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Abstract: Learning how to navigate autonomously in an unknown indoor environment without
colliding with static and dynamic obstacles is important for mobile robots. The conventional mobile
robot navigation system does not have the ability to learn autonomously. Unlike conventional
approaches, this paper proposes an end-to-end approach that uses deep reinforcement learning for
autonomous mobile robot navigation in an unknown environment. Two types of deep Q-learning
agents, such as deep Q-network and double deep Q-network agents are proposed to enable the
mobile robot to autonomously learn about collision avoidance and navigation capabilities in an
unknown environment. For autonomous mobile robot navigation in an unknown environment, the
process of detecting the target object is first carried out using a deep neural network model, and then
the process of navigation to the target object is followed using the deep Q-network or double deep
Q-network algorithm. The simulation results show that the mobile robot can autonomously navigate,
recognize, and reach the target object location in an unknown environment without colliding with
static and dynamic obstacles. Similar results are obtained in real-world experiments, but only with
static obstacles. The DDQN agent outperforms the DQN agent in reaching the target object location
in the test simulation by 5.06%.

Keywords: autonomous navigation; collision avoidance; reinforcement learning; mobile robots

1. Introduction

Robots play an important role in our daily lives, such as rescuing, cleaning, medical
assisting, helping military operations, working in hazardous operations, and autonomous
driving. Most of the above applications require mobile robots to navigate in an unknown
environment without colliding with static and dynamic obstacles. Navigation is the mech-
anism by which a mobile robot moves to perform a certain task in the environment. Au-
tonomous navigation is carried out when the robot moves in an environment without any
intervention from an external controller (e.g., a human). Autonomous navigation is one of
the key research topics in the field of mobile robotics [1]. Benefiting from the advancement
of artificial intelligence (AI) and computer vision, enormous developments have been made
in autonomous mobile robot navigation [2,3]. However, it still remains a difficult challenge
to enable mobile robots to autonomously navigate in the real world.

The conventional navigation method (i.e., map-building-based navigation) consists of
localization, map building, and path planning (e.g., simultaneous localization and mapping
(SLAM)) [4]. Using a map has many advantages since the entire planning and control
system becomes computationally tractable by projecting high-dimensional observation,
such as a camera image, into a three-dimensional pose on the map. In addition, it is possible
to conveniently guarantee the optimality of the global path, however, it also has some
drawbacks. First, creating an accurate environmental map is time- and labor-consuming
and often requires expert knowledge. Second, from a long-term perspective, maintaining
and updating the map can be much more costly, particularly in the face of dynamic changes.
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Third, the efficiency of the control depends solely on the robot’s mathematical model, which,
however, is typically simplified or linearized and this ultimately weakens the navigation
system’s robustness. Unlike map-building-based navigation, mapless navigation as an
alternative is more commonly regarded as a solution to alleviate a map’s prerequisite
from the navigation system as it generally models a direct mapping between sensory
inputs and robot actions. Unfortunately, without a map, it is incredibly difficult to plan
the global path for the optimal path. Therefore, mapless navigation is more frequently
applied in tasks without explicit destinations, e.g., collision avoidance, or with a known
destination in the robot’s local coordinate frame. Thus, in this context, mapless navigation
is similar to behavior-based navigation [5] which has no high-level reasoning process
based on environmental prior knowledge. In the last four years, the popularity of deep
reinforcement learning (DRL) has increased dramatically. It began with two success stories
through the combination of reinforcement learning (RL) with deep neural networks (DNNs)
achieving impressive and exciting results.

First, a single RL agent was developed by the DeepMind community that was able to
play several human-level Atari 2600 video games [6]. An action is selected from several
discrete actions based on raw input images of the game, while the game’s score serves as
the reward. This implemented method is well-known as a deep Q-network (DQN), which
uses a DNN as a Q-learning function approximator and solves the problem of instability.
AlphaGo [7] is the second success story developed by the DeepMind community for the
Chinese board game Go, which was able to defeat the world champion. AlphaGo is
trained by a novel combination of supervised learning and RL. For robotics, DRL has
been shown to be able to master complicated tasks such as Go [7] and digest observations
from various domains, e.g., raw input [8] and laser scans [9]. Using DRL for robotics is
still challenging, however, in recent years, DRL has been applied in various robotic fields,
such as robotic manipulation [10–12], locomotion [13,14], self-driving vehicles [15,16], and
autonomous navigation [17]. RL requires millions of experiences to properly learn complex
tasks. Therefore, most RL-based mobile robots cannot be trained from real-world samples
as robotic hardware is expensive and vulnerable to damage. As a result, conducting the
training process in a simulator and then transferring the trained methodology to real-world
scenarios is a more practical option [9,18]. The practical implementation of DRL in real
robotic tasks poses significant problems. Thus, the ultimate objective of this paper is to
find solutions to these problems, with the vision of delivering practical DRL methods for
autonomous navigation that are efficient for training, generalizable, and capable of being
deployed on real mobile robots. This paper is structured as follows. The second section
introduces the related work. The third section discusses the method and materials. The
fourth and fifth sections present the experiment’s results and discussions. Finally, the sixth
section is the conclusion of this study.

