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Abstract: Less precipitation, high temperature, and minimal natural vegetation are characteristic
of regions having an arid climate. The harsh environment massively destructs the soil structure of
that area by burning soil organic carbon, leading to deteriorated soil nutritional quality, creating
a significant threat to agricultural production and food security. Direct application of organic
wastes not only substitutes lost organic carbon but also restores soil structure and fertility. This
study was conducted to assess the impact of organic amendments, i.e., farm manure (FM), poultry
manure (PM), molasses (MO), and Exo-Poly Saccharides (EPS) producing rhizobacterial strains
i.e., M2, M19, M22 amalgams as treatments. To assess the impact of treatments on soil carbon and
structure restoration to hold more water and nutrients, a 42-day incubation experiment using a
completely randomized design (CRD) under the two-factor factorial arrangement was conducted.
Macro aggregation (0.25 to >1 mm), carbon retention in macro aggregates, active carbon (dissolved
organic carbon, a mineral-associated organic carbon, microbial biomass carbon), total organic carbon,
the carbon mineralization activities, and water retention capacities were observed to be highest
in soils that were treated with (FM + M2, FM + M22, PM + M19, and MO + M19). Finally, we
conclude that organics mineralization by microbial actions releases organic glues that not only
impart particle aggregation but also conserve organics as aggregate entrapped carbon. Amalgamated
application of microbe–manure combinations directly impacts soil structure and organic carbon
contents, but in an indirect scenario, it improves the fertility and productivity of the soil. Therefore, it
is strongly recommended to use organic manures and microbes in combination to restore structurally
degraded lands.

Keywords: rhizobacteria; organic manures; soil; macro aggregate; carbon; water

1. Introduction

Soil physio–biochemical characteristics and functioning of terrestrial ecosystems are
pivoted around soil carbon [1,2]. Soil carbon retention and turnover balance are crucial to
sustainable agricultural systems, productivity, fertility, and the structure of the soil. Appro-
priate management practices assert soil strategic sink for atmospheric CO2 to regulate the
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global carbon (C) cycle [3–7]. An increase in agricultural throughput during recent decades
owes to increased fertilization and pesticide that destroyed the environment [8]. Plant
productivity and ecosystem utilities (soil structure, nutritional capacity, sequestered C, nu-
trient cycling, and hydrological amenities) were ruined during the last century because of a
30–50% decline in soil carbon [9]. Minimal till, no fallow, crop rotations, and judicious input
use aim to mitigate negative impacts to sustain production [8–10]. Higher plants govern
primary production in terrestrial ecosystems utilizing the atmosphere’s CO2, nevertheless,
soil microbiota regulates carbon budgets via copious roles in soil carbon buildups thus
amending nutrient availability and driving longevity and solidity of carbon pools [5,7].
Maneuverings of the agro-ecosystems are chief drivers of carbon cycling by changing
microbial community structure [3,5,8,11]. Understanding of systematic management of soil
carbon is a key task for predicting carbon dynamics under various management practices.

Manuring had been a common practice in China, Japan, and Korea for nearly 4000 years
to increase soil organic matter (SOM) to restore soil fertility for attaining adequate yield. Nu-
trient stream, soil physical vigor, erosion protection, and biological activity are contributed
by SOM [12]. Mineral fertilization secondarily increases soil carbon sequestration [13],
since organics, either alone or in combination with mineral fertilizer, are more effective in
improving SOM and its segments than mineral nourishment alone [14]. Artificial fertil-
ization helps in aggregate materialization [15] and stabilization [16] augmenting spatial
inaccessibility for decaying microbes [17].

Organics enhance soil nutritional capacity mainly attributable to stabilized soil struc-
ture [18] through soil biochemical alterations [19,20]. For instance, soil organic carbon [21],
carbon sequestration [22], microbial biomass and activities [23], and release of organic
glues [20] to formulate and stabilize aggregate [24] are caused by organic application to soil.
Studies by Zhang et al. [25], Liang et al. [26], and Huang et al. [27] testified a strong corre-
lation of soil structural stability with soil organic carbon that releases particle binders on
microbial decomposition being considered the most important driver during the formation
and stabilization of aggregates.

The aggregated structure produced by decaying organisms, saccharide excretions of
living entities, and cohesive bonds of soil particles with organics are responsible for carbon
storage in terrestrial regions [28] as it regulates microbial decomposition rates [29]. Micro-
bial biomass is a more active particle binding fraction than SOM [3,20,22]. Nevertheless,
biomass distribution within aggregates is still inconsistent [30,31] which may be accredited
to pore size distribution or aggregate carbon content [22]. Soil structure and chemical
properties mediate carbon storage [32,33] by entrapping it in aggregates, making it inac-
cessible to degrading microbes and extracellular enzymes. Aggregation creates ecological
niches varying in physiochemical and structural characteristics promoting colonization and
grouping of microbial communities in each aggregate [34]. Familiarity with the activities of
microbiota in aggregates is presently poor but necessary to consider the regulation of soil
carbon to increase production and sustain agriculture [35]. Although aggregate stability
is strongly correlated with SOM and microbial biomass, it is still uncertain whether their
relationship is aggregate scale-dependent or relies on aggregate size.

