
Citation: Li, S.; Yue, A.; Moore, S.S.;

Ye, F.; Wu, J.; Hong, Y.; Wang, Y.

Temperature-Related N2O Emission

and Emission Potential of Freshwater

Sediment. Processes 2022, 10, 2728.

https://doi.org/10.3390/pr10122728

Academic Editor: Monika

Wawrzkiewicz

Received: 5 November 2022

Accepted: 12 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Temperature-Related N2O Emission and Emission Potential of
Freshwater Sediment
Shuai Li 1,†, Ang Yue 2,3,†, Selina Sterup Moore 4 , Fei Ye 1, Jiapeng Wu 1, Yiguo Hong 1 and Yu Wang 1,*

1 Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education,
Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China

2 School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
3 Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China
4 Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of

Padova, 35122 Padova, Italy
* Correspondence: wangyu@gzhu.edu.cn
† These authors contributed equally to this work.

Abstract: Nitrous oxide (N2O) is a major radiative forcing and stratospheric ozone-depleting gas.
Among natural sources, freshwater ecosystems are significant contributors to N2O. Although temper-
ature is a key factor determining the N2O emissions, the respective effects of temperature on emitted
and dissolved N2O in the water column of freshwater ecosystems remain unclear. In this study, 48 h
incubation experiments were performed at three different temperatures; 15 ◦C, 25 ◦C, and 35 ◦C. For
each sample, N2O emission, dissolved N2O in the overlying water and denitrification rates were
measured, and N2O-related functional genes were quantified at regular intervals. The highest N2O
emission was observed at an incubation of 35 ◦C, which was 1.5 to 2.1 factors higher than samples
incubated at 25 ◦C and 15 ◦C. However, the highest level of dissolved N2O and estimated exchange
flux of N2O were both observed at 25 ◦C and were both approximately 2 factors higher than those at
35 ◦C and 15 ◦C. The denitrification rates increased significantly during the incubation period, and
samples at 25 ◦C and 35 ◦C exhibited much greater rates than those at 15 ◦C, which is in agreement
with the N2O emission of the three incubation temperatures. The NO3

− decreased in relation to the
increase of N2O emissions, which confirms the dominant role of denitrification in N2O generation.
Indeed, the nirK type denitrifier, which constitutes part of the denitrification process, dominated the
nirS type involved in N2O generation, and the nosZ II type N2O reducer was more abundant than the
nosZ I type. The results of the current study indicate that higher temperatures (35 ◦C) result in higher
N2O emissions, but incubation at moderate temperatures (25 ◦C) causes higher levels of dissolved
N2O, which represent a potential source of N2O emissions from freshwater ecosystems.

Keywords: freshwater lake; N2O emission; dissolved N2O; temperature sensitivity

1. Introduction

Nitrous oxide (N2O) constitutes a significant source of global greenhouse gases [1,2],
and it plays a major role in ozone depletion in the stratosphere [3]. Therefore, knowledge
of the production and emission of N2O is of great use for scientists to further understand
the processes of global warming and the destruction of the stratospheric ozone layer [4].
N2O is produced by multiple biological pathways, including nitrification, denitrification,
and dissimilatory nitrate reduction to ammonium [5,6]. Nitrification is generally the main
N2O source under oxic conditions in soil [7], while denitrification is the main source
in the anaerobic environment [8]. Due to different irrigation patterns, such as alternate
wetting and drying (AWD) and continuous flooding (CF), the c showed diverse results.
In AWD irrigation, the peak of N2O emission occurred both during the dry and c period.
While the emission peak occurred only after fertilizer application in CF conditions. [9].
Because of the aerobic and anaerobic alternation provided by AWD irrigation, nitrification
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and denitrification were enhanced. The substrate for microbial activity was provided
by fertilization. Both of them made a high N2O emission. However, the continuously
anaerobic condition of CF was not favorable for N2O emission [10]. Because of the high
content of organic matter and the anaerobic environment of the sediment [11], the N2O
emissions in aquatic systems are generally much greater than those in soil. This is the
result of denitrification processes which greatly dominate over nitrification processes in the
generation of N2O.