2. Related Work

An algorithm for solving the SLAM problem has been proposed in [19], which is a
critical problem for mobile robot autonomous navigation in an unknown environment.
OrthoSLAM [20] is a lightweight and real-time efficient SLAM algorithm for a minimum
system embedded in simple mobile robots for indoor office-like environments. It attempts
to reduce the complexity by assuming the lines in the environment structure are parallel or
perpendicular to each other. A novel method, which is a combination of the Hector SLAM
and the artificial potential field (APF) controller, for the autonomous indoor navigation
of a wheeled mobile robot (i.e., global positioning system (GPS) denied environment
typical for a greenhouse), was proposed in [21]. The robot uses single light detection and
ranging (LiDAR) for localization, an open-source Hector SLAM for pose estimation, and an
APF controller for autonomous navigation. A semantically rich graph representation was
proposed for indoor robotic navigation in [22], where the navigational tasks operate directly
from the semantic information to generate motor commands. This enables the robot to avoid
explicit computation for its precise location or the geometry of the environment. However,
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the method is not implemented using a real robot. An end-to-end approach to train the
convolutional neural network (CNN) model for autonomous mobile robot navigation using
an RGB−D camera only was proposed in [23]. A navigation method to learn the end-to-end
control policy using the CNN model to directly generate the velocity and angular rates
from the current observation and target was proposed in [24]. Nevertheless, these last
two approaches [23,24] consisted of learning behavior with labeled observation, but not
learning from the environment itself, as well as it requires a lot of labeling and does not do
well in generalization.

A novel method for mobile robot navigation using a DRL was proposed in [25].
This approach is based on deep reinforcement learning and recurrent neural network
(RNN), which combines double net and RNN modules with reinforcement learning ideas.
Here, the DRL is used to make decisions after training based on the path selection of
the agent from one location to another. Deep reinforcement learning for autonomous
mobile robot navigation based on a deep Q-network (DQN) was proposed in [26]. The
method is concerned with the autonomous navigation of mobile robots from the current
position to the desired position using only a current visual observation. Due to the usage
of an RGB−D camera, the method is limited in its ability to perceive the environment. A
deep reinforcement learning approach to enable the mobile robot to learn autonomous
navigation capabilities and collision avoidance based on a double deep Q-network (DDQN)
was proposed in [27,28]. Information such as the size and position of the obstacle and the
target position are taken as input and the robot’s direction of motion is taken as output.
A deep reinforcement learning approach for autonomous mobile robot navigation using
an asynchronous advantage actor–critic network in an indoor environment was proposed
in [29]. The approach introduces a parallel environment simulation for mobile robots into
the deep reinforcement learning process to improve generalization, avoid overfitting, and
reduce the learning process time.

The purpose of this paper is to design autonomous mobile robot navigation trained by
a DRL algorithm; a branch of machine learning focused on selecting actions to optimize
environmental rewards (the science of optimizing problem-solving efficiency based on
experience). RL is a goal-oriented cognitive approach where an agent learns to execute a
task by interacting with an unknown environment. This learning approach encourages
an agent to make a variety of decisions without human interference to optimize the total
reward for the task and without being directly programmed to accomplish the task. First,
the agents learned in the Gazebo training simulation environment. Next, the trained DQN
and DDQN policies are evaluated in the Gazebo testing environment using pre-trained
weights. Finally, the evaluated DQN and DDQN policies are directly deployed to the
real mobile robot without modification in the algorithm. The mobile robot requires a lot
of training iterations in the Gazebo simulation environment before it can reach the goal
location and avoid collisions successfully. The problem statement is to train DQN and
DDQN agents to learn an optimal policy to autonomously navigate mobile robots in an
unknown environment.

In contrast to SLAM, an extension of the method in [28] and an end-to-end DRL
approach are proposed for the autonomous navigation of mobile robots in an unknown
environment without colliding with static and dynamic obstacles. The primary contri-
bution is to provide a model-free (no need for kinematics and dynamics mobile robot
equations) DRL approach for autonomous mobile robot navigation problems. Moreover,
it also extends the work in [28], i.e., the addition of an RGB−D camera for detecting the
target object and the deployment of the algorithm into a real mobile robot without hyperpa-
rameters tuning. The experimental results show the proposed DRL algorithm can navigate
mobile robots autonomously in an unknown environment without colliding with static and
dynamic obstacles.
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3. Materials and Methods

Robot navigation is a classic robotic challenge that in a wide variety of sectors has
multi-spectral applications. Instead of conducting comprehensive research into such an im-
mensely large field, we only consider the problem of navigation in an indoor environment.
Generally, the objective of navigation is to reach a destination through a collision-free path
with the lowest time cost. Conventional autonomous navigation can be divided into three
sub-tasks: perception, path planning, and control. The task of perception includes sensing,
representing the environment and localizing the robot, and addressing the question of
where the robot is located, while path planning looks for the optimal path to the destination,
solving the problem of where to go, and finally, the control system navigates the robot
according to the plan and avoids collisions at the same time, directing the robot how to go.

A conventional robot navigation system is specifically divided into three parts, a
mapping and localization module, a global path planner, and a local planner to safely
reach the goal location. The local planner follows a sequence of waypoints proposed by
the global planner and a good global plan is mostly based on an accurate map and good
position estimation. Recognizing the state of the robot in the environment usually focuses
on extracting the geometrical relation between the robot and the environmental objects
that depend on the onboard sensors of the robot. Therefore, calculating the distance of
the robot from the obstacle is the easiest sensing process since the raw sensing data can
be used directly to avoid collisions and construct an environmental map. For this reason,
LiDAR [30–32], ultrasonic sensors [33,34], and depth cameras [35,36] are popular choices.
Vision sensor as an alternative to ranging sensors is another sensor modality commonly
used in robot navigation, which collects the presence data of objects in the environment.
Even though geometric information cannot be derived directly from a single camera image,
it can be inferred from a pair of images given the intrinsic and extrinsic parameters of the
camera. In addition, vision-based navigation has an exponentially spreading impact on
robot navigation research by considering the ubiquity of a commercial camera and the
semantic information embedded in an RGB image.

