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Abstract: Sour water stripping can treat the sour water produced by crude oil processing, which has
the effect of environmental protection, energy saving and emission reduction. This paper aims to
reduce energy consumption of the unit by strengthening process parameter optimization. Firstly,
the basic model is established by utilizing Aspen Plus, and the optimal model is determined by
comparative analysis of back propagation neural network (BPNN), radial basis function neural
network (RBFNN) and generalized regression neural network (GRNN) models. Then, the sensitivity
analysis of Sobol is used to select the operating variables that have a significant influence on the
energy consumption of the sour water stripping system. Finally, the particle swarm optimization
(PSO) algorithm is used to optimize the operating conditions of the sour water stripping unit. The
results show that the RBFNN model is more accurate than other models. Its network structure
is 5-66-1, and the expected value has an approximately linear relationship with the output value.
Through sensitivity analysis, it is found that each operating parameter has an impact on the sour
water stripping process, which needs to be optimized by the PSO algorithm. After 210 iterations of
the PSO algorithm, the optimal system energy consumption is obtained. In addition, the cold/hot
feed ratio, sideline production position, tower bottom pressure, hot feed temperature, and cold feed
temperature are 0.117, 18, 436 kPa, 146 ◦C, and 35 ◦C, respectively; the system energy consumption is
5.918 MW. Compared with value of 7.128 MW before optimization, the energy consumption of the
system is greatly reduced by 16.97%, which shows that the energy-saving effect is very significant.

Keywords: sour water stripping; artificial neural network; sensitivity analysis; particle swarm optimization

1. Introduction

In the process of petroleum refining, the aqueous solution containing volatile weak
electrolytes, such as hydrogen sulfide, ammonia, carbon dioxide, and pollutants, such
as phenolic cyanide and oil discharged from downstream units, are collectively referred
to as sour water [1,2]. The main sources of sour water in the refineries are atmospheric
distillation columns, vacuum distillation towers, delayed cokers, hydro-desulfurizers,
fluidized catalytic cracking (FCC) units, amine regeneration units, the Claus process, and
visbreaker fractionators [3].

Environmental issues have always been a hot topic. As the requirements of environ-
mental regulations continue to increase, so does the treatment of sour water in refineries. At
present, after the refining stage, the resulting acidic water is fed into a sour water treatment
unit (SWTU) to reduce the contaminant levels. The removal process is usually carried out
during the water stripping process, which is an integral part of the refinery [3,4]. The pro-
cess is used to remove acid components from raw water through a stripping tower to obtain
quality purified water. Sour water stripping technology mainly includes several different
processes, including single column pressurized stripping with side-draw, single column
low temperature stripping and double column pressurized stripping [5–7]. Compared
with the latter two, single column pressurized stripping with the side-draw process has
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the advantages of being a simple process, with low steam consumption, fewer equipment
and less occupation area, and the quality of liquid ammonia as a by-product can reach the
national standard of qualified products; therefore, the process has received more and more
attention and favor [8–12]. A sour water stripping unit is an important unit for oil refineries
to treat sour water, and optimizing the unit can not only protect the environment, which
have certain social benefits, but also save energy and reduce enterprise cost. Therefore, it is
necessary to optimize the sour water stripping unit.

As the core equipment of the sour water stripping process, the energy consumption of
the sour water stripping column mainly focuses on cooling the cold feed and on heating
the steam at the bottom of the column. In recent years, in order to effectively reduce the
energy consumption of the unit, many scholars have carried out a large number of relevant
studies and achieved positive results. Gai et al. [13] proposed a new wastewater treatment
process combined with a bottom flashing mechanical vapor recompression heat pump in
order to reduce energy consumption in the process of sour water stripping. Umer et al. [14]
and Kazemi et al. [4] proposed a design that employs mechanical work using a compressor
instead of hot and cold utilities to reduce the energy consumption of the conventional
sour water stripping process. That is, steam recompression that uses the mechanical work
carried out by the compressor to heat the flow at the top of the tower and transport it
to the bottom of the tower. This will increase the temperature gradient between the top
and bottom products, resulting in an efficient heat transfer between them. Thus, heat
to the column is provided by compressor work rather than using hot and cold utilities.
However, in actual production, the above scheme can only be realized by replacing or
transforming the equipment, which will incur extra costs and take a long time to replace
or transform the equipment. Therefore, it is a better choice to optimize the operating
parameters of the unit. Yu et al. [15] simulated the process of the sour water stripping
unit and discussed the influence of the ratio of hot and cold feed to hot feed temperature
and sideline extraction position on reboiler load and product quality. Tu et al. [16] focused
on the problems of insufficient heat recovery in the energy recovery link and excessive
temperature difference in heat transfer of the heat exchanger, and carried out energy-saving
optimization of the single column pressurized side-line extraction stripping process. These
only analyze the influence of each parameter on the thermal load of the unit, without giving
specific optimization results.

