
Citation: Sun, L.; Huang, Y.; Yang, M.

Quality Prediction Model of

KICA-JITL-LWPLS Based on Wavelet

Kernel Function. Processes 2022, 10,

1562. https://doi.org/10.3390/

pr10081562

Received: 26 July 2022

Accepted: 7 August 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Quality Prediction Model of KICA-JITL-LWPLS Based on
Wavelet Kernel Function
Liangliang Sun 1, Yiren Huang 1 and Mingyi Yang 2,3,*

1 School of Electrical and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2 Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: myyang@sia.cn

Abstract: To obtain quality variables that cannot be measured in real time during the production
process but reflect information on the quality of the final product, the batch production process has the
characteristics of a strong time-varying nature, non-Gaussian data distribution and high nonlinearity.
A locally weighted partial least squares regression quality prediction model (KICA-JITL-LWPLS),
based on wavelet kernel function independent meta-analysis with immediate learning, is proposed.
The model first measures the similarity between the normalized input data and the historical data and
assigns the input data to the group of historical data with high similarity to it, based on the posterior
probability of the Bayesian classifier; subsequently, wavelet kernel functions are selected and kernel
learning methods are introduced into the independent meta-analysis algorithm. An independent
meta-analysis, based on the wavelet kernel function, is performed on the classified input data to obtain
probabilistically significant independent sets of variables. Finally, a real-time learning-based LWPLS
regression analysis is performed on this variable set to construct a local prediction model for the
current sample by calculating the similarity between the local input data. The local predictions from
the PLS output are fused with the posterior probability output from the Bayesian classifier to produce
the final prediction. The method was used to predict the product concentration and bacteriophage
concentration during penicillin fermentation through a simulation platform. The prediction results
were basically consistent with the real values, proving that the proposed KICA-JITL-LWPLS quality
prediction model, based on wavelet kernel functions, has reliable prediction results.

Keywords: wavelet kernel function; quality prediction; batch process; multi-model; independent
element analysis

1. Introduction

Chemical, biological, and pharmaceutical processes are typically intermittent produc-
tion processes. Producing products of consistent quality not only generates high profits
for companies but also increases the visibility and recognition of their brands. Research
in product quality is pivotal to the development of our manufacturing industry. In the
intermittent production process, there are many important parameters and process vari-
ables that largely affect the final product quality and must be obtained and controlled.
Due to current economic and technical constraints, these variables are difficult to measure
online by sensors. The existing method of obtaining quality variables is to wait until the
end of production, take samples by hand, and send them to the laboratory for analysis
and testing [1,2]. This method has a serious lag, so it is necessary to predict the quality of
the reaction process. To address this problem, experts have proposed soft measurement
techniques that are computationally simple, do not require knowledge of the reaction
mechanism or a priori knowledge of the production process, and are suitable for handling
high-dimensional data [3–5].
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Currently, data-driven soft measurement techniques, such as PCA (principal compo-
nent analysis), ICA (independent component analysis), KICA (kernel independent compo-
nent analysis), etc., have been widely used in the data processing of intermittent production
process quality prediction [6,7]. Among them, the PCA algorithm takes advantage of
the uncorrelated variables and extracts the linear uncorrelated variables from a few high-
dimensional original variables to construct a linear regression model with the dependent
variable instead of the original variables. However, the principal meta-analysis assumes
a Gaussian linear distribution of the sample data in the selection of data features, which
is inconsistent with actual production, resulting in such methods failing to provide accu-
rate predictive performance [8–10]. Therefore, ICA algorithms were proposed [11], and,
initially, ICA algorithms were used to separate mixed data, assuming that the mixed data
obeyed a non-Gaussian distribution and that ICA algorithms could greatly guarantee the
independence of the extracted components in a probabilistic sense while reducing the
dimensionality of the original data, and the performance of this independence was much
greater than the irrelevance required by PCA algorithms to extract principal elements. This
is why the ICA algorithm is widely used in the field of data processing for non-Gaussian
industrial processes [12,13]. Although the ICA algorithm achieves the purpose of process-
ing non-Gaussian data, the ICA algorithm has limitations in the selection of the contrast
function. Most of the classical studies of the ICA algorithms are based on variable contrast
functions that are based on the expectation for a single and fixed non-linear function whose
key property is that the separation of independent components is achieved when, and only
when, the contrast function is equal to zero [14,15]. This approach does not provide high
accuracy in solving complex non-linear forms of data-separation problems. To solve this
problem, the kernel learning method was introduced into the ICA algorithm to extend the
comparison function to the RKHS (reproducing kernel Hilbert space) for solving, which
enhances the ability of the ICA algorithm to solve nonlinear problems and can obtain better
separation results [16–18]. The introduction of kernel learning methods inevitably involves
the selection of kernel function types, and most of the existing KICA algorithms are based
on conventional kernel functions for exposition; however, conventional kernel functions
cannot produce a complete substrate in high-dimensional space after passing the mapping,
and they themselves tend to be mutually redundant when performing data analysis, lim-
iting the improvement of the separation performance of KICA algorithms. Therefore, a
new kernel function is needed to obtain a better interpretation of the nonlinearity [19,20].
The wavelet kernel function, by virtue of the multi-scale nature of the wavelet transform
and by providing an approximate orthogonal basis, combined with the ICA algorithm
to analyze the data step-by-step, can improve the ability of the non-linear mapping and
hence the data separation performance [21,22]. Although the above methods can handle
non-Gaussian and complex non-linear data and improve the data-processing accuracy, they
mainly emphasize the ability to interpret the independent variables themselves and ignore
the ability to interpret the dependent variables [23,24]. It is often applied to fault detection
and the data processing of industrial processes and is unable to perform regression analysis
and build quality prediction models for the dependent variable.