Localization is one of the most important skills required by an autonomous robot,
as recognizing the robot’s own position is a prerequisite for future action decisions. The
environment has been defined earlier in a metric map in many map-based robot navigation
systems and is always accessible to the robot. Therefore, to realize the state of the robot in
the environment, it only requires a localization system to get the pose of the robot in the
map coordinate system. Mapping is the ability of a mobile robot to localize itself on a map
and construct the map. A map can represent the environment in different forms, such as
grid maps, landmarks, and point clouds, which are commonly used in robot navigation.
The grid map representation was first introduced in 1987 and has been extensively extended
to various sensor-based navigation systems. The world is modeled as a fine-grained grid
over the continuous space of locations in the environment. Each grid contains a certain
value, indicating the probability of that location being occupied by an object. Landmark
representation [37] is used when the environmental features detected are sparse and can
be recognized, e.g., beacons. In this case, the map tracks the location and uncertainty of
each feature, namely, a landmark. Point cloud [38] is a formulation appropriate for 3D
spaces that covers the locations of all defined feature points in the environment. Navigation
systems that use 3D LiDAR or camera sensors are common.

SLAM [4] is the ability of a mobile robot to progressively create a coherent map
of an unknown environment while simultaneously localizing itself on this map. Note
that both the robot trajectory and the map are estimated online without the need for
any previous location and environment knowledge. SLAM is formulated and solved in
different ways in which the probabilistic SLAM [39] is generally considered to be the most
widely accepted formulation. As of now, with various solutions at the theoretical and
conceptual level, it can be considered a solved problem, e.g., Rao–Blackwellized particle
filter (RBPF) SLAM [40], extended Kalman filter (EKF) SLAM [41], and GraphSLAM [42].
However, when addressing the practical execution of large-scale problems, significant
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problems remain available. One of the key problems is computational complexity. The
SLAM state-based formulation problem requires the estimation of a joint state consisting
of a robot pose and the locations of stationary landmarks observed, where each landmark
denotes a feature point on the map. Therefore, the state vector increases linearly, and its
corresponding covariance matrix grows quadratically as the robot traverses a long path
and an increasing number of landmarks are recorded on the map.

The other problem is with dynamic environments. There are numerous dynamic
objects in real-world environments, e.g., humans and other movable or changing objects
such as chairs and doors. In most SLAM algorithms, all of these disobey the static world
assumption and can lead to conflicts when updating the map through data association. It
is ready to find a path to the target location when the robot is able to self-localize and the
target is also singularized on the map. Path planning algorithms are used under a certain
criterion to generate a collision-free path to the destination with the least cost, e.g., time,
energy, or path length. It can be generalized into two different groups, i.e., off-line and
on-line on the basis of whether or not a full description of the environment is given. In
off-line path planning problems, it is comparatively easier to look for the optimal path
compared with the online problem since a complete map of the environment is given.
However, on-line path planning has a lot of robot navigation usage since it can work
directly with SLAM algorithms where the robot constructs the map simultaneously as it
traverses the environment.

3.1. DDQN and Double Q-Learning Agents

In Q-learning and DQN, the max operator uses the same values for both choosing
and evaluating an action [43]. This makes overestimated values more likely to be chosen,
resulting in over-optimistic value estimates. To prevent this, the author in [44] decoupled
the selection from the evaluation in the max operator. The selection and evaluation in
Q-learning were first untangled for a clear comparison, and rewritten, as in Equation (1).
Therefore, double Q-learning can be expressed, as in Equation (2). Notice that the selection
of action remains due to the critic network weights θt in the argmax. This implies that as in
Q-learning, the authors in [44] proceed to approximate the value of the greedy policy based
on the current values, as specified by θt. They do, however, use the second set of weights
θ′t to accurately measure the value of this policy.

qQ(s, a) = Rt+1 + γq(s′, argmax
a′

q(s′, a′; θt); θt), (1)

qDoubleQ(s, a) = Rt+1 + γq(s′, argmax
a′

q(s′, a′; θt); θ′t), (2)

DDQN is an extension of the DQN algorithm and the core concept behind DDQN is
to decrease overestimations by decomposing the max operator into action selection and
action evaluation. This method evaluates the greedy policy as per the critic network but
uses the target critic network to estimate its value. The resulting algorithm is named double
DQN regarding both double Q-learning and DQN. The target value function of DDQN
qDDQN can be expressed as in Equation (3). The optimal action in state s′ is selected from
the critic network θt; however, the target critic network θ−t determines the evaluation or
estimation of the Q-value of this action. Likewise, the DDQN algorithm also uses the
one-step minimization of loss (L) overall sampled experiences to update the critic network
weights, as in Equation (5). The formula used to calculate the temporal difference (TD)
error of DQN and DDQN agents is shown in Equation (6).

qDDQN(s, a) = Rt+1 + γq′(s′, argmax
a′

q(s′, a′; θt); θ−t ), (3)

a∗ = argmax
a′

q(s′, a′; θt), (4)
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L = 1
M

M
∑

i=1
(qDDQN − q(s′, a′; θt))

= 1
M

M
∑

i+1
(Rt+1 + γq′(s′, a∗; θ−t )− q(s′, a′; θt))

2.
(5)

TD_error =
{

qDQN − q(s′, a′; θt),
qDDQN − q(s′, a′; θt),

(6)