Aimed at the above problems, this paper proposes to reduce energy consumption
by optimizing operation parameters; however, the influence of these parameters on en-
ergy consumption is nonlinear and has a certain influence on each other, which cannot
be ignored. Therefore, in order to accurately predict the actual energy consumption of
a sour water stripping unit under different operation parameters, and to improve and
optimize the performance of the existing system more specifically, an artificial neural
network integrating an optimization algorithm is used to solve the above problems. On
the one hand, the artificial neural network (ANN) is a black-box mathematical model
with good nonlinear mapping ability that can respond to the complex relationship be-
tween target and influencing factors. On the other hand, with the rapid development
of computer technology, genetic algorithm (GA), particle swarm optimization (PSO), ant
colony algorithms, and other intelligent optimization algorithms (OA), the focus of re-
search is to combine artificial neural networks, intelligent algorithms, and mathematical
modeling to optimize operating variables, which is a kind of new research method in
the field of the chemical industry [17]. Alimoradi H et al. [18]. proposed a combination
of ANN models and PSO algorithm to optimize the performance of the cooling tower to
improve the efficiency of the cooling tower. Wang et al. [19]. combined a back propagation
neural network (BPNN) with GA to optimize the low temperature charge performance
of a lithium-ion battery. Ling et al. [20]. used BPNN-GA to predict the corrosion rate
of pipelines in oil pipelines. Farzaneh Rezaei et al. [21]. integrated a radial basis function
neural network (RBFNN) with evolutionary algorithms to predict gas viscosity at high
pressure-high temperature conditions.
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Additionally, Ding et al. [22] used GA and PSO algorithms to optimize the kinetic
parameters of the biomass pyrolysis reaction, and it was found that the PSO algorithm
had higher accuracy than the GA algorithm, and better optimization abilities with the
improvement of 30% than GA. Zhou et al. [23] used GA-BP and PSO-BP neural networks
to predict the outlet water temperature in the intercooling tower sector, and found that
the overall trend of the error curve of the PSO-BP neural network model was closer to
zero, showing good performance. S. Yousaf et al. [24] compared and analyzed the control
optimization of the PSO algorithm and GA algorithm for the nano-grid, and the results
showed that the performance of the PSO algorithm was superior to GA algorithm with
all controllers. Somayeh Toghyani et al. [25] used an artificial neural network to estimate
the power and torque values of a Stirling heat engine, and compared the optimization
performance of ANN-ICA and ANN-PSO. It was found that the mean square error of the
ANN-PSO model was low, and the output of the test stage was in good agreement with the
experimental data. Liu et al. [26] used GA, PSO and ICA optimization algorithm models,
respectively, to optimize ANN to predict rock mass quality scores. The results show that the
accuracy of PSO-ANN and ICA-ANN models was high, but the accuracy of the PSO-ANN
model was higher. For the training stage and testing stage, the determination of coefficients
R2 of PSO-ANN were 0.875 and 0.862, and root mean square errors (RMSE) were 1.584 and
1.782, while the R2 of ICA-ANN were 0.873 and 0.857; RMSE were 1.592 and 1.812. So, the
PSO-ANN has better performance. Therefore, compared to other OA, the PSO uses less
memory and it has a higher learning speed [27,28], so this study uses the PSO algorithm
for optimization.

In conclusion, although some scholars have carried out some studies to reduce the
energy consumption of sour water stripping, the literature is lacking on optimization
schemes considering the process conditions. Therefore, in this study, ANN and PSO
algorithms are combined to optimize the parameters of the sour water stripping process,
which can reduce the energy consumption of the system, protect the environment, and
reduce the cost of enterprises.

The present study is important because it aimed to carry out the following:

(1) Use Aspen Plus software to simulate the sour water stripping process. The present
study aimed to collect data for ANN models.

(2) Determine the best ANN model for sour water stripping. The present study aimed
to compare the performance of BPNN, RBFNN and GRNN models and select the
appropriate ANN model.

(3) Apply Sobol sensitivity analysis for the ANN model. The present study aimed to
determine the influence of input variables on system energy consumption, which is
conducive to further optimization using the PSO algorithm.

(4) Utilize the PSO algorithm for optimizing energy consumption of the sour water
stripping system. The present study aimed to reduce the energy consumption of
the sour water stripping system and achieve the effect of energy saving by global
optimization of PSO algorithm.

