. The
energy consumption of the CO2 capture unit includes 452.3 MW of cooling water and
166.6 MW of medium-pressure steam. The energy consumption of the formaldehyde
carbonylation to glycolic acid unit is 61.33 MW of cooling water, 0.36 MW of refrigerant,
138.8 MW of low-pressure steam, 47.98 MW of medium-pressure steam, and 4.57 MW
of electric power consumption. The energy consumption of the methanol oxidation to
formaldehyde unit is 452.3 MW of cooling water, producing 201.5 MW of medium-pressure
steam and 5.53 MW of low-pressure steam. The energy consumption of the formaldehyde
carbonylation to glycolic acid unit is 61.33 MW of cooling water, 0.36 MW of refrigerant,
138.8 MW of low-pressure steam, and 47.98 MW of medium-pressure steam, along with
4.57 MW of electricity consumption.

Processes 2022, 10, x FOR PEER REVIEW 18 of 24 
 

 

CC unit MS unit FS unit GAS unit

600

400

200

0

200

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

(M
W

)

 refrigerant 1

 LP steam generation

 MP steam generation

 coal-fired power

 HP steam

 MP steam

 LP steam

 cooling water(a)  

CC unit MS unit FS unit GAS unit

600

400

200

0

200

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

(M
W

)

 refrigerant 1

 LP steam generation

 MP steam generation

 coal-fired power

 HP steam

 MP steam

 LP steam

 cooling water(b)  

Figure 15. Energy consumption distribution without or with total site heat integration ((a) energy 

consumption before total site heat integration; (b) energy consumption after total site heat integra-

tion). 

4. Results and Discussion 

4.1. Process Simulation Results 

Based on the above optimization conditions, the key parameters for each section are 

shown in Table 7. Under these conditions, strict process modeling and simulation are car-

ried out for the whole process, and the key flow rate results are shown in Table 8. 

Table 7. Key parameters for process modeling and simulation. 

Unit Key Parameters Value Key Parameters Value 

CC unit 

Absorber temperature 42 °C Stripper temperature 120 °C 

MEA consumption 46 t/h C3H8O consumption 252 t/h 

Upper phase volume fraction 41.2% CO2 capture rate 90% 

MS unit 
Methanol reactor temperature 220 °C Methanol reactor pressure 5 bar 

CH4O mass fraction 99.7% Reflux ratio 0.9 

FS unit 

Catalyst bed length 0.77 m Tube diameter 2.5 × 10−2 m 

Inlet pressure 2.16 bar Inlet temperature 194 °C 

Methanol conversion 96.1% Bed porosity 0.5 

Catalyst utilization time 12–18 months Particle density 1000 kg/cum 

GAS unit 

Glycolic acid reactor tempera-

ture 
60 °C Glycolic acid reactor pressure 3 bar 

Reaction space velocity 2 h−1 Formaldehyde conversion 97.5% 

Glycolic acid selectivity 98.1% 
Ratio of formaldehyde to carbon 

monoxide 
0.2 

Table 8. Key flow rate results for the whole process. 

Stream 1 2 3 4 5 6 7 

Temperature (°C) 86.00 30.00 42.00 40.00 63.57 32.93 5.00 

Pressure (bar) 50.00 3.00 1.00 1.00 1.00 5.00 1.10 

Molar flow rate (kmol/h) 

H2O 0.00 0.00 1680 62.333 7.44 13,165.39 0.93 

H2 16,387.13 0.00 0.00 0.00 0.00 0.00 0.00 

CO 0.00 4945.63 0.00 0.00 0.00 0.00 0.00 

N2 0.00 0.00 31,160 0.00 0.00 0.39 0.00 

O2 0.00 0.00 1320 0.00 0.00 0.30 0.00 

Figure 15. Energy consumption distribution without or with total site heat integration ((a) energy
consumption before total site heat integration; (b) energy consumption after total site heat integration).

After total energy integration, this optimal result reduces the total cost by 27.4%. As
shown in Figure 15b, the energy consumption of the CO2 capture unit is only 452.3 MW
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of cooling water; the energy consumption of the CO2 hydrogenation to methanol unit is
196.1 MW of cooling water, 46.16 MW of low-pressure steam, 4.6 MW of high-pressure
steam, and 41.41 MW of electricity consumption; the energy consumption of the methanol
oxidation to formaldehyde unit is 185.8 MW of cooling water; the formaldehyde carbonyla-
tion to glycolic acid unit’s energy consumption is 61.33 MW of cooling water, 0.36 MW of
refrigerant, 138.8 MW of low-pressure steam, 13.08 MW of medium-pressure steam, and
4.57 MW of electric power consumption.

4. Results and Discussion
4.1. Process Simulation Results

Based on the above optimization conditions, the key parameters for each section are
shown in Table 7. Under these conditions, strict process modeling and simulation are
carried out for the whole process, and the key flow rate results are shown in Table 8.