Freshwater ecosystems currently produce about 1.8 Tg N-N2O per year and account for
about 25% of global N2O emissions [12]. The N2O emissions from freshwater ecosystems
are influenced by a variety of environmental factors, such as temperature, pH, dissolved
oxygen (DO) and nitrogen concentration in the sediment [13–15]. Among them, temper-
ature has been demonstrated to greatly influence N2O emissions [16,17]. Most studies
suggest that higher temperatures increase microbial activity, which leads to increased N2O
release. For example, the N2O emissions in aquatic ecosystems are normally higher in
summer than in colder periods of the year [18,19]. Additionally, freshwater lakes with
similar annual temperatures have been shown to have comparable N2O emission rates,
while these rates were higher for lakes exposed to lower temperatures [20]. With the recent
findings concerning N2O-reducing processes and microorganisms, the quest to elucidate
the ways by which N2O emissions are affected has become ever more complicated [21].
It has been observed that increased temperatures promote the greater activity of specific
microbes able to reduce N2O to N2, thereby decreasing N2O emissions [22]. On the contrary,
a study has reported that N2O emissions do not respond to variations in temperature [23].
These inconsistent results on the relation between temperature and N2O emissions could
be ascribed to the complicated environmental factors in situ conditions, differing method-
ologies, such as differences in N2O gas collection, or the fact that the dominant microbial
process of N2O generation and reduction varied in the studied habitats [24].

To identify the relationship between temperature and N2O emissions, sediment sam-
ples from a freshwater lake located in Guangzhou, China, were collected for incubation
experiments at three different temperatures; 15 ◦C, 25 ◦C and 35 ◦C. It was hypothesized
that the high N2O might occur at a higher temperature because of the high microbial
activity. Both N2O emissions and the level of dissolved N2O in the water column were
collected in a time series. By measuring the N2O concentration, denitrification activity
and N2O-related gene abundance, the current study aims to (i) show the response of N2O
emissions and dissolved N2O to different temperatures; and (ii) elucidate the microbial
background underlying these variations in N2O characteristics.

2. Materials and Methods
2.1. Experimental Set Up

Sediment and overlying water material were collected in parallel in May 2022 at a
waterbody in Guangzhou, China, to be used for incubation experiments which lasted for
48 h. The annual mean temperature at the site ranges between 18–26 ◦C. The sediment
material was incubated in 10 L incubators (POMEX, Beijing, China), and the collected
overlying water was hereafter added to a ratio of 3:4 (v/v). The incubations were run at
ambient temperatures of 15 ◦C, 25 ◦C, and 35 ◦C controlled by the temperature-controlled
incubators. The first sediment and water samples with three replications were taken
12 h after the onset of the incubation experiment to allow ample time for the microbes to
acclimatize to the new temperature. Thereafter, sampling took place in 4 h intervals until
the 36 h. A final sampling was made at the 48 h.

2.2. Physicochemical Analysis

Sediment ammonium (NH4
+), nitrite (NO2

−), and nitrate (NO3
−) were extracted

from 2 g of fresh sediment with 10 mL of 2 M KCl (1:5 wt./vol). The supernatant was
filtered through a 0.22 µm membrane filter (Jinlong, Tianjin, China) and determined via a
spectrophotometric detection assay [25].
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2.3. Calculating N2O Exchange Flux

The gas exchange flux at the water-gas interface is calculated using the following
equation based on the dissolved N2O:

F = k ×
(
Cobs − Ceq

)
(1)

where F (nmol/m2·h) is the water-air exchange flux. k (cm·h−1) is the gas exchange
rate. Cobs is the measured concentration of dissolved N2O as mentioned above, and
Ceq (nmol·L−1) is the concentration of N2O in the surface water at equilibrium with the
atmosphere, which can be calculated using the following equation [26]:

LnF = A1 + A2(100/T) + A3 × Ln(T/100) + A4 × (T/100)2 + S ×
[
B1 + B2 × (T/100) + B3 × (T/100)2

]
Ceq = F × CN2O in atmosphere × 109 (2)

where F is experiment value in (mol/L·atm), A1 = −165.8806, A2 = 222.8743, A3 = 92.0792,
A4 = −1.48425, B1 = −0.056235, B2 = 0.031619, B3 = −0.0048472. It is assumed that the
concentration of N2O in the atmosphere is 325 × 10−9.