The structure of the present study is as follows:
In Section 2, a brief introduction is given to the process simulation and the ANN

model used, as well as the PSO algorithm. The results and discussion of data collection,
model performance analysis, and PSO optimization are presented in Section 3. Section 4 is
the conclusion.

2. Methods and Simulation
2.1. Process Simulation

Sour water is a multi-component solution composed of H2S, NH3 and CO2. These
electrolytes are dissociated into ions in the wastewater, and these ions are in equilibrium
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with the undissociated molecules in the gas phase, respectively. Therefore, the system is a
complex system of chemical equilibrium ionization equilibrium and phase equilibrium.

NH3+H2O � NH+
4 +OH

−

H2S � H++HS−

CO2+H2O � H++HCO−3
CO2+H2O � 2H++CO2−

3
2NH+

4 +CO2−
3 � (2NH3+CO2+H2O)l

(2NH3+CO2+H2O)l � (2NH3+CO2)g+H2O

In this paper, the sour water system is a highly irrational weak electrolyte system, so
the ELECNRTL thermodynamic method can be used to calculate its phase equilibrium. The
specific expression is as follows:

ln γi =

∑
j

τjixjGij

∑
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where γi is the liquid phase activity coefficient of component I; xi is the mole fraction
of component i; Gij is the interaction energy of the solution; τij is the intermolecular
interaction parameter; Cij, Cji, Dij, Dji, Eij, and Eji are the ordered characteristic parameters
of the ELECNRTL physical property method.

Aspen Plus is mainly used to calculate the strict mass and energy balance of the
process, predict the flow rate, composition, and properties of the logistics, predict the
operating conditions, equipment size and optimize the process, etc. [29–31]. The use of
Aspen Plus for the process simulation of sour water stripping has been reported in many
articles, including those by Alvaro de Farias Soares [32], H. Gai [13], Ho Chii-Dong [33],
Jinfeng Jia [34]. It can be observed that Aspen Plus is a great choice to simulate and
establish the mathematical model in this study. In the simulation process, each unit module
is established through the Aspen Plus model library, the Flash2 module of the flash is
used to express the sour water buffer tank and acid gas separator [35], and the RADFRAC
module is used to simulate T-3501. E-3510, E-3504A-F, E-3503, and E-3505 are simulated
by the heater module. P-3501A/B is simulated by the pump module. In addition, it is
important to abide by the conservation of mass and energy in the process of simulation.
The main flowchart of the Aspen Plus simulation model is presented in

In Figure 1, the sour water enters the flash tank (V-3501) to further homogenize
the buffer and stabilize the properties of raw materials after oil removal. After being
pressurized by the raw material pump (P-3501A/B), it is divided into two channels; after
cooling through the cold feed cooler E-3501AB, it enters the top of the sour water stripper
(T-3501) tower. The other passes through the raw water and purified water first-stage
heat exchanger (E-3503), the first-stage condensing cooler (E-3505) and the raw water and
purified water second-stage heat exchanger (E-3504A-F) to transfer heat to 140~150 ◦C
and then enters the first layer tray of T-3501 as the heat feed. At the bottom of the T3501
tower, medium pressure steam is used for heat stripping, and the medium pressure steam
is reduced to 0.8 MPa and 250 ◦C by temperature reducing and decompression pressure
reducer, and then heat stripped by the reboiler (E-3510) after continuous reforming. The
produced gas from the sideline is extracted from the sideline of the 18th column plate of
T-3501 to obtain a high concentration of crude ammonia, which is sent to the ammonia gas
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treatment and recovery unit. After heat exchange between the purified water and the raw
water at the bottom of the stripper, part of the purified water is sent to the outside of the
unit for electric desalting water injection, and the rest is discharged to the oil-containing
sewage pipe network. The sour gas at the top of stripper is sent to the sulfur recovery
section. Figure 1.
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2.2. Artificial Neural Network (ANN)

ANNs are based on the working principles of the human brain. This model can solve
nonlinear problems through example learning [25,36]. ANN is mainly composed of three
parts, the input layer, output layer, and hidden layer. At each layer, connections between
neurons are determined by biases and weights. The architecture is shown in Figure 2. In
recent years, ANN is one of the most popular tools in the field of artificial intelligence
and machine learning, not only because it is a black-box model that is not constrained by
physical laws and model parameters may have no physical meaning, but also because of its
short computing time, high precision, and nonlinear mapping of the relationship between
system inputs and outputs.
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In this study, BPNN, RBFNN, and GRNN models are established respectively to
analyze their accuracy and reliability and determine the best model. BPNN is a kind of
multilayer feed-forward neural network that is characterized by signal forward transmis-
sion and error back propagation. RBFNN belongs to the type of forwarding neural network.
RBFNN has some global approximation capability and does not have any local minimum
problem. The value of nodes in the hidden layer of the RBFNN is calculated by the activa-
tion function, and the number of nodes is determined by training. GRNN is similar to the
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RBF network in structure. It consists of four layers, the input layer, pattern layer, summation
layer, and output layer. Its theoretical basis is nonlinear regression analysis. The pattern
layer is used to perform clustering in the training process [37,38]. The summation layer
consists of two neurons, the first and second neurons are called S-summation neurons and
D-summation neurons, respectively. Its theoretical basis is nonlinear regression analysis.