3.2. Proposed Framework

The proposed framework primarily consists of a mobile robot, an agent, and an
environment. As shown in Figure 1, the mobile robot contains two sensors, such as a laser
rangefinder and an RGB−D camera. The Hokuyo URG-04LX-UG01 with the following
specifications 20 mm to 5600 mm detectable range, 240◦ area scanning range with 0.36◦

angular resolution, is used as a laser rangefinder sensor. This sensor uses a laser beam
to determine the distance to an obstacle. It emits a laser pulse toward the obstacle and
measures the flight time that the pulse reflected off the obstacle and returned to the laser
rangefinder. The mobile robot can almost perceive its entire surroundings with its opening
angle of 240◦. It provides feedback to the mobile robot about the distance of the nearest
obstacles. Microsoft XBOX 360 Kinect sensor with a 50 cm to 5 m range, 640× 480 horizontal
resolution, and about 1.5 mm at 50 cm and 5 cm at 5 m depth resolution is used as an
RGB−D camera. An RGB−D camera has a horizontal opening angle of approximately
90◦, which means only one-third of the field of view of the laser rangefinder is covered.
However, it has a vertical opening angle of approximately 60◦, which enables the 3D scan of
the surroundings. An RGB−D sensor is used for feedbacking the real-time RGB and depth
images of the surrounding environment to the mobile robot. The object detector model will
take inputs from an RGB−D camera to search for the target object. Then, when the object
detector model recognizes the target object, the mobile robot will start to navigate toward
the target object. The proposed block diagram of autonomous mobile robot navigation in
an unknown environment using a DQN or DDQN agent is shown in Figure 2.

Processes 2022, 10, x FOR PEER REVIEW 6 of 22 
 

 

argmax ( )t
a'

a q s',a'; =  , (4) 

1

1
( ( ))

M
DDQN

t

i

L q q s',a';
M =

= − 
 

               2

1

1

1
( ( ) ( ))

M

t t t

i

R q' s',a ; q s',a'; .
M

  −

+

+

= + −    

(5) 

( ),

( ),

DQN

t

DDQN

t

q q s',a';
TD _ error

q q s',a';

 −
= 

−




 (6) 

3.2. Proposed Framework 

The proposed framework primarily consists of a mobile robot, an agent, and an en-

vironment. As shown in Figure 1, the mobile robot contains two sensors, such as a laser 

rangefinder and an RGB−D camera. The Hokuyo URG-04LX-UG01 with the following 

specifications 20 mm to 5600 mm detectable range, 240° area scanning range with 0.36° 

angular resolution, is used as a laser rangefinder sensor. This sensor uses a laser beam to 

determine the distance to an obstacle. It emits a laser pulse toward the obstacle and 

measures the flight time that the pulse reflected off the obstacle and returned to the laser 

rangefinder. The mobile robot can almost perceive its entire surroundings with its open-

ing angle of 240°. It provides feedback to the mobile robot about the distance of the nearest 

obstacles. Microsoft XBOX 360 Kinect sensor with a 50 cm to 5 m range, 640 × 480 horizon-

tal resolution, and about 1.5 mm at 50 cm and 5 cm at 5 m depth resolution is used as an 

RGB-D camera. An RGB−D camera has a horizontal opening angle of approximately 90°, 

which means only one-third of the field of view of the laser rangefinder is covered. How-

ever, it has a vertical opening angle of approximately 60°, which enables the 3D scan of 

the surroundings. An RGB−D sensor is used for feedbacking the real-time RGB and depth 

images of the surrounding environment to the mobile robot. The object detector model 

will take inputs from an RGB−D camera to search for the target object. Then, when the 

object detector model recognizes the target object, the mobile robot will start to navigate 

toward the target object. The proposed block diagram of autonomous mobile robot navi-

gation in an unknown environment using a DQN or DDQN agent is shown in Figure 2. 

 

Figure 1. Mobile robot hardware configurations for autonomous navigation. 

An agent can be created with critic representation based on the state and action re-

quirements of the environment using the following steps: 

1. Create state and action requirements for the environment. 

2. Specify the learning parameters of an agent. 

3. Create the agent using the DQN class of stable baselines. 

Figure 1. Mobile robot hardware configurations for autonomous navigation.

An agent can be created with critic representation based on the state and action
requirements of the environment using the following steps:

1. Create state and action requirements for the environment.
2. Specify the learning parameters of an agent.
3. Create the agent using the DQN class of stable baselines.

Algorithm 1 shows the training of autonomous mobile robot navigation using DQL
algorithms.
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Algorithm 1 DQL Training

1: Initialize the critic network with weights theta θ

2: Initialize the target critic network with weights θ−= θ

3: Initialize replay memory D to capacity N
4: For Episode = 1: K do
5: Reset the environment
6: Get the initial state Si of the environment
7: Calculate the initial action Ai
8: Set St and At to Si and Ai
9: For Time-step t = 1: T do
10: With probability ε select At for St
11: Else, select At = argmaxa q (St, At; θ)
12: Execute At
13: Observe Rt+1, and St+1
14: Store (St, At, Rt+1, St+1) in D
15: Sample (St, At, Rt+1, St+1) from D
16: If St+1 = ST, set qDQN (or qDDQN) to RT. Else, set
17: qDQN (s, a)=Rt+1 + γmaxa ′ (q′ (s′, a′; θ−))
18: qDDQN (s, a)=Rt+1 + γq′(s′, argmaxa ′ q (s′, a′; θ); θ−)
19: Calculate L=1/M ∑M

i=1 (qDQN (or qDDQN) − q(s′, a′; θ))2

20: Update θ

21: Update θ− every 500 time-steps
22: Update ε

23: End For
24: End For

3.3. Object Detector Model

The pre-trained deep learning, which is the Single Shot MultiBox Detector (SSD)
MobileNet V2 model [45], is used for target object recognition. This model is the result
of the combination of the SSD and MobileNets models. MobileNet is used for detecting
the target object, while SSD is used for generating multiple bounding boxes. MobileNet
is an object detector designed for mobile and embedded vision applications. MobileNet
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architecture uses depth-wise separable convolutions to build lightweight DNNs. The SSD
architecture uses a single convolution network that learns to predict bounding box locations
and classify these locations in a single pass, and it can be trained end-to-end. In this work,
the object detector model is customized to focus on the detection and classification of the
target object only (i.e., Coke can). An RGB−D camera provides a real-time video from
which the object detector model continuously checks for the target object. Once the object
detector model recognizes the target object from RGB−D videos, the mobile robot will start
to navigate toward the target object.