ANN (artificial neural network) is a computational model or data model, which mainly
uses the biological neural network structure and function and uses this topology to study
the relationship between nodes or objects. Although the neural network has a strong fault
tolerance, its prediction accuracy is higher than that of the multiple regression model. In
neural networks, such as RBF (radial basis function) neural network, it contains one input
layer, one hidden layer, and one output layer. The hidden layer is composed of a set of
radial basis functions, which are generally Gaussian functions. For complex problems
and high-dimensional input variables and research data with many similar attributes,
using neural network prediction will greatly increase the size of the network, increase the
computing time, and reduce the convergence and generalization ability of the network.
Therefore, the neural network is more suitable for quality prediction with a long period,
such as air quality prediction, etc. It is not suitable for industrial production processes
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where real-time performance is emphasized and historical data are less so. The algorithm
based on the multiple regression model simplifies many change factors that affect the
final quality in the process of realizing quality prediction and makes many assumptions
in the training process of realizing the prediction, which is more efficient and has better
real-time performance. Kim S, Kano M and, Nakagawa H et al. proposed a JITL-LWPLS
(JITL locally weighted partial least squares) modeling method based on PLS (partial least
squares regression), which incorporates the idea of JITL (just-in-time learning) [25]. In
particular, the PLS algorithm allows the extracted score vector to explain the characteristics
of the dependent variable to the greatest extent possible while maintaining the ability
to explain the dependent variable [26]. Useful information can be extracted from large
amounts of data to find and model process quality characteristics. The JITL based on the
local weighting algorithm can reduce the impact of samples with low similarity on the
model accuracy by considering the weights of input test points and historical data in the
database during the modelling process through similarity measurements [27]. Reliable
modelling results are achieved by building a local linear model of each datum measured
to approximate the non-linear process [28–30]. However, such partial least squares-based
algorithms are limited in their feature selection, assuming that the sample data are Gaussian
distributed and the process data are linear, resulting in the inability of such methods to
provide accurate prediction performance.

Aiming at the above problems, this paper proposes a KICA-JITL-LWPLS quality
prediction model based on wavelet kernel function. The predictive model provides a
new wavelet kernel function independent element analysis method and a dual similarity
measure, and the prediction model balances the problem that the KICA algorithm can
handle non-Gaussian, non-linear data but is unable to perform regression analysis on the
dependent variable, resulting in inaccurate quality prediction. The JITL-based partially
weighted partial least squares algorithm for quality prediction is able to perform regression
analysis on both the independent and dependent variables but is unable to handle non-
Gaussian, non-linear data, resulting in inaccurate modelling. When new data are input, the
model first measures the similarity between the normalized input data and the historical
data and assigns the input data to the historical data group with high similarity to it,
based on the posterior probability of the Bayesian classifier; subsequently, wavelet kernel
functions are selected and kernel learning methods are introduced into the independent
meta-analysis algorithm. Independent meta-analysis based on the wavelet kernel function
is performed on the classified input data to obtain probabilistically significant independent
sets of variables; finally, an immediate learning-based LWPLS (locally weighted partial least
squares) regression analysis was performed for this variable group. The similarity between
local input data according to the similarity measure of Euclidean distance is calculated.
Based on the similarity, the samples are instructed to assign priority to construct a local
prediction model for the current sample. The local predictive value of the partial least square
regression output is fused with the posterior probability output of the Bayesian classifier
to produce the final prediction. The Pensim penicillin fermentation simulation platform
verified that the proposed model can achieve accurate prediction of the bacteriophage
concentration and penicillin concentration with a reduced RMSE (root mean square error)
value of 0.1147 and 0.2228, respectively, compared to the traditional model.

2. Theoretical Basis
2.1. Algorithm Principle of ICA and KICA

Common quality prediction methods, such as partial least squares or principal ele-
ment analysis, treat process variables with the assumption that they follow a Gaussian
distribution. However, most process data in real industrial production are non-Gaussian
distributed [31]. This makes traditional PLS or PCA algorithms ineffective in quality pre-
diction. In contrast to PLS or PCA algorithms, which can only extract information about
the covariance of the data and require high selection of input variables, too much extraction
of principal components will increase the interaction between variables, while too little
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extraction of principal components will lead to the loss of important information and
reduce the model accuracy [32]. The ICA algorithm yields probabilistically independent
sets of variables that are more independent of each other than the uncorrelated nature of
algorithms, such as PCA or PLS. A new partial least squares regression model was built
by reselecting the sample on the basis of the group of independent variables, allowing for
a great diversity of variable selection and model accuracy [33]. Assuming a process data
matrix of X, the basic independent meta-decomposition model is:

X = AS + E (1)

In the formula: x1, . . . , xm m is random observation signals, and s1, . . . , sm is the
corresponding source signal. Am×m is the mixing matrix; E is the residual matrix. Suppose
A is a full rank matrix, then W = A−1 makes S = WX. At this point, the goal is to find the
mixing matrix, W, recover the source signal, S, from the observed signal X, and make the
estimated independent of each other. The main idea is to establish the objective function,
L(W), with W as the variable; the extreme value of L(W) is found by the optimization
method, and the final mixing matrix is obtained when L(W) takes the extreme value.
At present, the methods of estimating the mixture matrix criterion mainly include the
methods of maximizing non-Gaussian, minimizing mutual information, and estimating
the maximum likelihood function. However, using mutual information as a comparison
function does not require any assumptions about the data and is more conducive to
calculation. Therefore, this paper chooses to minimize mutual information as a unified
measure of independence. If, and only if, the mutual information is equal to zero, are the
sums of the components independent of each other.