The performance of the neural network is determined by mean square error (MSE)
and determination coefficient (R2), according to Equations (4) and (5), respectively. When
the MSE value is low, and the R2 is close to 1, this indicates that the neural network model
has good performance and high accuracy.

MSE =
1

pn

p

∑
p=1

n

∑
k=1

ep2
k =

1
pn

p

∑
p=1

n

∑
k=1

(
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k −
∧
y

p

k

)2

(4)

R2 = 1−

P
∑
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(
yp

k −
∧
y

p

k

)
P
∑

i=1

(
yp

k − ym

) (5)

where p is the serial number of the sample, p = 1, 2, . . . , P; yk
p is the output value, ŷk

p is the
expected value; ym is the average of the values.

2.3. Sensitivity Analysis of Sobol

Sensitivity analysis is a method to study and analyze the sensitivity of state or output
changes in a system (or model) to changes in system parameters or surrounding conditions.
It can determine which parameters have a greater impact on the system or model. Based on
the RBFNN, sensitivity analysis is conducted by using Sobol to analyze whether the opera-
tional variables have a major impact on the sour water stripping system, which is further
used for PSO. Sobol’s exponential model is used in this paper. Its model assumes that

y = f (x) = f
(
x1, x2, . . . , xp

)
(6)

x = x1, x2, . . . , xp is the input parameter and the variance D(y) of decomposition
objective function y is as follows:

D(y) = ∑
i

Di+ ∑
i<y

Dij + ∑
i<j<k

Dijk + . . . + D1,2,...,P

1 = ∑
i

Di
D(y)+ ∑

i<y

Dij
D(y)+ ∑

i<j<k

Dijk
D(y)+ . . . +

D1,2,...,p
D(y)

(7)

where Di is the variance of a single parameter; Dij is the variance generated when two
parameters interact; Dijk is the variance generated by the interaction of three parameters i, j,
and K; D1, 2, . . . , P is the variance generated by the joint action of P parameters.

Each sensitivity of parameter i can be expressed as follows:{
Si,j,...,p = Di,j,...,p/D(y)
STi = 1− D∼i/D(y)

(8)

where Si is the sensitivity of parameter i without considering other parameters, also known
as the main effect index; Sij is the sensitivity when parameters i and j interact; STi is the full
effect index of parameter i, which reflects the influence of parameter i and its interaction
with other parameters on the output of the objective function. D~ i refers to the independent
and interactive variances of other parameters, except for parameter i.

2.4. Particle Swarm Optimization

The optimization algorithm (OA) model that is used in this study is the PSO algorithm.
This algorithm was first developed by Eberhart-Phillips and Chadwick. In this algorithm,
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each particle represents a potential solution to the problem, corresponding to a fitness value
determined by the fitness function, and the particle velocity determines the direction and
distance of particle movement [39–43].

In the K-dimensional search space, population Q is composed of n particles, that is,
Q = (Q1, Q2, . . . , Qn). If the i-th particle moves in K-dimensional solvable space, its
position can be expressed as Qi = (qi1, qi2, . . . , qiK)T, and the velocity can be expressed as
Vu = [vu1, vu2, . . . , vuo, . . . , vuD]T, and the fitness can be calculated by a radial basis
artificial neural network, and its value represents the advantages and disadvantages of
the particle. It compares the new fitness of particles with the individual extreme value
Pi = [Pi1, Pi2, . . . , Pio, . . . , PiD]T and population extreme value Gi = [Gi1, Gi2, . . . , Gio, . . . , GiD]T

to continuously optimize the individual extremum and population extremum. The update
of speed and position give the following equation:

Vk+1
i = ωVk

i + c1r1

(
Pk

i − xk
i

)
+ c2r2

(
Pk

g − xk
g

)
(9)

xk+1
i = xk

i + Vk+1
i (10)

where ω is the inertia weight, k is the number of current iterations, c1 and c2 are acceleration
factors and non-negative constants, r1 and r2 are random values in the interval (01), Vi is
the velocity of the i particle, Pi is the extreme value of the i particle individual, and Pg is the
extreme value of the population.