3.4. DQL Agent Inputs and Outputs

Any RL-based agent takes state and reward as inputs and returns the action to be taken
in the environment in each iteration. The state, action, and reward used for autonomous
mobile robot navigation using DRL in unknown environments are described in detail
as follows.

(1) State: State is an observation of the environment that explains the current situation.
For the agent, this is important because it would calculate and act depending on
the state. The state size is 29, and 24 of them are laser distance sensor (LDS) values.
The other five are the confidence of the detected target object, distances to the goal
(target object location), angle to the goal (target object location), distance to the nearest
obstacle, and angle to the nearest obstacle. The state is expressed as in Equation (7)

S = L1 + C1 + D1 + A1 + D2 + A2, (7)

where S: state; L1: LDS (24 values); C1: confidence of the detected target object (1 value);
D1: distance to the goal (1 value); A1: angle to the goal (1 value); D2: distance to the nearest
obstacle (1 value); and A2: angle to the nearest obstacle (1 value).

Initially, when the agent has no information on where the target object is in the
environment (because the agent has not yet identified the target object in the environment),
the following will take place. First, the target object detection confidence value of the SSD
MobileNet V2 model is set to 0 (zero), the agent distance to the goal is set to the maximum
possible value (5 m), and the agent angle to the goal is also set to 0 (zero). Next, once the
target object is detected with a minimum confidence value (70%), the mobile robot will
set the detected target object coordinate as the goal location and correspondingly updates
the distance to the goal and angle to the goal values. Note that it is mandatory that the
object detector model should increase its confidence value above the threshold confidence
value (>85%) by the time the mobile robot reaches 1 m from the assumed goal location.
The goal location is called “assumed” if the target object is detected with a minimum
confidence value (70%). If the object detector model of the mobile robot fails to increase
its confidence value above the threshold value by the time it reaches 1 m close to the
assumed goal location, then the goal location is discarded, and the mobile robot will have
to start searching for the new goal location. This set is used to avoid false predictions in
the object detector model of the mobile robot. Finally, the mobile robot will navigate to the
goal location.

(2) Action: Action is what an agent can do in each state. The mobile robot has five actions
that it can act on depending on the type of state as shown in Figure 3. The mobile
robot has a fixed linear velocity of 0.15 m/s and the angular velocity is determined
by the action as shown in Table 1. Initially, the agent knows nothing about the
environment, so the agent cannot distinguish between the actions in the starting
state in the first episodes. Thus, the trade-off between exploration and exploitation
would be incorporated to address this issue. The trade-off between exploration and
exploitation is a crucial feature of RL when an agent interacts with an environment.
The justification for this feature of RL is that learning occurs online. Rather than
working from a static dataset, the actions of the agent decide which data from the
environment are returned. This implementation will allow us to consider not just how
an agent performs its first actions, but how specifically it selects actions overall. The
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decisions taken by the agent decide the data it collects and thus, the data from which
it can learn. The policy of our agent is a function that takes states and returns actions,
and it can be expressed, as in Equation (8)

a = f (s), (8)

where a: action; f : a function (i.e., DNN); and s: state.
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Table 1. Action and angular velocity.

Action Angular Velocity (rad/s)

0 −1.5
1 −0.75
2 0
3 0.75
4 1.5

Exploration is the process of discovering the environment to find information about
it, whereas exploitation is the process of exploiting information that is already known
about the environment to maximize the cumulative return. To balance exploitation and
exploration, the “Linear Annealed Exploration” epsilon-greedy approach is used. In this
approach, an exploration rate ε which is the probability of taking a random action is
specified which is first set at 1. The probability that the agent would explore rather than
exploit the environment at the start is called the exploration rate. It is 100% certain with
ε = 1 that perhaps the agent will begin by exploring the environment. Linear annealed
exploration starts with a high epsilon value (i.e., 1) and decrements a small amount of value
linearly over each step of the time. After a set of time steps, the epsilon value remains at a
fixed value (i.e., 0.02). This implementation ensures that at the beginning of the experiment,
there is a lot of exploration and then it will exploit all the information at the end. This
can be beneficial as the agent first has to explore the state space and then exploit the
information after the agent has optimal actions. A linear annealed exploration is expressed,
as in Equation (9)

ε = ε× 0.1, (9)

where ε: an exploration rate; 0.1: annealing factor.

(3) Reward: Reward is a function that helps the agent to reach a conclusion rather than
a prediction. A reward is a function that generates a scalar number representing a
positive reward and a negative reward (penalty) for an agent for being in a particular
state and taking a particular action. During training simulation, RL uses a reward
generated by the environment to guide the learning process. This reward measures
the agent’s performance with respect to the task objectives. In other words, the
reward measures the efficiency of taking specific action for a given state. An agent
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updates its policy based on the rewards received for various state–action combinations.
Generally, a positive reward is provided to encourage certain actions and a penalty to
discourage other actions. The agent is guided by a well-designed reward to maximize
the cumulative reward. However, the pre-trained weights are used for the agent
during the testing simulation.