Knowledge of the relationship between SOM and microbial biomass as soil binders
within aggregates would be helpful to improve soil structure and fertility. Therefore, this
study was envisioned to evaluate the impact of organic amendments and EPS-producing
bacterial strains on soil aggregation, aggregate-associated soil organics, and microbial
biomass carbon to clarify the relationship among soil organic carbon, microbial biomass
carbon, and aggregate stability.

2. Materials and Methods

The soil was collected from the research area of the Arid Zone Research Center (Lati-
tude 31◦88′0′′ N and longitude 70◦86′0′′ E), Pakistan Agricultural Research Council, Dera
Ismail Khan, KP, and Pakistan. The area has a typical tropical monsoon climate with
<250 mm mean annual precipitation and 32 ◦C mean annual temperature, respectively.
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Above 10 ◦C cumulated mean annual temperature is 35.30 ◦C while 80% precipitation is
estimated from March to September.

Soil samples were collected from a 0–15 cm depth using grid sampling with 3 m
squares during the autumn of 2018, mixed to get a homogenized composite sample. Plant
roots and other debris were removed before sieving and grinding. To quantify macro-
aggregate development, incubation of soil was initiated with micro-aggregates (<0.25 mm)
and smaller texture fractions (silt and clay) by separating them using a <0.25 mm mesh-sized
sieve and the larger-sized aggregates were ground using grinder @ 1 sample per minute,
shaken through <0.25 mm sieve. Soil samples contained 5.7 g kg−1 SOC, 0.85 g kg−1 N,
6.7 (C: N), 7.9 units of pH, clay, sand, and silt (%) having clay loam texture, and were
calcareous. Microbial strains (M2, M19, and M22) having high exopolymer production
potential [36] (Table 1) and organic amendments (Farm Manure, Poultry Manure, and
Molasses) were used as treatment combinations.

Table 1. Exopolysaccharide secreting potential of microbes used for the study.

Microbes
EPS

Yield
g L−1

EPS Chemical Composition
(g L−1)

Monosaccharides
(g L−1)

Carbohydrate Protein Acetyl
Residues Sulfates Glucose Mannose Rhamnose Galactose Arabinose Xylose Fucose

M2 5.274 3.458 0.09 0.183 11.3 1.468 1.518 0.130 0.184 ND 0.03 ND

M19 5.534 3.571 0.022 2.051 3.12 1.108 1.81 0.164 ND 0.03 ND ND

M22 6.831 4.512 0.199 1.101 8.597 1.87 2.01 0.206 0.03 ND 0.20 ND

ND (Not detected) “Reprinted/adapted with permission from Ref. [36]. 2021, Haroon Shehzad”.

3. Manure Composition

Organic manures were ground and sieved to <2 mm. They were analyzed for nutri-
tional (NPK) contents, organic carbon contents, and water retention % age by using standard
analytical procedures. Soil total nitrogen was calculated by Bremner [37] Kjeldahl’s method.
Di-acid (HNO3 and HClO4) mixture was used to digest samples. Digested samples were
run on the spectrophotometer to calculate phosphorus contents [38]. Potassium was calcu-
lated by running the digested samples on the flame photometer [38]. Physiochemical ratios
of these organic amendments are presented in Table 2.

Table 2. Physicochemical characteristics of organic amendments used for the study.

Property pH EC WHC C N P K

Unit dS m−1 % % % % %

FM 6.9 ± 0.07 2.6 ± 0.03 43.1 ± 2.1 34.02 ± 2.45 0.67 ± 0.07 2 ± 0.14 0.12 ± 0.01

PM 6.3 ± 0.10 3.5 ± 0.01 45.3 ± 1.23 25.67 ± 2.12 1.12 ± 0.13 1.03 ± 0.09 0.19 ± 0.01

MO 6.1 ± 0.09 1.1 ± 0.02 39.87 ± 1.24 28.1 ± 2.06 0.51 ± 0.07 2.67 ± 0.18 0.49 ± 0.01

WHC (Water Holding Capacity), C (Carbon), N (Nitrogen), P (Phosphorus), K (Potassium), FM (Farm Manure),
PM (Poultry manure), and MO (Molasses).