The PSO algorithm continuously updates the position and speed of each particle in
the whole swarm through Formulas (9) and (10), until the fitness value of the maximum
number of iterations or global optimal position meets the preset minimum fitness value.
The optimization flow chart based on PSO algorithm is shown in Figure 3.

Processes 2022, 9, x FOR PEER REVIEW 8 of 18 
 

 

Establish the RBFNN

Initialize the velocity and position of 
the particle

Calculate the particle fitness value

Look for individual and group extremes

Update speed and location

Calculate the new fitness

Satisfy termination 
condition

Y

N

Train,validate and test RBFNN

Start

Update individual extremums and 
population extremums

End
 

Figure 3. Optimization flow chart based on PSO. 

3. Results and Discussion 
3.1. Data Collect 

According to the Aspen simulation results, the number of stripper plates is 35, the 
sideline is the 18th plate, the top temperature is 53.26 °C, the pressure is 430 kPa, the bot-
tom temperature is 184.53 °C and the bottom pressure is 450 kPa. The results of the main 
simulated logistics parameters are listed in Table 1, as follows. 

Table 1. Calculation results of main logistics parameters of sour water stripper. 

Flow 
Temperature 

°C 
Pressure 

kPa 

Flow 
Rate 
kg/h 

Content /%(W/W) 

CO2 NH3 H2S H2O 

Sour water 
(S1) 

58.6 2000 68830.0 0.1793 0.7122 0.4010 98.7075 

Cold feed 
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The top of tower 
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Hot feed 
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(S15) 

143.23 440 6556.22 0.0117 99.1021 0.3867 0.4995 

As can be observed from Table 1, when the contents of hydrogen sulfide, ammonia, 
and carbon dioxide in the sour water are 0.4010% (W/W), 0.7122% (W/W), and 0.1793% 
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3. Results and Discussion
3.1. Data Collect

According to the Aspen simulation results, the number of stripper plates is 35, the
sideline is the 18th plate, the top temperature is 53.26 ◦C, the pressure is 430 kPa, the
bottom temperature is 184.53 ◦C and the bottom pressure is 450 kPa. The results of the
main simulated logistics parameters are listed in Table 1, as follows.
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Table 1. Calculation results of main logistics parameters of sour water stripper.

Flow
Temperature

◦C
Pressure

kPa
Flow Rate

kg/h
Content /%(W/W)

CO2 NH3 H2S H2O

Sour water
(S1) 58.6 2000 68830.0 0.1793 0.7122 0.4010 98.7075

Cold feed
(S6) 38.0 1500 9948.0 0.1793 0.7122 0.4010 98.7075

The top of tower
(S7) 53.26 430 73.88 30.3881 5.2379 62.818 0.1556

Hot feed
(S11) 145.0 1500 58882.0 0.1793 0.7122 0.4010 98.7075

The bottom
of tower

(S14)
184.53 450 62199.9 0.0019 0.0013 0.0237 99.9731

Sideline
(S15) 143.23 440 6556.22 0.0117 99.1021 0.3867 0.4995

As can be observed from Table 1, when the contents of hydrogen sulfide, ammonia,
and carbon dioxide in the sour water are 0.4010% (W/W), 0.7122% (W/W), and 0.1793%
(W/W), respectively, the contents of hydrogen sulfide, ammonia, and carbon dioxide in the
purified water at the bottom of the tower are significantly reduced after the treatment of
the sour water stripping. The ammonia content of the produced gas in the sideline is as
high as 99.1021% (W/W), so the sour water stripper works well. Furthermore, it shows that
the phase balance calculation of sour water stripping systems using the ELECNRTL ther-
modynamic method is accurate and reliable, which can better reflect the actual operation
of the sour water stripping unit, and can be used as a basic model for subsequent energy
conservation optimization.

Therefore, when the operation parameters (cold feed ratio; sideline production posi-
tion; tower bottom pressure; the temperature of hot feed; cold feed temperature) of each
unit in the sour water stripping system are in line with the industrial operating parameters
and the system runs stably, different energy consumptions can be obtained by changing
the operating parameters of the stripper. Table 2 shows the range of parameters and a total
of 200 groups of data are collected through random combinations to train, validate, and
test neural network models.

Table 2. Operation parameters.