Although the ICA algorithm achieves the purpose of processing non-Gaussian data,
the ICA algorithm has limitations in the selection of contrast functions. Most of the research
on the classic ICA algorithm is based on variable contrast functions, which are based on a
single- and fixed-contrast function. The key properties of the desired form of the nonlinear
function are the separation of independent components if, and only if, the contrast function
is equal to zero. This method does not have high accuracy in solving complex nonlinear
data separation problems. In order to solve this problem, the kernel learning method was
introduced into the ICA algorithm, and the KICA algorithm was proposed. The contrast
function was extended to the RKHS space for solving, which enhanced the ICA method’s
ability to solve nonlinear problems and achieved better separation effects [34]. If K(X, Y) is
the Mercer kernel function on the data space, X, its Gram matrix is positive semi-definite
for any element in X. Then, all kernel functions K(X, Y) can be represented by the mapping
relationship, ϕ(x), from data space X, to data space F.

RKHS space is a feature space with the properties shown in the above formula. The
typical correlation coefficient in the data space is extended to the feature space by using the
mapping of the kernel function for analysis, and a new statistical independence in the kernel
space is obtained. The measure of the property is the kernel canonical correlation coefficient
ρ(F). If

{
x1

1, . . . , xM
1
}

and
{

x1
2, . . . , xM

2
}

represent M observations of x1 and x2, respectively,{
ϕ1(x1

1), . . . , ϕ1(xM
1 )
}

and
{

ϕ2(x1
2), . . . , ϕ2(xM

2 )
}

, respectively, represent their images in
the feature space. If the data in the feature space have been centralized, assumption
∧
ρF(x1, x2) represents the largest kernel canonical correlation coefficient in the finite sample
of experience. For the fixed mapping relationship f1 and f2 of the feature space, the
empirical covariance coefficient in the feature space can be written in the following form:

cov(〈ϕ(x1), f1〉, 〈ϕ(x2, f2)〉) =
1
N

N

∑
k=1

(
〈

ϕ(xK
1 ), f2

〉〈
ϕ(xK

2 ), f2

〉
) (2)

If S1 and S2, respectively, represent the linear space obtained by extending the points

of the data space through the mapping of ϕ(x), we can obtain f1 =
N
∑

k=1
αk

1 ϕ(xK
1 ) + f T

1 ,
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f2 =
N
∑

k=1
αk

2 ϕ(xK
2 )+ f T

2 , where f1 and f2 are orthogonal to S1 and S2, respectively. Combined

with the definition of the canonical correlation coefficient, it is known that the covariance in
the feature space needs to be calculated to analyze the canonical correlation in the feature
space. If the expression form of the kernel Gram matrix is used, the covariance in the
feature space can be expressed as the following formula.

var(〈ϕ(x1), f1〉) =
1
N

αT
1 K1K1α1 (3)

var(〈ϕ(x2), f2〉) =
1
N

αT
2 K2K2α2 (4)

The maximum kernel canonical correlation coefficient mapped to the feature space
can then be obtained:

ρ̂F(K1, K2) = max
α2,α2∈RM

αT
1 K1K2α2(

αT
1 K2

1α1
)1/2(

αT
2 K2

2α2
)1/2 (5)

Among them, K1 and K2 are the kernel Gram matrices corresponding to x1 and x2. α1,
α2 is the coefficient matrix corresponding to the covariance matrix.

2.2. LWPLS

Most nonlinear systems are only partially modeled according to the sample data
information input at a certain time. However, the complexity of this fitting method increases
exponentially as the dimension of the input vector increases, resulting in a slow learning
rate. The nonlinear system theory holds that, if the output surface of the system is smooth,
then any nonlinear system can be approximated by some local linear models [35]. Based on
the receptive field local weighted regression (RFWR) algorithm, multiple local models fit
nonlinear functions in different regions to fit the entire space, and the LWPLS algorithm
is proposed by combining local models and soft sensing techniques [36]. The LWPLS
algorithm performs partial least squares regression fitting inside the local model and uses
an iterative form to process the newly input sample data, so that the newly input sample
data will only affect a few parameters in the local model. If the weights obtained by the
sample data in all local models do not exceed the set threshold, a new local model is
added. If the weights obtained by the sample data in the two local models exceed the set
threshold, then remove a local model based on weights. LWPLS can automatically increase
or decrease the number of local models according to the demand, which can effectively
avoid the mutual influence of old and new data. If the input/output variable matrix is
X ∈ RN×M, Y ∈ RN×L, the output predicted value is ŷ ∈ RL. The LWPLS model is:

X = TPT + E
Y = TQT + F

(6)

where M is the number of input variables, L is the number of output variables, and N is the
number of input samples. The nth input/output variable matrix is xn = [xn1, xn2, · · · , xnM]T

and yn = [yn1, yn2, · · · , ynL]
T , P ∈ RM×R is the load matrix, T ∈ RN×R principal compo-

nent matrix, Q ∈ RL×R is the regression matrix, and E, F is the residual matrix.

3. A Kica-Jitl-Lwpls Quality Prediction Model Based on Wavelet Kernel Functions
3.1. JITL-Based LWPLS

JITL is a local modelling strategy that can effectively handle industrial processes
with frequent state changes. In JITL-based algorithms, data pre-processing and model
parameter estimation are performed in the offline phase, and modelling is moved to the
online phase [37]. This modelling approach improves the real-time accuracy of the model.
The basic JITL algorithm process can be divided into the following three steps:
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1. Store the newly obtained input/output data in the database;
2. Use the nearest neighbor method to calculate the similarity between the new input

data and the data in the database to estimate the value of the output variable, and use
the selected relevant data to build a local model;

3. Calculate the model output based on the current data and replace the previous data
with the new data after the calculation.