3.1. Incubation Experiment

Air dried soil samples (250 g) were sterilized at 121 ◦C, mixed with blends of organic
amendments and microbial strains were placed in cylindrical, flat-based plastic containers
with 3.8 cm inner diameter, 5.5 cm outer diameter, 15.5 cm height, and 70 µm × 140 µm
orifices in walls. Each cup was aerated with pipes connected to aquarium aeration pumps.
Nutrition and irrigation were supplied. A solution of 1 N KOH in a cock sealed conical
flask was attached to capture microbe respired CO2 [39]. 100% water retention capacity of
the soil was maintained according to the method [40]. Unamended soil was considered to
control and was processed as with treated soil. Cups were sealed with lids and incubated
in the Hettich incubator (HettCube 200R) on 18 November 2018. Three replicates of each
treatment were non-destructively sampled on 2 December 2018, 16 December 2018, and 30
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December 2018, for analysis. Sampled soil was air dried, weighed, and then used for soil
aggregate fractionation.

3.2. Soil Aggregate Extraction

Wet soil (<2 mm) was sieved through 106, 250, 500, and 1000 µm mesh-sized sieves to
fractionate soil aggregates using the method of Six et al. [41]. The Soil Aggregate Analyzer
(Model SAA 8052) was used for fractionation (Model SAA 8052). Soil samples were passed
through a 2 mm sized sieve and were soaked in DI water and kept overnight at normal
temperature (20 ± 2 ◦C). A series of sieves were racked upon each other with the largest
mesh sized on top and were suspended in the water container. The time of complete up
and down cycles was adjusted to 30 times per minute and the sieves were placed so that
one inch of the top sieve was out of water when going down. Then these pre-soaked soil
samples were poured on top of the 1000 µm sized sieve. The sieving cycle was then started
with only 3 cm up and down the distance. Samples were then collected from all the sieves
and containers, oven-dried at 60 ◦C (avoid burning of organic matter), and weighed. The
percent aggregates were then calculated from weighted samples. Oven-dried samples were
subjected to subsequent organic carbon fractionation.

3.3. Organic Carbon Fractionation

Organic carbon total, carbon different sized water stable aggregate, and other organic
carbon fractions were assessed through wet oxidation with K2Cr2O7 at 120 ◦C for an hour
in presence of sulphuric acid, and the solution’s color intensity was measured at 578 nm
wavelength using UV visible spectrophotometer (Hitachi U-2000) [42].

Organic carbon fractions were separated as per the method described by Six et al. [42].
A 5 g (<2 mm) soil sample was immersed in 35 mL of 1.85 g mL−1 NaI solution in a
centrifuge tube of 50 mL volume and tubes were gently shaken by hand several times and
remained materials on the inside of the wall were washed with 10 mL of NaI to make
50 mL volume. Air was exhausted by placing in a vacuum for 10 min, equilibrated for
15 min, and centrifuged for one hour @ 2000 rpm. The supernatant was passed through a
0.45 µm membrane and dissolved organic carbon content was measured. Samples passed
through the filter were dispersed in 5 g L−1 Na-hexametaphosphate for 18 h of continuous
shaking on the reciprocal shaker. The dispersed segment was passed through 53 µm sieves
to collect mineral-associated organic carbon (mSOC), <53 µm, dried at 60 ◦C, weighed, and
analyzed for organic carbon contents.

3.4. Soil Biological Activity

Microbial activity was assessed by calculating the total evolved CO2 during the
experiment. Regarding the study, the modified Zibilski [39] method was used to calculate
the total CO2 produced. Each container was connected with a flask containing 1 N KOH
solution through a connecting tube. A total of 1 mL 50% BaCl2 was added to the flask to
precipitate carbonates as insoluble barium carbonates. 2–3 drops of phenolphthalein were
added as indicators and the solution was titrated against 1 N HCl solution until a colorless
endpoint. Evolved CO2 was calculated by using the formula

Evolved CO2 = (B−V)NE (1)

V is the volume of acid required for titration of alkali attached with amended soil, B
is the required acid volume for titration of alkali attached to unamended control, N is the
normality of acid (1 N), and E is the equivalent weight of CO2 (22).

3.5. Soil Water Retention Capacity

Soil water retention capacity was measured by pre-defined matric potential [43] with
the help of suction plates at 0.3, 0.6, 1.0, 3.0, and 4.5 bar pressure, and a linear regression
equation was calculated by using ln (h) versus ln θ/θs to find water contents at field
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capacity (θFC) and permanent wilting point (θPWP) of soil [44]. The following equation was
developed by using ln (h) versus ln θ/θs to get (θFC) and (θPWP) etc.

ln P = ln Pα + b ln (θ/θs) (2)

P is matric potential (k Pa), “Pe” (intercept) is air entry value/bubbling pressure
that has an inverse relation with “α”, and “b” is the slope of ln P vs. θ/θs of the water
retention curve. The linear relationship between ln θ/θs [–] and ln (P) [kPa] was observed
for experimental soil with an intercept (0.0211) and a negative slope of −7.2615 (Figure 1).
Water retention properties of the experimental soil are presented in Table 3.
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Table 3. Water retention properties of soil used for pot study.