In the training simulation, at the starting state of the first episode in the training
mode of simulation, the mobile robot and the target object location are set at (0, 0) and
random location, respectively. The mobile robot will start searching for the target object by
exploring the environment and it receives a reward of 0 before it identifies the target object.
Once the target object is identified with a confidence value above the minimum confidence
value, the DQL agent receives an immediate reward of 500. Then, the reward function
(Rθ) for an angle can be derived from the angular direction in Figure 4 using Equation (11).
The angular direction is used to show whether the mobile robot is facing directly toward
the goal or not. For instance, if the robot is facing directly toward the target object (goal),
then the angle is zero (θ = 0) and the action is equal to 2 (a = 2), if the robot is rotating in
a clockwise direction from the goal, then the angle is varying from 0 to positive 180, and
its action varies accordingly, and if the robot is rotating in a counter-clockwise direction
from the goal, then the angle is also varying from 0 to negative 180, and its action varies
accordingly. In Figure 4, the action block of lines indicates the action to be taken based
on the angle from the robot to the goal. Equation (10) explains the angular direction of
the robot from the goal, and Equation (11) explains the reward function from the angle.
The reward from the angle is greater than or equal to 0 if the angle is between negative 90
and positive 90 degrees or less than 0 if the angle is not in the above-mentioned degrees.
Likewise, the reward function (Rd) for the distance can be derived from the linear direction
in Figure 5 using Equation (12). In Figure 5, the linear direction is used to show whether
the robot is approaching the goal or not. If the robot is moving towards the goal, then the
red strip line will move towards the left (origin), but if the robot is moving away from the
goal, then the red strip line will move away from the origin. In Equation (12), if the current
distance from the goal is less than the absolute distance from the goal, then the reward
from the distance is greater than 2, but if the current distance from the goal is greater than
or equal to the absolute distance from the goal then the reward from the distance is greater
than 1 and less than or equal to 2. The reward function in Equation (13) is used for guiding
the learning process of the DQL agent. Finally, the DQL agent receives a reward of 100,
whenever the mobile robot gets closer to the (goal) target object location, and a penalty
of −100 whenever the mobile robot moves farther away from the target object location or
collides with obstacles.

θ =
π

2
+ a× π

8
+ φ, (10)

Rθ = 5× 1−Λ(θ) =

{
≥ 0,− 1

2 π < θ < 1
2 π,

< 0, otherwise.
(11)

Rd = 2
Dc
Dg =

{
> 2, Dc< Dg,
(1, 2], otherwise.

(12)

R = Rd × Rθ (13)

where a: action; θ: angle from the mobile robot to the goal (target object); φ: yaw of the
mobile robot; Λ: a function of an angle from the mobile robot to the goal; Dc: current
distance from goal; Dg: absolute distance from goal; Rθ : reward from an angle; Rd: reward
from a distance; and R: reward.
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Figure 5. Linear direction illustration.

3.5. Mobile Robot Navigation Mechanism

The mobile robot receives inputs from the DQL agent, as well as the distance from
obstacles using the laser rangefinder sensor, and also the current observations of the
environment using an RGB−D camera. The output of the mobile robot is linear and
angular velocities. The mobile robot’s autonomous navigation mechanism using a DQN or
DDQN agent is outlined in detail as follows:

1. The laser rangefinder feedback of the distance to the nearest obstacles for the mobile
robot;

2. An RGB−D camera feedback of the real-time video (color and depth images) of the
current state of the environment for the mobile robot;

3. The object detector model continuously checks for the target object in each frame of
the video;

4. The object detector model returns the confidence value of detection and the pixel
coordinate of the target object when the target object is detected;

5. The obtained pixel coordinate p = (x, y, z) of the target object is then projected into
a real-world Cartesian coordinate P = (X, Y, Z) by using a similar triangle formula
of the perspective imaging model that can be expressed as in Equations (14)–(16).
Where depth (d) is the distance from an RGB−D camera to the target object and it is
obtained from the depth image (assuming that an RGB−D camera is pointing along
the positive z-axis and the x-axis is equal to 0), and f is the focal length of the lens, as
shown in Figure 6;

X = d× x
z

, (14)

Y = d× y
z

, (15)
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Z = d, (16)

6. The real-world Cartesian coordinates of the target object that are obtained with respect
to an RGB−D camera are transformed to the origin of the mobile robot using the ROS
tf package (transformation from an RGB−D camera coordinate frame to the mobile
robot origin coordinate);

7. Finally, the mobile robot starts to navigate to the target object based on the state
received from the laser rangefinder sensor and an RGB−D camera.
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3.6. Stable Baselines

The control system scheme for the proposed autonomous navigation of mobile robots
in an unknown environment is a DRL. Therefore, the control system problem has been
identified as an instance of DRL. Ideally, one might want to apply a DQL algorithm to learn
the optimal performance. Stable baselines [46] is the most commonly used instantiation of
the DQL algorithm. It is a set of improved implementations of RL algorithms that is a clone
of an OpenAI Baselines [47] library, which uses the TensorFlow framework to create the
DNN used to estimate the Q-function. Hence, the DQN class of the stable baselines with
its extension such as DDQN is used for creating the DNN to estimate the Q-function. The
DRL algorithms used for the autonomous navigation of mobile robots have been built on
the top of the DQN class of the stable baselines, which is a very simple and efficient way
to build the DRL agents. To use the DQN class of the stable baselines, it is first necessary
to inherit an OpenAI Gym, which is used to interface the DQN class with its working
environments. Next, the ROS Kinetic uses Python 2, whereas stable baselines and OpenAI
Gym use Python 3, so to bridge this gap a socket communication was established between
the Gym environment and the ROS-based Gazebo environment. Finally, the DQN class
is connected with ROS and Gazebo for behavior learning of autonomous mobile robot
navigation. The default option of the DQN class, which is a multilayer perceptron (MLP)
with 2 hidden layers of 64 nodes, is used for estimating the Q-function. Table 2 shows the
experimental hyperparameters used for training the DQN and DDQN agents.