The operation is repeated with new data. Accordingly, the following properties of the
instantaneous learning strategy are also present:

1. Similarity selection and modelling of the data are only started after a new sample
is acquired;

2. Similar samples are selected from the historical database to train the data required
for modelling;

3. The current model is valid only for the current sample point. For the data, xq, to be
tested at a given moment, the similarity of xq to the data in the historical database is
calculated by the JITL algorithm based on similarity detection.

The similarity indicates which historical samples are assigned priority to construct the
local model for the current query sample [38]. Typically, the lower the similarity between
the history sample and the query sample, the greater the distance, and vice versa. If the
history sample has a greater similarity weight than the other samples, it will be selected as
the local model sample in preference. The Euclidean distance is generally used as the basis
for selection. Let the ith input sample deposited in the database be xi, and for the newly
detected data point, xq, its similarity with each sample point in the database is calculated
as follows:

ωi = e−
di

σd ϕ (7)

di =

√(
xi − xq

)T(xi − xq
)

(8)

σd is the standard deviation of di(i = 1, · · · , N), ϕ is a positional parameter, generally
being 0.1–0.5. Calculated from the above formula, ωi is expressed in the form of a similarity
matrix as Ω = diag(ω), where Ω ∈ RN×N , ω = [ω1, ω2 . . . , ωN ]

T .
In the traditional JITL method modeling, all the collected historical input/output

data are mixed together. When there are new data points, a local model based on the
Euclidean distance similarity measurement method is established directly according to
the historical input/output data. The output of the local model is the predicted output.
This method is not very accurate. In this paper, the Bayesian classifier is combined for
double similarity measurement to improve the accuracy of similarity detection. Bayesian
classifiers belong to supervised learning, which builds corresponding probability models
by learning training samples of known categories [39]. First, the data collected in different
stages is collated into the database corresponding to the stage Di(i = 1, 2, . . . , k). Then,
through the learning of the data in each database, a Bayesian classifier is induced. When it
is necessary to predict the output estimated value of the newly arrived data point, xq, it is
first divided into the sub-database to which it belongs according to the posterior probability
value of the Bayesian classifier, and then, the kth LWPLS based on the Euclidean similarity
measure is established according to the kth databases model. When new data points, xq,
and class variables, {C1, C2, . . . , CK}, are measured online, the posterior probability that the
data point belongs to each database is calculated for effective classification. The posterior
probability calculation formula is as follows:

P
(
Ci
∣∣xq
)
= P(Ci|A1 = x1, A2 = x2, · · · , AM = xM) = ∏M

m=1 P(Am=xm |Ci)P(Ci)

P(xq)
i = 1, 2, · · · , k

P(Am = xm|Ci) =
1√

2πσim
e
(xm−µim)2

2σ2
im m = 1, 2, · · · , M

(9)
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where P
(

xq
)
=

k
∑

i=1

M
∏

m=1
P(Am = xm|Ci)P(Ci), P(Ci) is the priori probability, Am is the

attribute variable, and µim and σim are the mean and standard deviation of Am when
C = Ci.

3.2. KICA Algorithm Based on Wavelet Kernel Function

Existing kernel functions, such as the Gaussian kernel function and polynomial kernel
function, cannot generate a complete basis in high-dimensional space after mapping, so the
classifier cannot approximate any classification interface or classification curve in the space.
For this, a new kernel function is needed to generate a complete basis in high-dimensional
space. In this paper, by virtue of the multi-scale nature of the wavelet kernel function and
the characteristics of providing an approximate orthonormal basis, with the help of the
minimization of mutual information theory, by finding an approximate approximation
of the kernel canonical correlation coefficient, the large-scale data problem is reduced to
a finite number of empirical samples and analyzed to improve the ability of nonlinear
mapping [40]. With the help of the invariance of the kernel translation, the measure of the
non-Gaussian vector in the original vector can be derived from the mutual information of
the Gaussian vector. Considering two Gaussian-free vectors, x1, x2, whose dimensions are
p1, p2, the mutual information can be expressed as:

M(x1, x2) =
∫

p(x1, x2) log[p(x1, x2)/p(x1)p(x2)]dx1dx2 (10)

If the covariance matrix of x1, x2 is C =

(
C11 C12
C21 C22

)
, then the mutual information can

be further expressed as:

M(x1, x2) = −
1
2

log
(

detC
detC11detC22

)
(11)

Extending the mutual information to m Gaussian-free vectors, the mutual information
is expressed as:

M(x1, . . . , xm) = −
1
2

log
(

detC
detC11 . . . detCmm

)
(12)

where detC
detC11 ...detCmm

is the generalized variance.
By Formula (6), and extending the problem to m vectors, the problem of solving the

maximum kernel canonical correlation coefficient in the above formula is transformed to
solve the kernel generalized eigenvalue problem as shown below:

K2
1 K1K2 · · · K1Km

K2K1 K2
2 · · · K2Km

...
...

...
KmK1 KmK2 · · · K2

m




α1
α2
...

αm

 = ρF


K2

1 0 · · · 0
0 K2

2 · · · 0
...

...
...

0 0 · · · K2
m




α1
α2
...

αm

 (13)

Let D denote the m-dimensional diagonalized matrix to the right of the equal sign;
ρ̂F(K1, . . . , Km) is the smallest kernel generalized eigenvalue in which if, and only if,
ρ̂F(K1, . . . , Km) is equal to 1, ρ̂F(K1, . . . , Km) is equal to 0. At this time, the vectors x
are independent of each other, and the separation of independent components can be
accomplished by defining a contrast function and minimizing the contrast function.