Water
Retention Properties ΘS ΘFC ΘPWP ΘAWC

Units (%)

45.8 ± 0.93 23.68 ± 0.63 11.21 ± 1.02 12.47 ± 0.79
Data are an average of three replicates with standard error.

3.6. Statistical Analysis

Statistically, all data were presented as means of three replicates with standard error.
Preferentially best-performing treatments will be exemplified using multivariate cluster
analysis (Minitab-17®).

4. Results

The experimental soils were treated with different EPS secreting rhizobacterial strains
and organic substrates while the moisture and temperature of these treated soils were
maintained at 100% of soil WHC and 32 ◦C, respectively. Table 4 explicates that the bioaug-
mentation of soil with EPS secreting rhizobacterial strains in the presence of artificially
applied organic substrates resulted in stabilized soil structure than non-treated soils. The
proportion of aggregate size distribution varied with the duration of the experiment and
treatments (Table 4). Regarding treatments, small-sized macro aggregates (0.25–0.5 mm)
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and macro aggregates (0.5–1 mm) dominated in treated soils, respectively. In T1 large
macro aggregates were highest at 15.69, 15.99, and 16.68% which was at par with T3 and T6
but is suggestively higher than other treatments, especially the control. Macro aggregates
(0.5–1 mm) proportion of 18.52, 19.98, and 20.53% was dominated in T3 was two folds
more than the control but was at par with all treatments except T4 and T5. Small macro
aggregates (0.25–0.5 mm) were dominated (29.53, 30.62, and 31.71%) in T3, which was
statistically similar to T1, T4, T5, and T6. The proportion of small macro aggregates was
59.8, 64.27, and 67.25% more in T4 than in untreated soil. Meso aggregates (0.106–0.25 mm)
percentage was least observed in all treated soils that go on declining with incubation
duration, the smallest amount was found in T4 at the start, but its decreasing trend was
slower than in T3 and other treatments. Dispersed particles (<0.106 mm) were highest in
untreated soils and increased non-significantly over time while particle dispersion was
least in T1 also having a declining trend with the duration of the experiment and the same
procedure of decrement was observed in all treated soils.

Table 4. Organic substrates and microbial amalgams affect water stable aggregation and aggregate
carbon retention.

Aggregate
Size (mm) Treatments Organic +

Microbe

Water Stable Aggregates
(%) Aggregate Organic Carbon (g kg−1)