Table 7. Key parameters for process modeling and simulation.

Unit Key Parameters Value Key Parameters Value

CC unit
Absorber temperature 42 ◦C Stripper temperature 120 ◦C
MEA consumption 46 t/h C3H8O consumption 252 t/h
Upper phase volume fraction 41.2% CO2 capture rate 90%

MS unit
Methanol reactor
temperature 220 ◦C Methanol reactor pressure 5 bar

CH4O mass fraction 99.7% Reflux ratio 0.9

FS unit

Catalyst bed length 0.77 m Tube diameter 2.5 × 10−2 m
Inlet pressure 2.16 bar Inlet temperature 194 ◦C
Methanol conversion 96.1% Bed porosity 0.5
Catalyst utilization time 12–18 months Particle density 1000 kg/cum

GAS unit

Glycolic acid reactor
temperature 60 ◦C Glycolic acid reactor pressure 3 bar

Reaction space velocity 2 h−1 Formaldehyde conversion 97.5%

Glycolic acid selectivity 98.1% Ratio of formaldehyde to
carbon monoxide 0.2

Table 8. Key flow rate results for the whole process.

Stream 1 2 3 4 5 6 7

Temperature (◦C) 86.00 30.00 42.00 40.00 63.57 32.93 5.00
Pressure (bar) 50.00 3.00 1.00 1.00 1.00 5.00 1.10

Molar flow rate (kmol/h)
H2O 0.00 0.00 1680 62.333 7.44 13,165.39 0.93
H2 16,387.13 0.00 0.00 0.00 0.00 0.00 0.00
CO 0.00 4945.63 0.00 0.00 0.00 0.00 0.00
N2 0.00 0.00 31,160 0.00 0.00 0.39 0.00
O2 0.00 0.00 1320 0.00 0.00 0.30 0.00
CO2 0.00 0.00 5840 5256.74 8.41 0.00 0.00
C3H8O 0.00 0.00 0.00 16.268 0.00 0.00 0.00
CH4O 0.00 0.00 0.00 0.00 5139.41 1.77 0.00
HCHO 0.00 0.00 0.00 0.00 0.00 4945.63 0.00
C2H6O 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OHCH2COOH 0.00 0.00 0.00 0.00 0.00 0.00 0.25
Diglycolic acid 0.00 0.00 0.00 0.00 0.00 0.00 0.01
C2H4O3(S) 0.00 0.00 0.00 0.00 0.00 0.00 4818.99

4.2. Carbon Utilization Rate

The carbon utilization rate does not only affect the efficiency of resource utilization and
economic efficiency but also has an impact on the cost and CO2 emissions in the production
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process [46]. The carbon utilization rate is defined as shown in the below equation, which
is the molar ratio of carbon in the product output to carbon in the raw material input.

ECC =
∑ nout

C,products

∑ nin
C, f eed

× 100% (31)

The process of carbon flow is shown in Figure 16, where the feed carbon molar flow rate
is 5840 kmol/h, the carbon molar flow rate in the product glycolic acid is 4818.99 kmol/h,
and the carbon utilization rate is 82.5%. The direct CO2 emissions are 583.26 kmol/h from
the tail gas in CO2 capture, 117.33 kmol/h from the purge gas in O2 hydrogenation to
methanol, 193.78 kmol/h from the emission gas of the water washing column in methanol
oxidation to formaldehyde, and 126.64 kmol/h from the purge gas in the formaldehyde
carbonylation to glycolic acid.
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4.3. CO2 Emissions

The direct [47] and indirect [48] CO2 emissions are considered in this study as for-
mulated in the following equation. Direct emissions represent the greenhouse gas CO2
emissions of this process, which can be calculated from the process of carbon flow in
Figure 16. Meanwhile, the indirect emissions from utilities (steam, electricity, etc.) cannot
be ignored [49]. The energy consumption and emission factors are illustrated in Table S11.

ηe =
Ed

CO2
+ Eind

CO2

mGA
=

Ed
CO2

+ ∑ ECj × pj,CO2

mGA
(32)

where Ed
CO2

and Eind
CO2

are direct and indirect CO2 emissions, pj,CO2 represents the indirect
CO2 emissions from jth utility’s consumption, and ECj represents the consumption of the
jth utility.

Steam is assumed to be generated by a natural gas-fueled boiler with an assumed
combustion efficiency of 80% [50]. All the electricity required for the process comes from
thermal power generation, and the CO2 emissions of the whole process are 2913.32 kmol/h,
with a CO2 emission ratio of 0.35 kg-CO2/kg-GA.