The gas exchange rate k (cm·h−1) is measured by the gas tracer method according to
the Wanninkhof formula model can accurately estimate the gas exchange rate at different
wind speeds [27].

k = 0.31 × U10
2 ×

(
Sc

660

) 1
2

(3)

where U10 is the wind speed in m·s−1 at the height of 10 m above the water surface,
this paper uses the short-term wind speed data corresponding to the sampling moment.
Sc number is the ratio of the dynamic viscosity of water to the diffusion rate of the gas
molecules to be measured. Wanninkhof (1992) gives the relationship between the Sc number
of N2O gas and the water temperature:

ScN2O = 2055.6 − 137.11 × T + 4.3173 × T2 − 0.05435 × T3 (4)

where T is the water temperature.

2.4. Measurements of N2O Emission and Dissolved N2O

Both the emitted N2O in the containers and the dissolved N2O in the overlying water
were measured. The emitted N2O was determined by directly extracting gas samples
from the headspace of each incubation experiment at 0 h, 12 h, 16 h, 20 h, 24 h, 36 h, 40 h,
44 h and 48 h [28]. The dissolved N2O was determined by headspace equilibrium-gas
chromatography [29]: briefly, the water sample was filled into 60 mL serum bottles, and
1 mL of 50% ZnCl2 was added to inhibit the microbial activity [30]. 10 mL helium gas
was injected into the serum bottles to act as a replacement for the water sample in order
to create a headspace. The sample bottle was shaken vigorously for 30 min to equilibrate
the gas-liquid phase in the bottle. After resting for 30 min to 1 h, the headspace volume
was injected into the gas chromatograph for determination [31]. The concentration of N2O
was measured with a gas chromatograph (GC-2014C, Shimadzu, Japan) equipped with an
electron capture detector (ECD).

2.5. Measurement of Denitrification Rate in Sediment

The denitrification rate of the sediment samples was measured at 0 h, 24 h and 48 h at
the set temperatures using the slurry incubation and isotope pairing technique [32]. Fresh
sediments were mixed with water in the ratio of 1:7 (sediment: water) and flushed with
ultrahigh purity He for 30 min to promote the development of anaerobic sediment slurries.
These slurries were pre-incubated in the dark at the set temperature for 36–48 h to remove
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background NOx
− (NO3

− and NO2
−) and dissolved oxygen (DO). After pre-incubation,

the slurries were transferred to 12.5 mL tubes (Exetainers, Labco, High Wycombe, UK) via
injectors. These tubes were divided into two groups: the first group was used to analyze
Fn (15NO3

−/NOx
−), and the second was injected with a 15NO3

− (99.6 atom%) solution
to a final concentration of 100 µM. The tubes were incubated in the incubator (POMEX,
Beijing, China) at the corresponding temperature, and microbial activity was stopped by
adding 0.5 mL of 50% (v:v = 1:1) ZnCl2 at 0 h and 2 h from the beginning of incubation.
The 29N2 and 30N2 produced in the tubes were determined with a membrane inlet mass
spectrometry (MIMS, HPR40, Hiden, UK), and the rates of denitrification were calculated
as follows [33]:

RD = D29 + 2 × P30D29 = P30 × 2 × (1 − Fn)× Fn
−1 (5)

where RD (nmol N g−1 h−1) represented the total rate of 15NO3
−—based denitrification,

D29 was the 29N2 production rate from denitrification, P30 (nmol N g−1 h−1) was the total
30N2 production rate; Fn represented the fraction of 15N in total NO3

−.
The N2O saturation was calculated based on the actual concentration of dissolved

N2O and the saturated concentration of N2O at corresponding temperatures.

σ = (C − C0)/C0 (6)

where C (nmol/L) represents the actual concentration of dissolved N2O, C0 is the saturated
concentration of N2O at gas-liquid equilibrium.

2.6. Statistical Analysis

To test significant differences between samples, one-way analysis of variance (ANOVA)
was used for the normally distributed variables. The Pearson correlation or nonparametric
Spearman correlation coefficients were then calculated to examine the relationship between
samples. A significance level of p < 0.05 was used for all statistical analyses, which were
carried out using the SPSS 22.0 software platform (SPSS Inc. Chicago, IL, USA).

Further explanation of DNA extraction, sequencing, and quantitative PCR (Table S1)
can be found in the Supplementary Materials.