Days after Incubation Days after Incubation

14th 28th 42nd 14th 28th 42nd

>1 mm

T0 CTRL 4.39 ± 0.15 4.34 ± 0.12 4.39 ± 0.12 1.62 ± 0.01 1.69 ± 0.02 1.75 ± 0.00

T1 FM + M2 15.69 ± 0.61 15.99 ± 0.68 15.69 ± 0.69 3.23 ± 0.06 3.31 ± 0.17 3.36 ± 0.11

T2 FM + M19 12.92 ± 0.57 13.21 ± 0.97 12.92 ± 1.04 3.35 ± 0.04 3.43 ± 0.16 3.48 ± 0.11

T3 FM + M22 14.25 ± 0.66 14.50 ± 0.37 14.25 ± 0.35 3.23 ± 0.05 3.27 ± 0.12 3.32 ± 0.12

T4 PM + M2 13.48 ± 0.34 13.76 ± 0.67 13.48 ± 0.72 3.29 ± 0.07 3.36 ± 0.06 3.42 ± 0.05

T5 PM + M19 12.66 ± 0.32 12.90 ± 0.29 12.66 ± 0.30 3.26 ± 0.09 3.33 ± 0.13 3.39 ± 0.15

T6 PM + M22 13.65 ± 0.64 13.93 ± 0.85 13.65 ± 0.93 3.23 ± 0.06 3.31 ± 0.19 3.36 ± 0.14

T7 MO + M2 14.02 ± 0.33 14.31 ± 0.64 14.02 ± 0.72 2.91 ± 0.09 2.98 ± 0.08 3.02 ± 0.02

T8 MO + M19 13.84 ± 0.16 14.12 ± 0.50 13.84 ± 0.57 3.01 ± 0.06 3.08 ± 0.09 3.12 ± 0.02

T9 MO + M22 13.63 ± 0.40 13.920.77 13.63 ± 0.85 2.88 ± 0.07 2.95 ± 0.14 3.00 ± 0.14

0.5–1 mm

T0 CTRL 9.30 ± 0.10 9.34 ± 0.11 9.31 ± 0.06 1.89 ± 0.03 1.97 ± 0.04 2.00 ± 0.05

T1 FM + M2 17.52 ± 0.89 18.94 ± 1.16 19.68 ± 1.10 3.57 ± 0.08 3.62 ± 0.16 3.70 ± 0.13

T2 FM + M19 16.84 ± 0.58 18.19 ± 0.74 18.91 ± 0.61 3.60 ± 0.07 3.65 ± 0.26 3.74 ± 0.24

T3 FM + M22 18.52 ± 0.71 19.98 ± 0.52 20.79 ± 0.77 3.46 ± 0.04 3.50 ± 0.21 3.58 ± 0.19

T4 PM + M2 16.83 ± 0.17 18.43 ± 0.27 19.16 ± 0.34 3.53 ± 0.06 3.57 ± 0.14 3.66 ± 0.11

T5 PM + M19 16.36 ± 0.46 18.36 ± 0.32 19.09 ± 0.16 3.54 ± 0.06 3.59 ± 0.23 3.67 ± 0.20

T6 PM + M22 17.51 ± 0.48 18.45 ± 0.72 19.18 ± 0.58 3.57 ± 0.05 3.62 ± 0.17 3.70 ± 0.15

T7 MO + M2 17.52 ± 0.45 18.46 ± 0.53 19.19 ± 0.52 3.26 ± 0.08 3.31 ± 0.27 3.38 ± 0.25

T8 MO + M19 17.46 ± 0.30 18.39 ± 0.28 19.12 ± 0.29 3.35 ± 0.07 3.40 ± 0.25 3.47 ± 0.22

T9 MO + M22 17.82 ± 0.19 18.76 ± 0.16 19.51 ± 0.15 3.21 ± 0.08 3.26 ± 0.25 3.33 ± 0.23
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Table 4. Cont.

Aggregate
Size (mm) Treatments Organic +

Microbe

Water Stable Aggregates
(%) Aggregate Organic Carbon (g kg−1)