The direct and indirect CO2 emissions of the four units are calculated and analyzed,
and the results are shown in Figure 17. Among the direct emissions, the CC unit has the
largest proportion of carbon emissions. It is necessary to further screen the absorbents to
select one with a low heat of desorption reaction, and develop a new desorption process to
reduce energy consumption. The main reason is the utility energy consumption of the feed
H2 multi-stage compression and crude methanol distillation. Meanwhile, when considering
the indirect emissions of each unit, the MS unit had the largest ratio of carbon emissions,
followed by the GAS unit. The main reason for MS unit, again, is the utility energy
consumption of the feed H2 multi-stage compression and crude methanol distillation. In
terms of the GAS unit, it is mainly consumed by distillation and concentration of the
reaction product, crude glycolic acid. Therefore, the bottlenecks in CO2 indirect emissions
are the CO2 hydrogenation to methanol and the formaldehyde carbonylation to glycolic
acid, which need to be studied further to determine the energy-saving potential and
optimize the energy consumption, to reduce the indirect emissions from the two units.
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4.4. Techno-Economic Analysis

Total production cost (TPC) estimation is one of the most important bases for the
project decisions made for a newly designed process. It is the sum of the equipment invest-
ment (EI, k$/year) and total operating cost (TOC, k$/year). The former mainly includes
the costs of all production equipment and their related facilities; the latter mainly includes
the costs required to maintain the normal production operation of the enterprise [51]. The
unit production cost (UPC, $/kg) is also given to further assess the process economics. The
calculation process is based on the production of 4818.99 kmol/h of glycolic acid and an an-
nual running time of 8000 h/year. Input parameters and assumptions for techno-economic
analyses are illustrated in Table S12.

TCIi =
EIi

period
+ TOCi (33)

UPCi =
TCIi
mGA

(34)

where TPCi is the total production cost required for the ith unit; EIi is the equipment
investment required for the ith unit; TOCi is the total operation cost required for the ith
unit; UPCi is the unit production cost of ith unit; mGA is the mass flow rate of glycolic
acid. Based on the above calculation benchmarks and formulas, the results of the economic
analysis are shown in Table 9.

Table 9. Comparative economic results.

Item EI, k$/Year TOC, k$/Year TPC, k$/Year Proportion, % UPC, $/kg Product

CC 42,077.00 67,967.35 73,975.94 5.22 39.98 CO2
MS 114,889.30 887,673.10 1,002,562.40 70.80 595.08 CH3OH
FS 24,788.20 34,670.88 59,459.08 4.20 652.55 HCHO (solution)
GAS 89,243.20 190,739.19 279,982.39 19.77 834.75 HOCH2COOH
Total 27,0997.70 1,181,050.51 1,415,979.81 834.75

According to Table 9, the unit production cost of the process is 834.75 $/t-GA; the
CO2 hydrogenation to methanol accounts for the largest proportion of the total produc-
tion cost, which is 70.8%. The total production cost of the unit is mainly limited by
the price of hydrogen (3.13 $/kg), which has an impact on the TOC. As the efficiency
of hydrogen production by water electrolysis improves and the investment cost of elec-
trolyzer decreases in the future, when the electricity price falls to 0.02–0.03 $/kWh and
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the price of H2 is 1.17–1.46 $/kg, the total production cost of carbon dioxide hydrogena-
tion to methanol will be 48,5043–56,0428 k$/year. The total production cost will then be
898,460.71–974,599.71 k$-year−1, and the investment cost of this process will be further
reduced to 529.7–574.1 $/kg.

5. Conclusions

In this paper, a novel process for synthesizing glycolic acid based on CO2 capture
coupling green hydrogen was proposed, which includes power-to-hydrogen, CO2 capture,
CO2 hydrogenation to methanol, methanol oxidation to formaldehyde, and formaldehyde
carbonylation to glycolic acid. The technical, economic, and environmental performance
were evaluated based on the optimal key operational parameters. The main results gained
from this work can be summarized as follows:

(1) The carbon utilization rate can reach 82.5%, and the CO2 emissions are then
0.35 kg-CO2/kg-GA. Among the direct emissions of each unit, the CC unit emits the
largest proportion of carbon. Meanwhile, when considering the indirect emissions of each
unit, the MS unit emits the largest ratio of carbon, followed by the GAS unit;

(2) This study establishes total site energy integration based on the pinch point analysis
method to improve the energy utilization and reduce the operating costs. After total site
energy integration, the optimal result has a better comprehensive performance, which
reduces the total consumption by 27.4%;

(3) The unit production cost of the proposed process is 834.75 $/t-GA. Due to the high
green hydrogen price, CO2 hydrogenation to methanol accounts for the largest proportion,
accounting for 70.8% of the total production cost. Fortunately, with the rapid development
of renewable energy generation and power-to-hydrogen technologies, the renewable H2
price will continue to drop, and the production cost of the proposed process will be
further reduced.

CO2 resource utilization into glycolic acid provides a new solution for greenhouse gas
reduction. We hope the models and results obtained in this study can be used to guide the
production of high-value products from CO2 and renewable H2.
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