3. Results
3.1. N2O Emission and Dissolved N2O

During the 48 h incubation, higher levels of N2O emission were observed at 35 ◦C
(2.3 mmol N2O/g soil average), which was higher than that at 25 ◦C (1.7 mmol N2O/g soil
average) and 15 ◦C (1.6 mmol N2O/g soil average). The highest N2O emission at 25 ◦C
and 35 ◦C both occurred at 16 h, which were 2.3 and 3.5 mmol N2O/g soil, respectively. At
15 ◦C, the highest N2O emission was found at 36 h. After 36 h, the N2O emissions were
similar across all three temperatures, and all had a downward tendency (Figure 1a).

The dissolved N2O showed a different pattern to the N2O emission (Figure 1b); the
average dissolved N2O at 25 ◦C (140.9 nmol/L) was considerably higher than those at
35 ◦C (74.2 nmol/L) and 15 ◦C (70.6 nmol/L). The highest concentrations at 25 ◦C occurred
between 12 h and 20 h, with concentrations around 215.9 and 250.3 nmol/L. The dissolved
N2O at 15 ◦C and 35 ◦C were low and similar to each other at an average of 70.6 and
74.2 nmol/L, respectively. Furthermore, the dissolved N2O after 36 h was similar across
the three temperatures.
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Figure 1. N2O emission (a), dissolved N2O (b), estimated N2O exchange flux (c) and N2O saturation
(d) at incubations of 15 ◦C, 25 ◦C and 35 ◦C.

The estimated N2O exchange flux was greatest at 25 ◦C with an average flux of
35.1 nmol/m2·h, which was significantly higher than that at 15 ◦C (ANOVA, p = 0.085)
and 35 ◦C (ANOVA, p = 0.006). Incubation at 35 ◦C demonstrated the lowest estimated
N2O exchange flux at 13.8 nmol/m2·h (Figure 1c, Table S2). The N2O saturation was
highest between 12 h and 20 h at 25 ◦C, ranging between 2820.3% and 3038.3% (Figure 1d).
Although the dissolved concentrations were lower at 15 ◦C and 35 ◦C, they were nonetheless
saturated at 785.2–847.5% and 1515.5–1626.6%, respectively.

3.2. Denitrification Rate in Sediment and the Concentration of Inorganic Nitrogen in Water

Higher mean denitrification rates in sediment were observed at 25 ◦C and 35 ◦C (12.5
and 12.8 nmol/g·h) than that at 15 ◦C (8.2 nmol/g·h). The denitrification rates increased
significantly with incubation time, in which higher rates were observed at 24 h than at 0 h in
all three temperatures (ANOVA, p = 0.031, 0.057 and 0.025, respectively). The denitrification
rate at 48 h was also higher than that at 24 h at 25 ◦C. The anammox rates were lower
than the denitrification rates and showed minor variation with the denitrification rates
(Figure 2a–c).

The increase in the denitrification rate was in accordance with the decrease in NO3
−

concentration. Clear decreases in NO3
− from 27.4 to 6.5 µmol/L and 27.4 to 0 µmol/L were

observed at 25 ◦C and 35 ◦C, respectively (Figure 2d). NO2
− was detected at a relatively

low concentration in the overlying water at 35 ◦C with an increase from 2.4 to 3.9 µmol/L
(Figure 2e). The NH4

+ content of the overlying water increased from 0 to 6.1 µmol/L at
15 ◦C, 0 to 12.8 µmol/L at 25 ◦C and 0 to 22.2 µmol/L at 35 ◦C before the 15 h, respectively.
No clear trend was observed after 20 h of incubation (Figure 2f).
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3.3. Abundance of N2O-Related Functional Gene in Sediment