Mρ̂F (K1, . . . , Km) = −
1
2

log ρ̂F(K1, . . . , Km) (14)
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A support vector kernel function to obtain a permissible multidimensional tensor
product:

k(x, y) =
N

∏
i=1

((
cos

1.75
(
xi − yi)
β

)
× exp

(
−
(
xi − yi)2

2σ2

))
(15)

β, σ is the scale factor, β, σ, xi, yi, x, y ∈ R. The input of each dimension is formed
into a kernel function in the form of a product, which reflects the local analysis of each
dimension of the input and the multi-resolution relationship of each dimension of the
wavelet kernel function. The steps of the KICA algorithm based on the wavelet kernel
function are as follows:

Input as observational data y1, . . . , ym;
Step 1. Centralization and whitening y1, . . . , ym;
Step 2. Calculate a set of original independent data x1, . . . , xm by X = A′Y, and

calculate the corresponding wavelet kernel Gram matrix k1, . . . , km;
Step 3. Compute kernel generalized variance ρ̂F(K1, . . . Km) = detK

detD , where D is
K2

1 0 · · · 0
0 K2

2 · · · 0
...

...
...

...
0 0 · · · K2

m

;

Step 4. Minimize the contrast function C(W) = Mρ̂F (K1, . . . , Km) = − 1
2 log ρ̂F(K1, . . . , Km).

The signal independence is maximized by obtaining the W corresponding to the global
optimal solution.

3.3. The Steps of Kica-Jitl-Lwpls Algorithm Based on Wavelet Kernel Function

Let X, Y represent the input and output variables of the quality predictive modeling
sample set, respectively. Both are stored in the historical database. N is the total number of
samples, and P is the number of input variables. The steps of the wavelet kernel function
KICA-JITL-LWPLS algorithm are as follows:

Step 1. Divide the total sample into two parts; one part is the training sample set, and
the other part is the validation set. Use training set samples for model prediction validation
of set samples;

Step 2. In the training sample set, the KICA algorithm, based on the wavelet kernel
function in the first section, is used to separate the source signal of the same dimension
from the observed sample signal, extract the independent variables, re-sample the extracted
variable group, and use the new sample to build a JITL-based LWPLS sub-model;

Step 3. Determine the latent variable R; the value of R is the value corresponding to
the minimum sum of the squares of the prediction error, and h is the bandwidth parameter
in the calculation of the training sample weight, which can be determined by the cross-
validation method;

Step 4. Calculate the similarity matrix by Formulas (7) and (8);
Step 5. Calculate the input, output, incoming data point matrices X0, Y0, Xq0;

X0 = X− 1N [x1, x2, · · · , xP] (16)

Y0 = Y− 1N [y1, y2, · · · , yL] (17)

xq0 = xq − 1N [x1, x2, · · · , xP]
T (18)

xi =
∑N

n=1 ωnxni

∑N
n=1 ωn

(19)

Y =
∑N

n=1 ωnynl

∑N
n=1 ωn

(20)

where 1N ∈ RN is a column vector of all ones, i = 1, 2, · · · , P, l = 1, 2, · · · , L;
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Step 6. Let r be the number of iteration steps, and set the initial value of r to 1, Xr = X0,

Yr = Y0, xq,r = xq0, Ŷq =
−
Y. Let r perform the following iterative calculation from 1 to r to

obtain a local linear model;
The rth score vector of X:

tr = Xrωr (21)

The rth score vector of query sample xq:

tq,r = xq,rωr (22)

Calculate the rth load vector pr of X and the regression coefficient of Y:

pr =
x>r Ωtr

t>r Ωtr
(23)

qr =
Y>r Ωtr

tT
r Ωtr

(24)

Step 7. update output value;

ŷq = ŷq + tq,rqr (25)

Step 8. If r = R, output ŷq; otherwise, order r = r + 1;

Xr+1 = Xr − tr pT
r (26)

Yr+1 = Yr − trqT
r (27)

xq,r+1 = xq,r − tq,r pT
r (28)

Step 9. Through the above steps, the output predicted value of the new data point is
obtained, ŷq. Fusion with the posterior probability, pi, obtained by the Bayesian classifier
outputs the final predicted value ŷq0:

ŷq0 =
k

∑
i=1

pi ŷq (29)

The RMSE is used as a performance indicator to evaluate the predictive ability of the
modeling method in this paper. The calculation formula is as follows:

RMSE =

√√√√ 1
Q− 1

Q

∑
q=1

∣∣yq − ŷq0
∣∣2 (30)

where yq is the true value, ŷq0 is the predicted value, and Q is the number of test data points.
A flow chart of the KICA-JITL-LWPLS algorithm, based on the wavelet kernel function, is
shown in Figure 1.
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Figure 1. Flowchart of the KICA-JITL-LWPLS algorithm based on wavelet kernel functions.

4. Simulation Example

Penicillin is an antibiotic used by humans on a large scale for clinical purposes; its
production data process is non-Gaussian and its production process is a typical non-linear,
dynamic, multi-stage intermittent production process [41]. The Pensim simulation platform
used in this paper was developed by the process modelling, monitoring, and control group
at the IIT (Illinois Institute of Technology), with Professor Cinar as the subject leader [42].
The simulation platform is an exe file that runs independently in the Windows environment;
the kernel of the software adopts the improved Birol model based on the Bajpai mechanism
model. Users can perform operations, such as data input, result display, and data export,
on the interface. This simulation platform can easily implement a series of monitoring,
fault-diagnosis, and quality-prediction simulations of the penicillin fermentation process,
and relevant studies have demonstrated the practicality and effectiveness of this simulation
platform [43].