Days after Incubation Days after Incubation

14th 28th 42nd 14th 28th 42nd

0.25–0.5 mm

T0 CTRL 18.48 ± 0.37 18.64 ± 0.26 18.96 ± 0.11 2.17 ± 0.04 2.30 ± 0.04 2.35 ± 0.09

T1 FM + M2 28.60 ± 0.43 29.65 ± 0.72 30.71 ± 1.35 3.33 ± 0.07 3.39 ± 0.25 3.46 ± 0.23

T2 FM + M19 28.22 ± 0.40 29.27 ± 0.89 30.29 ± 1.24 3.23 ± 0.10 3.27 ± 0.19 3.35 ± 0.17

T3 FM + M22 29.53 ± 0.49 30.62 ± 0.81 31.71 ± 1.44 3.25 ± 0.09 3.30 ± 0.22 3.37 ± 0.20

T4 PM + M2 29.49 ± 0.47 30.59 ± 0.99 31.64 ± 1.05 3.30 ± 0.07 3.35 ± 0.24 3.43 ± 0.22

T5 PM + M19 29.00 ± 0.29 30.05 ± 0.21 31.10 ± 0.84 3.21 ± 0.12 3.25 ± 0.18 3.32 ± 0.17

T6 PM + M22 29.27 ± 0.66 30.37 ± 1.20 31.43 ± 1.44 3.27 ± 0.12 3.31 ± 0.14 3.38 ± 0.12

T7 MO + M2 26.45 ± 0.55 27.44 ± 1.03 28.40 ± 1.25 3.26 ± 0.08 3.32 ± 0.26 3.39 ± 0.24

T8 MO + M19 25.24 ± 0.32 26.17 ± 0.66 27.06 ± 0.63 3.21 ± 0.11 3.26 ± 0.28 3.33 ± 0.26

T9 MO + M22 26.10 ± 0.33 27.04 ± 0.17 27.99 ± 0.86 3.20 ± 0.10 3.25 ± 0.27 3.32 ± 0.25

0.106–0.25
mm

T0 CTRL 33.10 ± 0.88 32.78 ± 1.85 32.03 ± 1.31 2.96 ± 0.07 2.99 ± 0.21 3.06 ± 0.19

T1 FM + M2 24.66 ± 0.57 24.34 ± 0.86 23.52 ± 0.31 2.73 ± 0.15 2.78 ± 0.27 2.84 ± 0.25

T2 FM + M19 28.08 ± 0.98 25.43 ± 0.57 24.08 ± 0.26 2.52 ± 0.05 2.55 ± 0.12 2.61 ± 0.10

T3 FM + M22 25.73 ± 1.05 24.15 ± 0.27 23.63 ± 0.25 2.74 ± 0.11 2.78 ± 0.25 2.84 ± 0.23

T4 PM + M2 25.07 ± 1.00 24.30 ± 0.43 23.78 ± 0.46 2.74 ± 0.12 2.77 ± 0.07 2.83 ± 0.05

T5 PM + M19 26.43 ± 0.65 26.61 ± 0.76 25.60 ± 0.65 2.54 ± 0.08 2.58 ± 0.22 2.64 ± 0.21

T6 PM + M22 26.30 ± 0.82 24.59 ± 0.34 24.08 ± 0.27 2.76 ± 0.08 2.79 ± 0.12 2.85 ± 0.10

T7 MO + M2 26.60 ± 0.83 24.95 ± 1.55 23.11 ± 0.28 2.85 ± 0.09 2.90 ± 0.24 2.96 ± 0.23

T8 MO + M19 26.74 ± 1.03 26.24 ± 0.61 25.26 ± 0.83 2.69 ± 0.06 2.72 ± 0.11 2.78 ± 0.10

T9 MO + M22 25.88 ± 0.87 25.56 ± 0.64 24.89 ± 0.85 2.83 ± 0.09 2.86 ± 0.08 2.92 ± 0.07

<0.106 mm

T0 CTRL 34.59 ± 1.39 34.87 ± 1.49 35.69 ± 1.83 3.80 ± 0.12 3.71 ± 0.21 3.41 ± 0.25

T1 FM + M2 11.24 ± 0.24 11.09 ± 0.32 9.44 ± 0.54 2.19 ± 0.08 2.35 ± 0.05 2.48 ± 0.04

T2 FM + M19 14.58 ± 0.41 13.89 ± 0.52 13.05 ± 0.14 2.23 ± 0.09 2.39 ± 0.07 2.52 ± 0.08

T3 FM + M22 13.10 ± 0.59 12.16 ± 0.51 11.34 ± 0.62 2.16 ± 0.12 2.32 ± 0.08 2.45 ± 0.07

T4 PM + M2 13.28 ± 0.43 11.92 ± 0.56 11.11 ± 0.36 2.05 ± 0.11 2.20 ± 0.13 2.31 ± 0.14

T5 PM + M19 15.27 ± 0.60 11.93 ± 0.54 10.66 ± 0.63 2.27 ± 0.06 2.44 ± 0.04 2.57 ± 0.05

T6 PM + M22 15.27 ± 0.77 12.60 ± 0.31 10.77 ± 0.51 2.27 ± 0.10 2.44 ± 0.13 2.57 ± 0.15

T7 MO + M2 15.45 ± 0.77 14.76 ± 0.84 14.17 ± 0.74 2.53 ± 0.12 2.72 ± 0.10 2.87 ± 0.10

T8 MO + M19 16.62 ± 0.33 15.19 ± 0.32 14.68 ± 0.35 2.51 ± 0.10 2.69 ± 0.14 2.83 ± 0.15

T9 MO + M22 16.31 ± 0.86 14.61 ± 0.32 13.17 ± 0.46 2.59 ± 0.12 2.79 ± 0.15 2.93 ± 0.17

Variation in the number of total organics of soil throughout the experiment is accessible
from Figure 2 approving authenticity of carbon receptivity with an artificial application
of organics along with EPS-producing rhizobacteria. Figure 2 explicates the retention and
degradation of artificially added organic materials with the stretch of incubation duration.
Samples collected on the 14th day of the study enfolded 11.21 g kg−1 organics content in
T1 that was statistically in line with farm manure and poultry treated soils under all the
three strains but were significantly greater than the molasses treated soils and control unit.
Organic carbon was reduced to 11.03 and 10.82 g kg−1 under T2, which was statistically
similar to farm manure-treated soils but significantly higher than poultry and molasses,
whose degradation is much faster under such circumstances.
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of organic substrates and bacterial strains.

Cumulative respiration from soil was unexpectedly high in molasses-treated soils
than in control and other manures (Figure 3), possibly explained by CO2 released due
to continued microbial stabilization. In the present study, organo-microbially treated
soils had noticeably greater labile organic fractions compared with control treatments
(Figures 4 and 5). Artificially added organics, as well as rhizobacterial inputs, provided
more carbon compared with the untreated soil. Hence, a substantial increase in labile
fraction with applied organo-microbial treatments shifts the dynamics of carbon relative to
the control treatment.
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Figure 5. Variation in mineral-associated organic carbon with time passage upon blended application
of organic substrates and bacterial strains.

The amount of water retained in the soil during the experiment upon the application
of organic materials and rhizobacterial strains is expounded in Table 5. On the 14th day of
incubation treatment, T2 retained 24.14% water at 0.33 MPa suction, which was statistically
similar with farm manure and poultry treated soils in the presence of each strain but
had a significant difference from control and molasses treated units. Water retention was
enhanced with time passage and a similar trend of variation was observed on the 28th and
42nd days of the experiment, with T2 retaining 12.6 and 16% more water at field capacity
level than the control. Hygroscopic contents of water varied from 11.54, 12.01, and 11.85%
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in T2 to 10.64, 11.04, and 11% in the control on respective days of sample collection with no
significant difference. Water held in meso and micropores was increased from 11.91, 11.16,
and 11.11% in the control to 12.6, 13, and 13.80% in T2 at each sample collection time. T2
had significantly greater available water content than the control but was at par with all
other treatments.