Table 2. Experimental parameters for DQN and DDQN agents.

Parameter Value

Discount factor 0.99
Buffer size 1,000,000
Batch size 64

Number of training time steps 150,000
Learning rate 5 × 10−4

Initial epsilon 1
Final epsilon 0.02

Target network update frequency 500
Epsilon annealing factor 0.1
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4. Results

The proposed algorithms for the autonomous navigation of mobile robots in an
unknown indoor environment built in the Gazebo simulator are evaluated in this section.
The target object recognition experiment was first conducted without any obstacles to
verify that the object detector model operates in real time. Then, the proposed DQN agent’s
capability of autonomous navigation is evaluated in an indoor environment of “6 m× 6 m,”
with both static and dynamic obstacles, as shown in Figure 7. In the Gazebo simulation
environment, the following things will take place for DQN agent learning. First, the mobile
robot will search for the target object by exploring the environment. Next, once the mobile
robot discovers the target object, the target object will be labeled with a yellow marker
to indicate that it is the goal location. Finally, the mobile robot will navigate to the goal
location as shown in Figures 8 and 9, respectively, for the DQN agent. The trajectory of
the mobile robot from the random starting location to the target location using the DQN
agent is shown in Figure 10. The mobile robot has an RGB−D camera which is used to
collect real-time RGB and depth images simultaneously from the state of the environment.
Figure 11 shows the depth image of the target object from an RGB−D camera. Similarly, the
DDQN agent capability of autonomous navigation is evaluated in the same environment.
In the training simulation, the simulation experiment completes after 150,000 time-step
limits are exceeded. 150,000 time steps is the maximum number of time steps that the DQN
and DDQN agents take before the simulation experiment auto-terminates. This time step
is selected initially by default to train a DQN agent. The training took around 15 h, so
this time step is used for all discount factors as well as a DDQN agent. However, in each
episode, if the mobile robot either collides with an obstacle or does not reach the target
object location within 100 time-step limits, then, the current episode will auto-terminate. In
other words, a new episode will start if the mobile robot either collides with an obstacle or
reaches 100 time-step limits, and the mobile robot will start from the origin (0, 0) in each
new episode. However, the mobile robot will continue from the last state of the previous
episode if the mobile robot reaches the target object’s location. A maximum number of
100 time steps is used in each episode to prevent over-fitting of the agent’s models. Note
that the proposed method is implemented in Python 3.6 with TensorFlow 1.14.0 and 1.13.2
for target object recognition and autonomous navigation of mobile robots using DRL agent,
respectively, with an Intel Core i7-9750H central processing unit (CPU) and GeForce GTX
1650 graphical processing unit (GPU) with a Max-Q design.
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The average cumulative reward over 100 batch size received by a DQN agent in
the Gazebo simulator after training the mobile robot for 150,000 time steps is shown in
Figure 12. The average cumulative TD error over 100 batch size of a DQN agent in the
Gazebo simulator after training the mobile robot for 150,000 time steps is shown in Figure 13.
The average cumulative reward over 100 batch size received by a DQN agent in the Gazebo
simulator after training the mobile robot for 150,000 time steps for different discount factor
values is shown in Figure 14. The average cumulative reward over 100 batch size received
by a DDQN agent in the Gazebo simulator after training the mobile robot for 150,000 time
steps is shown in Figure 15. The average cumulative TD error over 100 batch size of a
DDQN agent in the Gazebo simulator after training the mobile robot for 150,000 time steps
is shown in Figure 16. Finally, the average cumulative reward over 100 batch size received
by a DDQN agent in the Gazebo simulator after training the mobile robot for 150,000 time
steps for different discount factor values is shown in Figure 17.
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in the Gazebo simulator.
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Real-World Results

The proposed DQL algorithm for the autonomous mobile robot navigation problem in
real unknown indoor environments is evaluated. The mobile robot consists of two sensors:
an RGB−D camera and a laser rangefinder sensor. The mobile robot is operated directly
from a laptop (controller) using the Ubuntu 16.04 system, and another second laptop is
used to remotely control the laptop on the mobile robot using Zoho Assist software. Zoho
Assist software is a cloud-based remote support and access software that allows one to
remotely control another computer. The DQL agent directly controls the mobile robot
from a laptop. The trained DDQN policy is first evaluated in an indoor environment of
“4 m × 3 m”, with one static obstacle and the target object. Next, it is evaluated in an
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indoor environment of “5.1 m × 4.7 m”, with two static obstacles and the target object. The
real-world arena used for evaluating the mobile robot’s autonomous navigation is shown
in Figures 18 and 19, respectively. First, the mobile robot will search for the target object by
exploring the environment starting from its initial location. Then, once the target object
is recognized, the mobile robot will navigate to the target object’s location as shown in
Figures 20 and 21, respectively.
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5. Discussion