In this experiment, batch data are generated by pensim software package, the algo-
rithm is written in C language in MATLAB(R2018a). A total of 50 equal-length batches, that
is, 50 sets of data, were collected under normal conditions. The 50 sets of data were then
divided into 40 sets of training sets and 10 sets of validation sets, of which 40 sets of training
sets were used as training data for immediate learning and predictive modeling; 10 sets of
validation sets were used as test data to evaluate the prediction accuracy. Select 1 set of
drawing pictures in the 10 sets of validation sets for visual description. Finally, the average
value of the RMSE coefficient and R2 index in the 10 sets of validation sets was taken to
evaluate the prediction effect of the model. A KICA-JITL-LWPLS statistical model based
on the wavelet kernel function was constructed for each batch of penicillin fermentation
with a reaction time of 400 h, a replenishment phase of 355 h, a strain culture phase of
45 h, and a sampling interval of 1 time/h. Ten process variables and two quality variables
were selected for the penicillin fermentation process to predict the product concentration
and bacteriophage concentration during the fermentation process. The KICA-JITL-LWPLS
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statistical model was used to predict the product and bacteriophage concentrations during
fermentation. The process variables and mass variables used in the modelling are shown in
Table 1.

Table 1. Process variables and quality variables used in modeling.

Sample Variable

x1 Aeration rate L/h
x2 Agitator power r/min
x3 Substrate feed temperature K
x4 O2%
x5 Culture volume L
x6 CO2 mmol/L
x7 PH
x8 Temperature K
x9 Generated heat K
x10 Cold water flow rate L/h
y1 Biomass concertation g/L
y2 Penicillin concentration g/L

In this experiment, 400 groups of data in the production process were selected, the
400 groups of data were processed by PCA method, and then the principal components
were selected and the PLS regression analysis was performed on the principal compo-
nents to obtain the predicted results of cell concentration and product concentration. The
400 groups of data were separated by the ICA method to separate independent elements,
and the PLS regression analysis was performed on the separated data to obtain the predicted
results of cell concentration and product concentration. The blue curve is the actual value,
and the red curve is the predicted value. Comparison charts are shown in Figures 2 and 3.
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Figure 2. (a) PCA-PLS model predicts bacterial concentration; (b) PCA-PLS model predicts
product concentration.

As can be seen from Figures 2 and 3, for the predicted value of cell concentration
and the predicted value of product concentration, after the data are processed by the ICA
method, the RMSE values predicted by PLS regression are 0.1296 and 0.1807, respectively.
It is lower than the RMSE value predicted by PLS regression after the data are processed by
PCA, which are 0.1428 and 0.2264, respectively. It is proved that the ICA-PLS method can
effectively separate non-Gaussian data. Its prediction accuracy is stronger than that of the
PCA-PLS method.

The same 400 sets of data were processed by the ICA method and then subjected to
LWPLS regression and PLS regression, respectively. The LWPLS regression analysis was
carried out by setting the location parameter ϕ to 0.2 and the number of hidden variables
to 4. The results of the two regressions are compared in Figure 4.
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Figure 3. (a) ICA-PLS model predicts bacterial concentration; (b) ICA-PLS model predicts
product concentration.
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Figure 4. (a) ICA-LWPLS model predicts bacterial concentration; (b) ICA-LWPLS model predicts
product concentration.

It can be seen from the above figure that, for the predicted value of bacterial cell
concentration and the predicted value of product concentration, the RMSE values of
the LWPLS regression prediction after the data are processed by the ICA method are
0.1071 and 0.1354, respectively, which are lower than the data processed by the ICA
before the PLS regression is performed. The predicted RMSE values are 0.1296 and 0.1807,
respectively. After proving the LWPLS method, introducing the idea of just-in-time learning,
its prediction accuracy is stronger than the traditional PLS method.

The same 400 sets of data are divided into four equal parts and put into four databases
of 100 pieces of data each, and the Bayesian classifier is generalized by learning the data
from the four databases. When new data are input, the predicted points are first classified
into the database of the corresponding stage based on the posterior probability of the
Bayesian classifier. Subsequently, the independent elements of the test data were extracted
and recombined, based on the ICA algorithm, and the combined data were input into the
LWPLS sub-model, with the location parameter, ϕ, set to 0.2 and the number of hidden
variables set to 4, and locally weighted partial least squares regression was performed.
Finally, the predicted values of each LWPLS sub-model were fused with the posterior
probabilities obtained from the Bayesian classifier as the weighted coefficients of the
subsequent LWPLS sub-models to predict the concentrations of bacteria and products in
the products, and the prediction results are shown in Figure 5.

As can be seen from the above figure, for the predicted value of bacterial cell con-
centration and the predicted value of product concentration, the data are measured by
the Bayesian classifier, and then the RMSE values predicted by LWPLS regression after
processing by the ICA method are 0.0699 and 0.0633, respectively. This is lower than the
RMSE values of 0.1071 and 0.1354, respectively, which are lower than the RMSE values
of LWPLS regression prediction after the data are directly processed by ICA without the
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similarity measurement of the Bayesian classifier. It is proved that after adding the Bayesian
classifier to measure the similarity, the LWPLS method with the idea of instant learning is
introduced. Its prediction accuracy is stronger than that of the LWPLS method under the
traditional JITL idea.
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Figure 5. (a) ICA-JITL-LWPLS model predicts bacterial concentration; (b) ICA-JITL-LWPLS model
predicts product concentration.

The above conditions were held constant, and the KICA algorithm based on Gaus-
sian kernel function was used to extract the independent elements of the test data and
recombine them. The combined data were input into the LWPLS sub-model to predict
the concentrations of bacteria and products in the products, and the predicted results are
shown in Figure 6.