The abundance of functional genes related to denitrification (nirK, nirS, nosZ I and
nosZ II) kept relatively stable and had no obvious trend over time (Figure S1). The abun-
dance of the nirK gene varied from 3.43 × 108 to 1.42 × 109 copies/g dry soil, which was 1
order of magnitude higher than that of nirS. There was no significant difference in nirK gene
abundance among the three temperatures. The abundance of the nirS gene was significantly
higher (ANOVA, p = 0) at 15 ◦C (2.97 × 108 copies/g dry soil) than at 25 ◦C (2.49 × 108

copies/g dry soil) and 35 ◦C (2.41 × 108 copies/g dry soil) (Figure 3a). The abundance
of the nosZ II gene was 1 order of magnitude higher than nosZ I. The abundance of the
nosZ II gene was significantly higher (ANOVA, p = 0.005) at 15 ◦C (1.55 × 108 copies/g
dry soil) than at 25 ◦C (1.34 × 108copies/g dry soil) and 35 ◦C (1.33 × 108 copies/g dry
soil) (Figure 3b). The gene abundance nirS + nirK was 5 to 10 times higher than that of
nosZ I + nosZ II, and there was no significant difference among the ratio of nirS + nirK/nosZ
I + nosZ II at the three incubation temperatures (Figure 3c).
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3.4. Factors Determining the N2O Generation

At 15 ◦C, the dissolved N2O and N2O emissions were mainly related to the NO3
−

(Figure S2, Table S3). The dissolved N2O in the overlying water increased from 66.4 nmol/L
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to 91.1 nmol/L, along with higher NO3
− content (Figure 4a). At 25 ◦C, the dissolved N2O,

N2O emission and the derived ratio parameters were mainly related to the ratio of nirS/nirK
and nosZ I/nosZ II. Especially, the dissolved N2O in the overlying water had a positive
correlation with the ratio of nirS/nirK (p < 0.05) (Figure 4b). At 35 ◦C, the dissolved N2O,
N2O emission and the derived ratios were mainly related to NO3

−, NO2
−, NO3

−/DIN
and NO2

−/DIN. N2O emission was positively correlated with the NO3
− (p < 0.05) that the

N2O emission increased from 1.1 mmol N2O/g soil to 3.5 mmol N2O/g soil as the NO3
−

increased from 0 mg/L to 2 mg/L (Figure 4c).
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4. Discussion

In this study, the average N2O emission at 35 ◦C was 1.5 to 2.1 times higher than
that at 25 ◦C and 15 ◦C, suggesting that the N2O generation was temperature sensitive in
freshwater sediment. This is in accordance with previous studies [34,35].

For example, the N2O emissions were nearly 36 times higher in summer than in winter
in polar freshwater lakes, which was ascribed to the enhanced rate of coupled nitrification-
denitrification in summer [34]. Similarly, N2O emissions were 2 times higher at 25 ◦C than
that at 15 ◦C in soil, in which the faster growth of the microbial community induced a
higher N2O emission at higher temperatures [35]. Likewise, the N2O emission was found
to be more sensitive to temperature in wastewater treatment plants: the N2O released
from the water-gas interface was about three times higher at 35 ◦C than that at 25 ◦C,
and the denitrification rate accordingly increased by 62% when the temperature increased
from 25 ◦C to 35 ◦C [36]. Hence, higher temperatures directly increased the activity of
denitrification as well as the N2O emission [37,38]. Moreover, the increased temperatures
could enhance N2O emission by decreasing the organic carbon, thereby increasing the
likelihood of incomplete denitrification and, therefore, also the likelihood for N2O to be
produced as an intermediate product [39].

It was noted that the highest saturation and estimated exchange flux of N2O were
observed at 25 ◦C, which were both about 2 times higher than those at 35 ◦C and 15 ◦C. The
dissolved N2O was in a state of oversaturation (667.3%, 1811.2% and 1408.4% at 15 ◦C, 25 ◦C
and 35 ◦C, respectively) in all samples, suggesting that N2O had a high potential for being
released into the atmosphere. The saturation of N2O in the current study was higher than
those reported from natural habitats, including freshwater reservoirs, rivers and estuaries,
with a saturation of 84% to 745%, 152–451% and 45–2187%, respectively [40,41]. This
could be due to the relatively stable and inert environmental conditions in the incubation,
allowing for the accumulation of N2O in water. The microbial activity and the solubility of
N2O in the water were two key factors determining the dissolved N2O in in situ conditions.
Higher temperatures stimulated microbial activity and generated more N2O [35] but
decreased the solubility of N2O in water [42]. Henry’s constant, which is also called the
air-water partition coefficient, rested on the temperature condition [43]. Henry’s constant
of N2O in water increased from 4146 kH/Pa·m3·mol−1 to 6010 kH/Pa·m3·mol−1 when the
temperature increased from 25 ◦C to 40 ◦C [43]. Theoretically, the N2O solubility in pure
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water decreased by 23% when the temperature increased from 25 ◦C to 35 ◦C [44]. In a field
survey, the N2O solubility was 125–385% less than in the current ex-situ study, which can be
attributed to more N2O being diffused into the headspace and the slower re-dissolution of
N2O caused by higher accumulation in the gas phase at higher temperature [36]. However,
it is important to note the dissolved N2O merely suggests a potential for emission and not
an actual emission per se. The N2O in water still had a great probability of being reduced
by microorganisms carrying the nosZ gene before being emitted into the atmosphere [21].