Table 5. Variation in water retention characteristics with manure and microbial blends.

Organic +
Microbe

Treatments
Days after Incubation

14th 28th 42nd

FC

CTRL T0 22.55 ± 0.87 22.20 ± 0.53 22.12 ± 0.53

FM + M2 T1 24.14 ± 0.35 25.01 ± 0.26 25.65 ± 0.23

FM + M19 T2 23.52 ± 0.30 23.77 ± 0.89 24.30 ± 1.12

FM + M22 T3 23.60 ± 0.37 23.73 ± 0.37 23.87 ± 0.80

PM + M2 T4 23.97 ± 0.58 24.19 ± 0.42 24.23 ± 0.21

PM + M19 T5 23.39 ± 0.26 23.45 ± 0.76 23.93 ± 1.02

PM + M22 T6 23.87 ± 0.11 24.12 ± 0.83 24.20 ± 1.30

MO + M2 T7 22.91 ± 0.18 23.14 ± 0.63 23.33 ± 1.04

MO + M19 T8 23.19 ± 0.16 23.48 ± 0.73 23.73 ± 1.11

MO + M22 T9 23.23 ± 0.62 23.36 ± 0.81 22.89 ± 1.24

PWP

CTRL T0 10.64 ± 0.41 11.04 ± 0.26 11.00 ± 0.26

FM + M2 T1 11.54 ± 0.18 12.01 ± 0.27 11.85 ± 0.15

FM + M19 T2 11.10 ± 0.14 11.59 ± 0.25 11.59 ± 0.13

FM + M22 T3 11.13 ± 0.18 11.55 ± 0.35 11.33 ± 0.21

PM + M2 T4 11.31 ± 0.27 11.82 ± 0.41 11.53 ± 0.52

PM + M19 T5 11.03 ± 0.12 11.44 ± 0.22 11.35 ± 0.12

PM + M22 T6 11.26 ± 0.05 11.67 ± 0.13 11.37 ± 0.12

MO + M2 T7 10.81 ± 0.08 11.21 ± 0.19 10.99 ± 0.09

MO + M19 T8 10.94 ± 0.07 11.41 ± 0.18 11.25 ± 0.10

MO + M22 T9 10.96 ± 0.29 11.39 ± 0.40 10.84 ± 0.10

AWC

CTRL T0 11.91 ± 0.46 11.16 ± 0.27 11.11 ± 0.27

FM + M2 T1 12.60 ± 0.20 13.00 ± 0.03 13.80 ± 0.12

FM + M19 T2 12.43 ± 0.16 12.18 ± 0.99 12.71 ± 1.19

FM + M22 T3 12.47 ± 0.20 12.18 ± 0.71 12.54 ± 0.96

PM + M2 T4 12.67 ± 0.30 12.37 ± 0.73 12.70 ± 0.59

PM + M19 T5 12.36 ± 0.14 12.02 ± 0.92 12.58 ± 1.09

PM + M22 T6 12.61 ± 0.06 12.44 ± 0.94 12.82 ± 1.21

MO + M2 T7 12.10 ± 0.09 11.92 ± 0.82 12.34 ± 1.05

MO + M19 T8 12.25 ± 0.09 12.06 ± 0.89 12.49 ± 1.14

MO + M22 T9 12.27 ± 0.33 11.97 ± 0.86 12.05 ± 1.19

5. Discussion

Intricacy makes soil the most challenging environment to work with, so additional
methodologies for the understanding of soil are used [45,46]. Our approach is to intricate
the soil aggregation and carbon retention upon the artificial application of organics and
rhizobacterial strains. Our study assesses the dominance of macro aggregates in farm
manure and poultry in the presence of all strains. Organic scums are microbial triggering
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catalysts that induce particle binding to formulate macro aggregates [3]. Increased organic
matter in organics amended soils favored macro aggregation, mounting confrontation
to slaking. Other studies have correspondingly testified noteworthy escalation in mean
weight diameters (MWD) [47,48]. Greater macro aggregate extents have been found to
favor soil structural stabilization, which might be an upshot of an increase in soil cementers,
i.e., rhizobacterial EPS exudation [49]. Organic manures are comprised of saccharides,
aliphatic, and aromatic amalgams that are a source of energy and nutrition for soil microbes
and plant roots that produce EPS [15]. Bacterial and fungal debris bind the primary (sand,
silt, and clay) particles to extremely stable micro aggregates, while transient (plant and
microbe derived EPS) and temporary (hyphae, roots, and bacterial cells) binders formulate
macro aggregates, minimizing carbon putrefaction because of physical protection through
sorption to clay minerals and encapsulation within aggregates [50]. Mycorrhizal fungi
produce microbial glue, and proteoglycan “Glomalin” to formulate and stabilize macro
aggregates [51]. In our study, manure application improved the microhabitat of microbes,
facilitating rhizobacterial growth, density, and effectiveness [52]. Fungal hyphae physically
bind the particles together to enhance aggregate stability [3].