Parameters Value

Cold feed ratio 0.1~0.18
Sideline production position 16~23
Tower bottom pressure/kPa 427~456

The temperature of hot feed/◦C 139~153
Cold feed temperature/◦C 24~39

3.2. Energy Consumption Optimization of Sour Water Stripping Process
3.2.1. BPNN, RBFNN and GRNN Models
Establish Data Bank

Two hundred sets of data collected by Aspen Plus are used for artificial neural network
modeling. When constructing the ANN, the operation parameters of the stripper (cold
feed ratio; sideline production position; tower bottom pressure; the temperature of hot
feed; cold feed temperature) are selected as the inputs, and the energy consumption of the
system is taken as the output. Under different working conditions, there are 200 groups of
effective samples that are collected. Among them, the 1st to 120 groups of data are used
as training samples for ANN training, while the 121st to 200 groups of data are used as
testing and training samples and did not participate in training. After repeated training,
when the ANN meets the convergence condition, the 121–160 sets of data can be used to
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verify the accuracy and reliability of the ANN model. If the convergence error limits meet
the requirements after repeated training, the 161–200 groups of data can be input into the
ANN for testing. The establishment of the sample database is shown in Figure 4. The blue
triangles in Figure 4. represent sample points of corresponding system energy consumption
under different operating conditions.

Processes 2022, 9, x FOR PEER REVIEW 9 of 18 
 

 

Therefore, when the operation parameters (cold feed ratio; sideline production posi-
tion; tower bottom pressure; the temperature of hot feed; cold feed temperature) of each 
unit in the sour water stripping system are in line with the industrial operating parame-
ters and the system runs stably, different energy consumptions can be obtained by chang-
ing the operating parameters of the stripper. Table 2 shows the range of parameters and 
a total of 200 groups of data are collected through random combinations to train, validate, 
and test neural network models. 

Table 2. Operation parameters. 

Parameters Value 
Cold feed ratio  0.1~0.18 

Sideline production position 16~23 
Tower bottom pressure/kPa 427~456 

The temperature of hot feed/°C 139~153 
Cold feed temperature/°C 24~39 

3.2. Energy Consumption Optimization of Sour Water Stripping Process 
3.2.1. BPNN, RBFNN and GRNN models 

Establish Data Bank 
Two hundred sets of data collected by Aspen Plus are used for artificial neural net-

work modeling. When constructing the ANN, the operation parameters of the stripper 
(cold feed ratio; sideline production position; tower bottom pressure; the temperature of 
hot feed; cold feed temperature) are selected as the inputs, and the energy consumption 
of the system is taken as the output. Under different working conditions, there are 200 
groups of effective samples that are collected. Among them, the 1st to 120 groups of data 
are used as training samples for ANN training, while the 121st to 200 groups of data are 
used as testing and training samples and did not participate in training. After repeated 
training, when the ANN meets the convergence condition, the 121–160 sets of data can be 
used to verify the accuracy and reliability of the ANN model. If the convergence error 
limits meet the requirements after repeated training, the 161–200 groups of data can be 
input into the ANN for testing. The establishment of the sample database is shown in 
Figure 4. The blue triangles in Figure 4. represent sample points of corresponding system 
energy consumption under different operating conditions. 

  
(a) (b) 

Processes 2022, 9, x FOR PEER REVIEW 10 of 18 
 

 

 
(c) 

Figure 4. Sample bases. (a) The relationship between cold feed ratio and the position of sideline 
production position and energy consumption; (b) the relationship between cold feed ratio and bot-
tom pressure and energy consumption; (c) the relationship between hot feed temperature and cold 
feed temperature and energy consumption. 

Training, Validation, and Testing of ANNs 
In order to select a more suitable ANN model, BPNN、RBFNN and GRNN are es-

tablished, respectively. All models are cross-validated in MATLAB to obtain a reliable and 
stable model. The accuracy and reliability of BPNN, RBFNN, and GRNN models can be 
reflected by the determination coefficient R2 and MSE. The results are listed in Table 3 and 
Figure 5. 

Table 3. The result of ANNs. 

Types MSE R2 
BPNN 0.2275 0.529 

RBFNN 0.0003 0.971 
GRNN 0.1151 0.846 

Table 3 shows that the MSE of BPNN, RBFNN and GRNN are 0.2275, 0.0003 and 
0.1151, respectively. Figure 5 shows that the determination coefficients of the BPNN、

RBFNN, and GRNN are 0.529, 0.971, and 0.846, respectively. The results show that the 
mean square error of RBFNN is the lowest compared with the other two and the determi-
nation coefficient of RBF is very close to 1, which indicates that the accuracy of the RBFNN 
model for the sour water stripping system is suitable. In addition, RBFNN is a kind of 
feed-forward neural network with excellent performance, which can accurately approxi-
mate any nonlinear function and has global approximation ability, so this paper adopts 
the RBFNN model for follow-up work. 

