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Abstract: Renewable source-derived carbon is found to be a green alternative catalyst to zeolite for
the pyrolysis of plastics. However, only polyethylene (PE) catalytic pyrolysis over biomass-derived
carbon has been extensively studied. In this work, carbon was produced from industrial organic solid
waste using different activation agents, and their catalytic performance on the thermal degradation of
typical polymers, namely PE, polypropylene (PP), polystyrene (PS), and polyethylene terephthalate
(PET) were investigated. The degradation mechanisms and the roles of different active sites of the
carbons are discussed. Steam failed to activate the carbon, which has a low specific surface area
(6.7 m2/g). Chemical activation using H3PO4 and ZnCl2 produces carbons with higher specific
surface area and more porosity. The pyrolysis characteristics of LDPE, PP, PS, and PET catalyzed
by the carbons were studied using TGA and a fixed-bed reactor. The thermogravimetric results
indicate that all three carbons reduce the pyrolysis temperature. The analysis of the products shows
that the P- and Zn-involved acid sites on the AC-HP and AC-ZN change the reaction pathway of
plastics and promote: (1) C-C cracking and aromatization of polyolefins; (2) the protonation of phenyl
carbon of PS to yield higher benzene, toluene, and ethylbenzene; and (3) the decarboxylation of
the terephthalic acid intermediate of PET, resulting in higher CO2 and benzene. In addition, the
high-value chemicals, long-chain alkylbenzenes, were found in the liquids of AC-ZN and AC-HP. The
long-chain alkylbenzenes are probably formed by acid-catalyzed alkylation of aromatic hydrocarbons.
This study provides basic data for the development of a cheap catalyst for plastic pyrolysis.

Keywords: industrial organic solid waste; carbon; pyrolysis of plastics; catalysis

1. Introduction

According to forecasts, the global commodity plastics market size is estimated to grow
from USD 468 billion in 2020 to nearly USD 600 billion by 2025. Plastic waste generated
in this manner is of serious concern since most of it ends up in landfills or is disposed
of in the natural environment, endangering the environment [1,2]. Roughly 80% of the
commodity plastics are polyethylene (PE), polystyrene (PS), and polyethylene terephthalate
(PET) [3]. Incineration and mechanical recycling are not always feasible or sustainable for
these plastics. Catalytic pyrolysis of plastics to produce valuable chemicals and fuels is a
potentially appealing solution to eliminate plastic waste.

In China, industrial solid waste is a source of environmental contamination [4]. It
is forecasted [5] that the amount of industrial solid waste in China will be 488 billion
tons in 2025. However, only 50% of industrial solid waste was recycled [5]. A significant
portion of the generated industrial solid waste was randomly disposed of or unreasonably
treated [6]. Recently, more stringent control has been exercised on industrial solid waste
management in China. A new ordinance stipulates that industrial solid waste disposal
should be considered pollutant discharge and obey the pollution administrative permit
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regulations. In such a scenario, the industrial solid waste treatment scale will increase
significantly shortly.

The main components of industrial organic solid waste are carbon-rich materials,
including paper, textiles, wood, plastics, rubber, etc. The current primary disposal and
treatment methods for industrial organic solid waste are landfilling and co-incineration
in municipal solid waste incinerating plants or coal-based power plants [7]. Moreover,
valorizing organic waste into valuable chemicals and materials through a decentralized
thermal conversion setup may be an alternative option.

Catalytic thermal conversion of carbon-rich feedstock into solid, liquid, and gaseous
fuels over biomass-derived carbon catalysts has received considerable interest [8–10]. In
recent years, carbon-biomass-based carbon was found to be a low-cost and sustainable
catalyst for converting waste plastics [11,12]. Our previous works found that municipal
solid-waste (MSW)-derived char can be used as a catalyst for tar reforming and syngas
conversion [13,14]. The results showed that the MSW-derived char had better performance
than the biomass (wheat straw)-derived char. Our studies indicated that MSW could also
be a sustainable carbon source used to prepare carbon-based catalysts. In this context, since
industrial organic solid waste has similar composition to municipal solid waste (MSW), we
speculated that industrial organic solid waste could be a good precursor of carbon catalysts
used to decompose plastics.