Organic cementers (rhizobacterial exudates (EPS)) amass primary particles and micro
aggregates to yield macro aggregates with greater carbon contents according to the aggre-
gate hierarchy conceptual model [3]. In the interim, macro aggregates afford soil organics
protection mechanisms [24,53]. Soiled manure heightened macro aggregate protected
carbon accumulation [54] is supposed to be an imperative practical approach to increase
structural stability and sequestration of carbon [55,56]. Physical protection is one of the
most important tools for SOC equilibrium and its degree of recalcitrance depends upon its
position in aggregates [57].

The active soil carbon fraction that changes quickly is microbial biomass carbon
(MBC) [22,58]. Soil microbes largely depend upon the spatial distribution of carbon in the
soil to which soil microorganisms are most sensitive. Aggregates are ecological niches
having heterogeneously distributed microorganisms in various aggregate fractions [59].

Cumulative respiration from soil was unexpectedly high in molasses-treated soils than
in control and other manures (Figure 3), possibly explained by CO2 released due to con-
tinued microbial stabilization [60]. Highly variable respiration rates were observed [61] in
similar soils with variable soil physiognomies and incubation conditions. It is a speculated
elucidation that molasses may easily be putrefied to create differences in soil respiration
compared with control and other organics. Decaying the behavior of organics in soil fluctu-
ates depending upon the substance and soil type as the microbial activity is regulated by the
substrate’s molecular complexity and soil factors, i.e., soil pH and nutritious status [62,63].

Larger-sized aggregates possessed more SOC than smaller ones (Table 4), which is con-
sistent with the aforementioned findings in other soils. Bronick and Lal [49] found greater
SOC contents in smaller-sized aggregates, but more recent findings from Jiang et al. [54]
are heavier amounts of SOC in macro aggregates. Macro aggregate-associated SOC may
rapidly be stabilized and decomposed due to larger size [64], as micro aggregates are
strongly bound. Labile (dissolved and mineral-associated) organic carbon fractions play a
conclusive role in aggregate formation and stabilization [13]. In the present study, organo-
microbially treated soils had noticeably greater labile organic fractions compared with
control treatments (Figures 4 and 5). It’s possibly due to the greater amount of organics
inputs associated with rhizobacterial strains, as has been observed by Rudrappa et al. [65].
Artificially added organics, as well as rhizobacterial inputs, provided more carbon com-
pared with untreated soil. Hence, a substantial increase in labile fraction with applied
organo-microbial treatments shifts the dynamics of carbon relative to the control treatment.

SOC greatly contributes to aggregation, which accounts for 70–90% approximated
variation in aggregate stability of clay loam soil. Total SOC is vital for particle aggregation,
more specifically labile fractions are directly involved in aggregation [56]. These findings
are consistent with our results presented in Figure 6.
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Low water stable aggregates in desert soils might be due to low SOC [5], while the
greatest magnitudes of total SOC and carbohydrates were yielded by soils with the high-
est aggregate stability [20]. Efficient acceleration of crusting in aggregates greater than
0.25 mm in size, declining water and soil losses [6]. Thus, organics application gives rise
to macro aggregates, improving soil structure, and restoring water to create a supportive
environment for plant growth. Applied organics retain water and additionally supply
water-soluble, hydrolysable organic substrates, leading to the production of microbial
exopolymers that increase aggregate cohesion ultimately increasing water stable aggre-
gates having excessive pores to retain more water [23]. In this study, it was elaborated
that microbe amendment blends improve soil structure but more effectively four blends
(FM + M2, FM + M22, PM + M19, MO + M19) are categorized best through clustering of the
data through cluster analysis (Figure 7).
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6. Conclusions

Compared to naturally present inorganic agents, the short-term application of organics
(farm manure, poultry, and molasses) combined with rhizobacterial strains improved soil
structure to different extents by regulating soil aggregate distribution and stability. Mean-
while, soil labile and aggregate-associated carbon proportion rather than the total amount
of soil carbon are suggestively enhanced with the combined application of manures and
rhizobacterial strains. The contents of total SOC gradually reduced over time, probably
due to microbial degradation but the extent of degradation varied depending upon manure
type and applied microbe. Overall, amalgamated application of organic manures and
EPS-producing microbes might be most effective technique for soil structural stabilization
and soil organic carbon sequestration under sandy clay loam texture. A long-term compre-
hensive evaluation is necessary to verify the most suitable combination for improving soil
quality and organic carbon sequestration in sandy clay loam soil under an arid climate.
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