Figure 4. Sample bases. (a) The relationship between cold feed ratio and the position of sideline
production position and energy consumption; (b) the relationship between cold feed ratio and bottom
pressure and energy consumption; (c) the relationship between hot feed temperature and cold feed
temperature and energy consumption.

Training, Validation, and Testing of ANNs

In order to select a more suitable ANN model, BPNN, RBFNN and GRNN are established,
respectively. All models are cross-validated in MATLAB to obtain a reliable and stable model.
The accuracy and reliability of BPNN, RBFNN, and GRNN models can be reflected by the
determination coefficient R2 and MSE. The results are listed in Table 3 and Figure 5.

Table 3. The result of ANNs.

Types MSE R2

BPNN 0.2275 0.529
RBFNN 0.0003 0.971
GRNN 0.1151 0.846
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Table 3 shows that the MSE of BPNN, RBFNN and GRNN are 0.2275, 0.0003 and 0.1151,
respectively. Figure 5 shows that the determination coefficients of the BPNN, RBFNN and
GRNN are 0.529, 0.971, and 0.846, respectively. The results show that the mean square error
of RBFNN is the lowest compared with the other two and the determination coefficient of
RBF is very close to 1, which indicates that the accuracy of the RBFNN model for the sour
water stripping system is suitable. In addition, RBFNN is a kind of feed-forward neural
network with excellent performance, which can accurately approximate any nonlinear
function and has global approximation ability, so this paper adopts the RBFNN model for
follow-up work.

The Suitable ANN Model for the Process

From the above studies, RBFNN is used for further study. For RBFNN, the number of
hidden layer nodes is one of the key factors affecting the prediction effect of the model. In
this paper, the newrb () function is used to design accurate radial basis networks. Newrb ()
is a radial basis network established through continuous attempts. In the process of creation,
the number of nodes in the hidden layer needs to be continuously increased until the output
error of the network meets the preset value. When the MSE value is less than 0.001, it
indicates that the network has reached the convergence condition. Figure 6 shows the
change in MSE with the number of hidden layer nodes.

In Figure 6, it is clear that MSE decreases with the increasing number of hidden nodes.
When the number of nodes is too small, the network cannot learn well, and the training
times need to be increased. However, if the number of nodes is too large, the training
time will increase, and overfitting is easy to occur. Therefore, as the number of nodes is
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66, the error is 0.000998, and the MSE is less than 0.001, indicating the high accuracy of the
neural network. So, a neural network with a structure of 5-66-1 is used to train RBFNN in
this paper.
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Figure 6. Determination of the number of hidden layer nodes.

Figure 7 shows the change in MSE of RBFNN as the number of iterations increases.
It can be observed from Figure 7 that the MSE of model decreases gradually with the
increasing number of iterations. When the upper limit of iteration is 200, the training,
verification and testing stage converge at 117, 118 and 115, and the MSE is 0.000703, 0.00081,
and 0.000347, respectively, all less than the convergence error limit of 0.001. This shows
that RBFNN meets the convergence requirements.
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Figure 8 shows the comparison between the output value and expected output of
RBFNN and the squares in Figure 8 represent the output values obtained by MATLAB. It
can be observed from Figure 8 that the expected value and the output value of RBFNN
are approximately linear, and the R2 of the training stage, verification stage, and test stage
is 0.975, 0.962, and 0.933, respectively, indicating that the expected value and the output
value are highly correlated. The RBFNN has high accuracy and reliability for predicting
the energy consumption of the sour water stripping process.
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3.2.2. Sensitivity Analysis of Sobol

RBFNN is used to train, verify and test 200 groups of data, and the input and output
matrices are obtained. The Sobol index method is used to analyze the input and output
matrices, and then the first-order sensitivity coefficients and overall sensitivity coefficients
of each operating parameter are obtained. In addition, the Sobol method is a convenient way
to investigate the influence of parameter cross action. The first-order sensitivity coefficient
reflects the effect of single parameter changes on the system energy consumption level,
and the overall sensitivity coefficient not only reflects the influence of single parameter
changes, but reflects the influence of interaction with other parameters changes. When
the difference between the first-order sensitivity of a parameter and the overall sensitivity
is large, the sensitivity suggests that there is an obvious interaction. In this study, x1, x2,
x3, x4, and x5 represent the cold feed ratio, sideline production position, tower bottom
pressure, hot feeding temperature, and cold feed temperature, respectively. Table 4 shows
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the first-order sensitivity and the overall sensitivity coefficient. Figure 8 is a histogram of
the global sensitivity coefficient.

Table 4. Global sensitivity coefficients.