The carbons’ performance is affected by the characteristics of the raw materials and
the activating method. Tsyntsarski et al. [15] studied the catalytic performance of car-
bon prepared with different materials (peach stones, olive stones, and low-rank coal) for
methanol decomposition. The structural parameters and acidic groups of carbon prepared
from various raw materials differ. In addition, Fu et al. [16] found that high ash content
may adversely affect the surface and pore structure development. Yeganeh et al. [17] also
studied raw material's effect on the carbon’s properties. They found that carbon from the
hard shells of apricot stones had the best adsorption properties and the largest surface
area. Industrial organic solid waste characteristics, such as organic structure and mineral
composition, differ from biomass. The feasibility of applying industrial organic solid waste
as carbon catalyst precursor should be evaluated.

The activating method changes the porosity, surface areas, and the surface functional
groups, resulting in the variation of catalyst performance and even the degradation path-
ways. Sun et al. [12] investigated the catalytic reaction of mixed plastics (PE, PP, and
PS) on biomass-derived carbon activated by three activators (ZnCl2, H3PO4,, and KOH).
The results indicated that the Lewis/Bronsted acid formed on the carbon facilitates the
dehydrogenation process, hydrogen transfer reaction, Diels–Alder reaction, etc., promoting
the conversion of olefins to aromatics. Zhang et al. studied the phosphoric acid activating
condition on converting waste plastics into jet fuel [11]. They found the yield and composi-
tion of fuel can be regulated by adjusting the activating condition. However, the published
studies only investigated the effect of activating conditions on the catalytic pyrolysis of
plastic PE and mixed plastics over the biomass-derived carbon. Other major waste plastics,
such as PP, PS and PET, were not studied.

This paper investigated the potential of applying industrial organic solid waste as
a carbon catalyst precursor for the catalytic pyrolysis of waste plastics. The effects of
activating method on the catalytic degradation pathways of different plastics (PE, PP, PS,
and PET) were studied. The correlation between the active sites and the degradation
mechanisms of various plastics was established.

2. Materials and Methods
2.1. Raw Materials

Industrial organic solid waste was collected from a municipal waste incineration plant
in Zhejiang Province. The collected waste was dried, crushed, and sieved to a particle
size of 0.4–0.8 cm. The industrial organic solid waste is composed of plastics, fabrics,
paper, and wood. The plastics used in this study include low-density polyethylene (LDPE),
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polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET). Plastic samples
were purchased from China Petroleum & Chemical Corporation. The composition and
properties of solid waste are listed in Table 1.

Table 1. Characteristics of the industrial organic solid waste.

Property Component Concentration (wt.%)

Proximate analysis (wt.%, ad a) Moisture 1.26
Ash 25.23

Volatile 49.95
Fixed-carbon 23.56

Ultimate analysis (wt.%, db b)
C 42.51
H 6.58
N 0.55

O c 50.36
Physical composition(wt %, ad a)

Plastics 15
Fabrics 20
Paper 25
Wood 40

a ad: Air-dry basis. b db: Dry basis. c O: Obtained by mass balance.

2.2. Sample Preparation

Steam, H3PO4, and ZnCl2 were applied to prepare the carbon. The obtained carbons
were abbreviated as c, AC-HP, and AC-ZN, respectively. It should be mentioned that name
of AC-ST is just to be brief. The surface area of steam/carbon is low according to the BET
test; thus, AC-ST should not be considered activated carbon.

The AC-ST was prepared via the pyrolysis/activation process. The industrial organic
solid waste was pyrolyzed in nitrogen at 800 ◦C for 1.5 h and then activated at a steam
flow rate of 7.6 g/min at 800 ◦C for 2 h. For AC-HP and AC-ZN, the waste was firstly
soaked with a solution of H3PO4 or ZnCl2 overnight. Then, the mixtures were dried and
carbonized under an N2 atmosphere at 500 ◦C for 2 h. The carbonized products were
washed with distilled water until the pH reached neutral. The mass ratios of H3PO4 to
industrial organic solid waste were 1:1, 1.5:1, and 2:1 (abbreviated as AC-HP1, AC-HP1.5,
AC-HP2, respectively). The mass ratios of ZnCl2 to industrial organic solid waste were
0.5:1, 1:1, and 1.5:1 (abbreviated as AC-ZN0.5, AC-ZN1, AC-ZN1.5, respectively).