The increase in temperature might influence many other factors such as soil organic
carbon, nutrient availability and mineralization rate, etc. For example, the temperature
sensitivity of soil organic carbon is lower in subtropical forests but higher in temperate
forests. The C:N ratio of soil is significantly and positively correlated with organic carbon
temperature sensitivity [45].

In this study, there was a significant increase in denitrification rates over time, and
a positive correlation was observed between the denitrification rate and N2O emission at
the three temperatures, which indicated that the denitrification processes might dominate
the N2O emission. This is in accordance with previous studies in freshwater [46], tidal
wetlands [47], riparian zones [48] and urban rivers [49], where the higher denitrification
rates corresponded to higher N2O fluxes. In addition, the habitats in which denitrification
dominates the N2O emission are usually sinks for NO3

− [48]. It has previously been
observed that the NO3

− content shows a strong correlation with the N2O emission in many
habitats, including deep wells [50], freshwater rivers and lakes, etc. [51,52], and indeed,
the NO3

− content has been used as an indicator for the N2O emission [53]. In this study,
the NO3

− showed a sharp decline, especially at high temperatures, presenting a negative
relationship with the N2O emission, which confirmed the dominant role of denitrification
in N2O emission. However, it cannot be ruled out that the DNRA pathway does not play a
role since an increase of NH4

+ was concurrently observed. In the present study, the total
nir/nos ratio was between 5 and 10, indicating that the microbial community had a higher
potential to produce N2O than to reduce it [52,54]. It was confirmed by the high ratio of
nirK to nirS, which was 1.2 to 2.4, that nirK-type denitrifies are more likely to perform
incomplete denitrification and thereby contribute more to N2O emissions [21].

5. Conclusions

The present study showed that the highest N2O emission in freshwater sediment is
observed at an elevated temperature of 35 ◦C. This was demonstrated through a series
of incubation experiments with a temperature gradient at 15 ◦C, 25 ◦C and 35 ◦C. In
contrast, the dissolved N2O in the water column had a different pattern than that of N2O
emission; the highest concentration was namely observed at 25 ◦C, indicating that the
highest potential of N2O emission occurs at moderate temperatures. The denitrification
rates significantly increased during incubation, while the rates at 25 ◦C and 35 ◦C were
much greater than that at 15 ◦C, which coincides with the N2O emissions at the three
temperatures. The NO3

− content was a key indicator of denitrification, which decreased
along with the increase in N2O emissions, thereby presenting a negative relationship
between them. The nirK-type denitrifier dominated denitrification and N2O generation,
while the nosZ II-type denitrifier dominated N2O reduction. The current analysis indicates
that high temperatures (35 ◦C) may enhance denitrification-derived N2O emissions, and
moderated temperatures (25 ◦C) have higher dissolved N2O, making it a potential source
of N2O emissions from freshwater ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr10122728/s1, Figure S1: The variation of N2O-related functional
genes abundance over time; Figure S2: The heatmap of Pearson’s correlation coefficients; Table S1:
Primer pairs used in this study and correspondent qPCR protocols; Table S2: Pearson’s correlation
coefficients between NO3

−, NO2
−, NH4

+, DIN, NO3
−/DIN, NO2

−/DIN, NH4
+/DIN, nirS/nirK,

nosZ I/nosZ II and DN2O (dissolved N2O in overlying water), EN2O (N2O emission), DN2O+EN2O,
DN2O/DN2O+EN2O, EN2O/DN2O+EN2O, EN2O/DN2O. (*: p < 0.05; **: p < 0.01; ***: p < 0.001);
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Table S3: The estimated N2O exchange flux at three different temperatures. References [55–58] are
listed in Supplementary Materials.
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