Operating Parameters The First-Order Sen-
sitivity Coefficient

The Overall Sensitiv-
ity Coefficient Difference

Cold feed ratio (x1) 0.0489 0.8998 0.8509
Sideline production position (x2) 0.0196 0.9732 0.9536

Bottom pressure (x3) 0.0530 0.9750 0.9220
Hot feed temperature (x4) 0.0675 1.0424 0.9749
Cold feed temperature (x5) 0.0988 0.8784 0.7796

It can be observed from Table 4 and Figure 9 that the first-order sensitivity coefficient
of cold feed temperature (x5) is high, which will have a great influence on the energy
consumption of the stripper when it changes. In addition, the differences between the
first-order sensitivity and the overall sensitivity of cold feed ratio (x1), sideline production
position (x2), tower bottom pressure (x3), and hot feed temperature (x4) are 0.8509, 0.9536,
0.9220, and 0.9749, respectively, indicating that these parameters have obvious interactions
with other parameters during analysis. Therefore, these variables are optimized using the
PSO algorithm.
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3.2.3. Energy Optimization by PSO

The PSO algorithm was used to optimize the weight and biases of the initial RBF
model to minimize MSE. The PSO algorithm parameters are shown in Table 5. The model
performance values are recorded in Table 6. Table 6 shows that the performance of the
PSO-RBF model is superior to the RBF model and can be used to optimize system en-
ergy consumption.

Table 5. PSO algorithm parameters.

Parameters Value

c1 1.5
c2 1.5

Epochs 400
Population 200

Inertia weightω 0.6
Pmax 5
Pmin −5
Vmax 1
Vmin −1
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Table 6. Prediction performance results of the RBF and PSO-RBF models.

Models Stage R2 MSE

RBF
Training 0.975 0.000703

Validation 0.962 0.000811
Testing 0.933 0.000347

PSO-RBF
Training 0.981 0.000694

Validation 0.968 0.000786
Testing 0.954 0.000227

According to the above research content and aimed at the minimum energy consump-
tion of the system, this paper uses MATLAB to generate a random input parameter matrix
with a population of 200 particles and a dimension of each particle of 5 consistent with the
Gaussian distribution to form the initial population through the randn () function. The PSO
algorithm is used for global optimization, where particle fitness is calculated by the RBFNN
prediction model. The termination conditions of the PSO algorithm include setting the
maximum number of iterations, that is, when the number of iterations of particle evolution
reaches 400, the iteration is stopped and optimization results are obtained, as shown in
Figure 10.
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As can be observed from Figure 10, the PSO-RBF model is used to optimize the energy
consumption of the sour water stripping system; when the number of iterations reaches 210,
the system energy consumption is 5.918 MW, which reaches the minimum level. Compared
with 7.128 MW before optimization that is greatly reduced by 16.97%, the energy-saving
effect is obvious. At this point, the cold feed ratio, sideline production position, tower
bottom pressure, hot feed temperature, and cold feed temperature are 0.117, 18, 436 KPa,
146 ◦C, and 35 ◦C, respectively.

4. Conclusions

This paper mainly studied the energy consumption of sour water stripping systems.
According to the study, the energy consumption of the unit will change when the operating
parameters are changed. In addition, the energy consumption of the unit can be reduced
by optimizing the operation parameters. Aspen Plus software is used to establish the basic
mathematical model, and BPNN, RBFNN and GRNN models are established by MATLAB.
Their MSEs are 0.2275, 0.0003, 0.1151 and R2 values are 0.529, 0.971 and 0.846, respectively.
It can be concluded that the MSE of RBFNN approaches 0 and R2 approaches 1, so RBFNN
is used for further research. The RBFNN structure is 5-66-1 and the MSEs of the training
stage, verification stage and testing stage are 0.0007, 0.0008 and 0.0003, respectively, and R2

values are 0.975, 0.962 and 0.933, respectively. Therefore, the RBFNN has high accuracy
and reliability for predicting the energy consumption of the sour water stripping process.
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According to the sensitivity analysis, although the first-order sensitivity coefficient of cold
feed temperature(x5) is higher than that of other parameters, there is obvious interaction
between each parameter, so all parameters must be optimized by the PSO algorithm. In the
PSO algorithm, the optimal system energy consumption is obtained after 210 iterations,
namely when the cold feed ratio, sideline production position, tower bottom pressure, hot
feed temperature, and cold feed temperature are 0.117, 18, 436 kPa, 146 ◦C, and 35 ◦C,
respectively; the system energy consumption is 5.918 MW, which is significantly reduced
by 16.97 %.

Future work should be applied to production practice to verify the reliability of the
research results.

Future research should further reduce system energy consumption by analyzing the
various optimization algorithms to provide the most appropriate operating parameters for
the sour water stripping process.
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