2.3. Performance Test and Product Analysis

The catalytic pyrolysis of plastics was carried out on a two-staged fixed-bed reactor
(Figure 1). The plastic and carbon were filled in the upper and bottom stages. The quartz
wool was used to support the plastic and catalyst. Before the reaction, the reactor was
purged with 100 L/min nitrogen for 10 min. When the bottom stage was kept at a constant
temperature of 500 ◦C, the upper stage was heated to 500 ◦C at a heating rate of 10 ◦C/min
with a dwell time of 20 min. The liquid products were collected in two condensing bottles
cooled with dry ice. The gas products were sampled with gas bags. After the reaction, the
condensing bottles, quartz tubes, and connecting tubes were weighed to calculate the oil
and solid residue mass. The gas yield was calculated by mass balance.
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Figure 1. Catalytic pyrolysis setup.

The liquid products were analyzed by gas chromatography-mass spectrometry (GCMS-
QP2010, Shimadzu, Japan) equipped with an RTx-5 column. The gas products were (CO,
CO2, H2, O2, CH4, C2H4, C3H6, C4H8, etc.) analyzed by a gas chromatograph equipped
with a TCD and an FID (7820 A, Agilent, Santa Clara, CA, USA)

The thermogravimetric analyzer studied the pyrolysis characteristics of plastics mixed
with carbon. The samples of approximately 10 mg carbon and 10 mg plastics were heated
from room temperature to 800 ◦C at a heating rate of 10 ◦C/min under 100 mL/min N2.

The adsorption/desorption isotherms were measured on the Micromeritics ASAP 2420
instrument. All samples were degassed at 573 K for 6 h. The specific surface area was cal-
culated according to the Brunauer–Emmett–Teller (BET) theory. The information on the mi-
cropore and mesopore was obtained by the HK and BJH methods. Identifying surface func-
tional groups on carbon was carried out using a Fourier transform infrared spectroscopy
(FTIR). Graphite properties of the samples were evaluated by Raman spectroscopy.

We also calculated the activation energy. The plastic pyrolysis reaction follows the non-
isothermal and heterogeneous reactions [18]. The kinetics of pyrolysis is usually described
by Equation (1):

dα

dt
= k f (α) = A exp(− E

RT
) f (α) (1)

where t is the pyrolysis time (min), dα/dt is the rate of conversion during pyrolysis, f (α ) is
the differential reaction model to be decided by the reaction. E, A, and R are the activation
energy (KJ/molK), pre-exponential constant, and the universal gas constant (8.314 J/molK),
respectively. T is the absolute temperature (K).

α is the extent of the reaction (%) during the thermal degradation. α can be defined as
the ratio of weight loss at time t to the total weight loss corresponding to the degradation
process, α = M0−Mt

M0−M f
, where M0 is the initial mass of the sample, and Mt and Mf are the mass

at time t and the final mass of the sample, respectively.
The heating rate during the experiment is β = dT / dt = const, combining β into

Equation (1) as:
dα

dT
= (

A
β
) exp(− E

RT
) f (α) (2)

Integrating both sides of Equation (2) by the Coats–Redfern method, multiplied by
1/T2, and taken by the natural logarithm:

ln[
G(α)

T2 ] = ln
AR
βE

− E
RT

(3)

y = ln[G(α)
T2 ] and x = 1/T are linearly fitted, and E can be calculated from the slope. G(α) is

the integral reaction model function to be determined for a particular pyrolysis process. The
pyrolysis intervals in Table S1 were used to calculate the activation energy of the reaction.
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3. Results and Discussion
3.1. BET, FTIR, and Raman Spectroscopy

Table 2 shows that AC-HP and AC-ZN have a specific surface area of 606.08 m2/g and
752.95 m2/g and an average pore size of 2.34 nm and 2.67 nm, respectively. Contrarily, the
specific surface area of carbon prepared by steam activation is only 6.68 m2/g, and the total
pore volume is about 0.018 cm3/g, suggesting that the steam activating condition may not
effectively activate the industrial organic solid-waste-derived carbon. The AC-HP and AC-
ZN show the typical IV isotherm and H4 hysteresis curves, indicating they are mesoporous
materials. Figure S1b shows that the carbon contains micropores and mesopores [19].