In the average cumulative reward per episode of a DQN and DDQN agent as shown
in Figures 12 and 15, respectively, it can be noticed that in the first episodes the average
cumulative reward of the DDQN agent is negative but not for the DQN agent. A DDQN
agent takes a longer time and more episodes to achieve a high cumulative reward, while
a DQN agent takes less time and fewer episodes to even achieve a high cumulative re-
ward. However, the DDQN agent’s cumulative reward is more consistent than the DQN
agent’s. The average cumulative TD error of the DQN and DDQN agents as shown in
Figures 13 and 16, respectively, are decrementing with episodes, which indicates that the
error difference between the target critic and the critic networks of DQN and DDQN agents
are reducing. The average cumulative reward received by the DQN and DDQN agents in
the Gazebo simulator after training 150,000 time steps for different discount factor values
is shown in Figures 14 and 17. Thus, from Figures 14 and 17, it can be observed that a
0.99 discount factor value is the best for obtaining the highest average cumulative reward
per episode for both agents during the training mode. Hence, a 0.99 discount factor value
for training and evaluating the DQN and DDQN agents is used. In the training simulation
environment, the agent learned policies to navigate autonomously while avoiding dynamic
and static obstacles.

The same protocol is followed during the test mode in the Gazebo simulation except
that the learned policies are used for the autonomous navigation of mobile robots. In test
mode, the simulation experiment is only conducted for 100 episodes. Since the proposed
method is end-to-end, the learned policies are deployed to the real mobile robot for au-
tonomous navigation of mobile robots in an unknown indoor environment. The simulation
results of the DQN and DDQN agent’s comparison, which are both trained for the same
number of training time steps in the Gazebo simulator, are evaluated five times in the test
simulation of the Gazebo simulator each for 100 episodes. The DQN and DDQN agents’
mean, sample standard deviation, and max number of goals are compared as shown in
Table 3. The DDQN agent outperforms the DQN agent by 5.06% in reaching the location
of the target object overall because the DDQN agent reduces overestimation in the value
function estimation. Hence, for verifying the mobile robot’s autonomous navigation in the
real-world experiment, only the DDQN agent is used.

Table 3. DQN and DDQN agents’ comparison.

No. of Goals DQN DDQN

Mean 150 158
Sample standard deviation 11.22 10.88

Max 163 171
Note: the results shown in Table 3 are not always constant, which means that the results may be different for the
new test simulation in the Gazebo simulator.
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Finally, the proposed DDQN agent’s autonomous navigation capabilities are evalu-
ated in two different real-world indoor environments. First, the autonomous navigation
capability of the DDQN policy is evaluated in the area of “4 m × 3 m” with one static
obstacle and the target object. Next, the DDQN agent capability of autonomous navigation
is evaluated in the area of “5.1 m × 4.7 m” with two static obstacles and the target object.
Since the proposed approach is an end-to-end approach, the algorithm used in the test
mode simulation is not modified (fine-tuning) during deployment to the real mobile robot.
The real-world environment is completely different from the simulation environment in
terms of area dimension and number of obstacles, yet the proposed algorithm can work de-
cently. An improvement in [28] is made by deploying the algorithm to the real mobile robot.
The real mobile robot is able to search for the target object by exploring the environment.
Once the target object is recognized by the object detector model, the mobile robot will
be able to navigate to the target object’s location by avoiding static obstacles as shown in
Figures 20 and 21. Thus, DQL agents have been successfully built, trained, and evaluated
for autonomous mobile robot navigation in both simulation and real-world environments.
Where both static and dynamic obstacles are used in the simulation environments, however,
in the real-world environments only static obstacles are used.

6. Conclusions

Mobile robot autonomous navigation in unknown indoor environments using DRL
algorithms was presented and evaluated. The proposed DQL algorithms are so powerful
that there is no need for agents to know anything about the environment since they can
still learn how to interact with the environment. The agents can work with any kind of
mobile robot without requiring the kinematics and dynamics of the mobile robot because
the proposed algorithms are model free. The simulation results show that the proposed
autonomous navigation algorithms would allow the mobile robot to navigate autonomously
and free of collisions to the target object location in both static and dynamic obstacles
without the prior development of an environmental map. The object detector model would
enable the mobile robot to recognize the target object in real time.

A practical approach is proposed for collision avoidance and goal-oriented navigation
tasks of mobile robots using DQN and DDQN agents. From the experiment, it has been seen
that the DQN and DDQN agents trained in the Gazebo simulator can be deployed directly
to the real mobile robot without tuning the parameters. The DDQN agent is more robust
and better than the DQN agent in exploring the environment, avoiding collisions, and
reaching the target object location from the simulation experiment in Gazebo. Thus, only
the DDQN agent is used for real-world experiments in an unknown indoor environment.
The real-world experiment is performed in two different environments to demonstrate that
the deployed DDQN policy without a learning algorithm is capable of operating in the
real world. In conclusion, the proposed method has great potential for autonomous mobile
robot navigation compared with SLAM, however, the reward design is the challenging part
of DRL for autonomous mobile robot navigation. In the real-world experiment, the final
model configuration will have a single board computer (NVIDIA Jetson TX2), which has
excellent processing speed with a hex-core CPU, a 256-core NVIDIA pascal GPU, and 8G
LPDDR4 RAM, instead of a laptop as a controller unit.

In the future, a new reward function will be proposed to facilitate the evolution of
different behaviors including: adding new features to the environment; deploying both
the policy and the learning algorithm on the real mobile robot so that the agent continues
to learn to obtain optimum performance in the real world after deployment; making the
environment of real-world experiments identical to the Gazebo simulation experiment
environment; designing a Deep Deterministic Policy Gradient Agents (DDPG) algorithm to
get continuous action space to ensure smooth and continuous motion of the mobile robot;
and designing the backend of a DRL algorithm from scratch (not using the DQN class
of the stable baselines) to access all the callbacks such as loss, average max Q-value, and
cumulative max Q-value.
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