Processes 2022, 10, x FOR PEER REVIEW 14 of 19 
 

 

the Bayesian classifier. Subsequently, the independent elements of the test data were ex-
tracted and recombined, based on the ICA algorithm, and the combined data were input 
into the LWPLS sub-model, with the location parameter, ϕ , set to 0.2 and the number of 
hidden variables set to 4, and locally weighted partial least squares regression was per-
formed. Finally, the predicted values of each LWPLS sub-model were fused with the pos-
terior probabilities obtained from the Bayesian classifier as the weighted coefficients of 
the subsequent LWPLS sub-models to predict the concentrations of bacteria and products 
in the products, and the prediction results are shown in Figure 5. 

  

(a) (b) 

Figure 5. (a) ICA-JITL-LWPLS model predicts bacterial concentration; (b) ICA-JITL-LWPLS model 
predicts product concentration. 

As can be seen from the above figure, for the predicted value of bacterial cell concen-
tration and the predicted value of product concentration, the data are measured by the 
Bayesian classifier, and then the RMSE values predicted by LWPLS regression after pro-
cessing by the ICA method are 0.0699 and 0.0633, respectively. This is lower than the 
RMSE values of 0.1071 and 0.1354, respectively, which are lower than the RMSE values of 
LWPLS regression prediction after the data are directly processed by ICA without the 
similarity measurement of the Bayesian classifier. It is proved that after adding the Bayes-
ian classifier to measure the similarity, the LWPLS method with the idea of instant learn-
ing is introduced. Its prediction accuracy is stronger than that of the LWPLS method un-
der the traditional JITL idea. 

The above conditions were held constant, and the KICA algorithm based on Gaussian 
kernel function was used to extract the independent elements of the test data and recom-
bine them. The combined data were input into the LWPLS sub-model to predict the con-
centrations of bacteria and products in the products, and the predicted results are shown 
in Figure 6. 

  

(a) (b) 

0 50 100 150 200 250 300 350 400
Sample predictions

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
RMSE=0.0633

True value
Predicted value

Pr
od

uc
t c

on
ce

nt
ra

tio
n

Figure 6. (a) The KICA-JITL-LWPLS model based on the Gaussian kernel function predicts the
bacterial concentration; (b) the KICA-JITL-LWPLS model based on the Gaussian kernel function
predicts the product concentration.

As can be seen from the above figure for the predicted values of bacteriophage con-
centration and product concentration, the RMSE values of 0.0473 and 0.0087 for the data
predicted by the Bayesian classifier for similarity metric, followed by the Gaussian kernel
function-based KICA algorithm for LWPLS regression prediction, are lower than the RMSE
values of 0.0699 and 0.0633 for the data predicted by the Bayesian classifier for similarity
metric, followed by the Gaussian kernel ICA for LWPLS regression prediction, respectively.
The RMSE values for the LWPLS regression prediction, 0.0699 and 0.0633, respectively,
demonstrate that the Gaussian kernel function-based KICA algorithm can better handle
non-linear data and improve the prediction accuracy after the similarity measurement by
the Bayesian classifier.

The above conditions were held constant, and the KICA algorithm, based on the
wavelet kernel function, proposed in this paper was used to extract the independent
elements of the test data and recombine them. The combined data were fed into the LWPLS
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sub-model to predict the concentrations of bacteria and products in the products, and the
prediction results are shown in Figure 7.

Processes 2022, 10, x FOR PEER REVIEW 15 of 19 
 

 

Figure 6. (a) The KICA-JITL-LWPLS model based on the Gaussian kernel function predicts the bac-
terial concentration; (b) the KICA-JITL-LWPLS model based on the Gaussian kernel function pre-
dicts the product concentration. 

As can be seen from the above figure for the predicted values of bacteriophage con-
centration and product concentration, the RMSE values of 0.0473 and 0.0087 for the data 
predicted by the Bayesian classifier for similarity metric, followed by the Gaussian kernel 
function-based KICA algorithm for LWPLS regression prediction, are lower than the 
RMSE values of 0.0699 and 0.0633 for the data predicted by the Bayesian classifier for 
similarity metric, followed by the Gaussian kernel ICA for LWPLS regression prediction, 
respectively. The RMSE values for the LWPLS regression prediction, 0.0699 and 0.0633, 
respectively, demonstrate that the Gaussian kernel function-based KICA algorithm can 
better handle non-linear data and improve the prediction accuracy after the similarity 
measurement by the Bayesian classifier. 

The above conditions were held constant, and the KICA algorithm, based on the 
wavelet kernel function, proposed in this paper was used to extract the independent ele-
ments of the test data and recombine them. The combined data were fed into the LWPLS 
sub-model to predict the concentrations of bacteria and products in the products, and the 
prediction results are shown in Figure 7. 

  

(a) (b) 

Figure 7. (a) The KICA-JITL-LWPLS model based on the wavelet kernel function predicts the bac-
terial concentration; (b) the KICA-JITL-LWPLS model, based on the wavelet kernel function, pre-
dicts the product concentration. 

As can be seen from the above figure, for the predicted value of cell concentration 
and the predicted value of product concentration, the data are measured by the Bayesian 
classifier and then processed by the KICA algorithm, based on the wavelet kernel func-
tion, and the RMSE value of the LWPLS regression predictions are made, which are 0.0281 
and 0.0036, respectively, which are lower than the RMSE values predicted by LWPLS re-
gression after the Bayesian classifier is used to measure the similarity and processed by 
the KICA algorithm, based on the Gaussian kernel, which are 0.0473 and 0.0087, respec-
tively. It is proved that the KICA algorithm, based on the wavelet kernel function, pro-
posed in this paper can better deal with non-Gaussian and nonlinear data and improve 
the prediction accuracy after the Bayesian classifier performs the similarity measurement. 
The RMSE values of the predicted bacterial concentration and product concentration us-
ing the above algorithm are compared in Table 2. 

  

Pr
od

uc
t c

on
ce

nt
ra

tio
n

Figure 7. (a) The KICA-JITL-LWPLS model based on the wavelet kernel function predicts the bacterial
concentration; (b) the KICA-JITL-LWPLS model, based on the wavelet kernel function, predicts the
product concentration.

As can be seen from the above figure, for the predicted value of cell concentration
and the predicted value of product concentration, the data are measured by the Bayesian
classifier and then processed by the KICA algorithm, based on the wavelet kernel function,
and the RMSE value of the LWPLS regression predictions are made, which are 0.0281 and
0.0036, respectively, which are lower than the RMSE values predicted by LWPLS regression
after the Bayesian classifier is used to measure the similarity and processed by the KICA
algorithm, based on the Gaussian kernel, which are 0.0473 and 0.0087, respectively. It is
proved that the KICA algorithm, based on the wavelet kernel function, proposed in this
paper can better deal with non-Gaussian and nonlinear data and improve the prediction
accuracy after the Bayesian classifier performs the similarity measurement. The RMSE
values of the predicted bacterial concentration and product concentration using the above
algorithm are compared in Table 2.

Table 2. Comparison table of RMSE values of predicted values of cell concentration and product
concentration of different models.

RMSE PCA-PLS ICA-PLS ICA-LWPLS ICA-JITL-LWPLS Gaussian Kernel
KICA-JITL-LWPLS

Wavelet Kernel
KICA-JITL-LWPLS

RMSE (Bacterial
concentration) 0.1428 0.1296 0.1071 0.0699 0.0473 0.0281

RMSE (Product
concentration) 0.2264 0.1807 0.1354 0.0633 0.0087 0.0036

R2 reflects the proportion of the total variance of the dependent variable that can be
explained by the independent variable through the regression relationship. The closer the
R2 metrics is to 1, the higher the fitting degree between the predicted value and the actual
value; the comparison of R2 indicators of different models is shown in Table 3.

Table 3. R2 evaluation metrics.

R2 PCA-PLS ICA-PLS ICA-LWPLS ICA-JITL-LWPLS Gaussian Kernel
KICA-JITL-LWPLS

Wavelet Kernel
KICA-JITL-LWPLS

Bacterial
concentration 0.8862 0.8997 0.9187 0.9503 0.9681 0.9742

Product
concentration 0.8974 0.9033 0.9265 0.9621 0.9724 0.9931
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It can be seen from Table 3 that the R2 metrics of the model proposed in this paper is
closer to 1 than the R2 metrics of other models, indicating that the prediction results of the
model proposed in this paper are closer to the true value.

In addition, this paper compares the calculation time of each model. The program
running timing function of MATLAB is used, and the same set of data is used to record the
calculation time of the model proposed in this paper and the calculation time of the other
five models. The comparison results are shown in Table 4.

Table 4. Comparison of calculation time of each model.

PCA-PLS ICA-PLS ICA-LWPLS ICA-JITL-LWPLS Gaussian Kernel
KICA-JITL-LWPLS

Wavelet Kernel
KICA-JITL-LWPLS

Calculation time (s) 3.416 3.772 5.764 5.876 6.11 6.247

It can be seen from Table 4 that although the calculation time of the wavelet kernel
KICA-JITL-LWPLS model proposed in this paper is relatively long, it is not much different
from the calculation time of the other five models, within 3 s.

5. Conclusions

For the intermittent production process with obvious stage characteristics, this paper
proposes a local weighted partial least squares regression quality prediction model, based
on the independent element analysis of wavelet kernel function with real-time learning.
This model proposes a new wavelet kernel function independent-element analysis method
and takes into account the problem that the KICA algorithm based on the wavelet kernel
function can process non-Gaussian and nonlinear data but cannot perform regression
analysis on the dependent variable, resulting in the inability to perform quality prediction.
The quality prediction model based on local weighted partial least squares algorithm based
on JITL can perform regression analysis on independent variables and dependent variables
at the same time but cannot deal with the problem of inaccurate modeling caused by
non-Gaussian and nonlinear data. When new data are input, the model first standardizes
the input data and then uses the Bayesian classifier to measure the similarity between the
standardized input data and the historical data. Based on the posterior probability of the
Bayesian classifier, the subsequent input data are classified into the historical data group
with high similarity; the contrast function of the data group is extended to the RKHS space,
and the independent element analysis, based on the wavelet kernel function, is carried
out to obtain the independent variable group in the probabilistic sense and then solve
the problem. The input data represent a non-Gaussian, nonlinear problem. Then, LWPLS
regression analysis, based on real-time learning, is performed on the variable group, and the
similarity between local input data is calculated according to the similarity measurement
method of Euclidean distance. According to the similarity, instruct the sample to assign
priority to construct the local model of the current sample, and finally output the local
predicted value according to the PLS, and fuse the posterior probability of the Bayesian
classifier with the output predicted value to output. Based on the Pensim simulation
platform, the proposed multi-model online modeling method based on the wavelet kernel
KICA-JITL-LWPLS proposed in this paper was verified and compared with the models of
ICA-PLS, ICA-LWPLS, ICA-JITL-LWPLS, KICA-JITL-LWPLS of Gaussian kernel function.
The simulation results show that, compared with the traditional model, the model proposed
in this paper can achieve an accurate prediction of bacterial concentration and penicillin
concentration, and the RMSE values are reduced by 0.1147 and 0.2228, respectively. It is
proved that the method in this paper has a higher prediction accuracy and generalization
ability and has a certain reference value for the dynamic modeling research of the batch
production process with obvious stage characteristics.
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