Table 2. Mass yields of the obtained carbon materials and their surface areas and pore properties.

Sample Yield
(wt.%) SBET (m2/g) a SMicro (m2/g) b SExt (m2/g) c VTotal

(cm3/g) d
VMeso

(cm3/g) b DAverage (nm) e

AC-ST 18.72 6.68 1.77 4.91 0.02 0.01 11.70
AC-HP 45.74 606.08 286.28 319.80 0.34 0.18 2.34
AC-ZN 48.04 752.95 458.41 294.54 0.46 0.15 2.67

a Calculated by multipoint BET method. b Determined by t-plot method. c By difference. d Calculated from
absorbed volume of nitrogen for a relative pressure P/P0 of 0.99. e Determined by BJH method.

The FTIR spectra of AC-HP and AC-ZN are shown in Figure 2, which identify the func-
tional groups on the carbons. All the samples contain peaks at 1164 cm−1, 1690–1594 cm−1,
and 3500 cm−1. The peak at 1164 cm−1 is related to C-O vibrations, whereas the peak
at 1690–1594 cm−1 is related to C=O stretching vibrations [20]. The peak at 3500 cm−1

corresponds to the −OH stretching, which might be related to the adsorbed water, carboxyl
groups, or −OH vibrations of the phosphate group in AC-HP [21,22]. The slight shoulder
at 1265 cm−1 implies the presence of P=O groups on carbon [23,24].

The Raman spectrum (Figure 2) has two peaks near 1598 cm−1 and 1350 cm−1, referred
to as the G (graphite or ordered) and D (disordered) bands, respectively [25]. The intensity
ratio of the two peaks was determined using Gaussian fitting. The ID/IG for AC-HP and
AC-ZN are 0.94 and 0.97, respectively, indicating AC-HP and AC-ZN have a similar degree
of graphitization. The degree of graphitization of the used AC-HP and AC-ZN did not
change significantly, and their ID/IG values are 0.98 and 1.05, respectively.

3.2. Pyrolysis Behaviors of Plastics and Carbon Mixture

Figure 3 shows TG and DTG curves of catalytic pyrolysis of plastics over carbons.
The carbon was evenly mixed with the plastics. Temperatures from weight loss above
0.02 wt./◦C% to weightlessness are considered pyrolysis intervals. The temperature at the
maximum weightlessness rate is denoted as Tpeak. Table S1 lists the pyrolysis intervals
and Tpeak.

The AC-ST, AC-HP, and AC-ZN were thermally stable before 500 ◦C. All four raw
plastics did not lose weight when the pyrolysis temperature was below 350 ◦C. The PS
has the lowest pyrolysis interval (348–460 ◦C) and Tpeak, while the LDPE has the highest
interval (398–500 ◦C) and Tpeak. These data were consistent with the findings that the
thermal stability order of different plastics was LDPE > PP > PS [26].
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When the plastics were catalytically pyrolyzed with AC-ST, AC-HP, and AC-ZN
(Figure 3), the initial degradation temperatures and Tpeak of LDPE, PP, and PS were reduced
by 20–50 ◦C and 20–30 ◦C, respectively, indicating that the carbons decrease the thermal
stability of LDPE, PP, and PS. However, for PET, the carbons did not significantly change
their initial degradation temperatures and Tpeak. The reduction effect of AC-ST, AC-HP, and
AC-ZN differs with different plastics. No significant difference was found in the decrease
in initial degradation temperature and Tpeak for LDPE over three carbons. Contrarily, the
AC-HP and AC-ZN have a noteworthy effect on initial degradation temperature and Tpeak
on PP and PS.

The activation energies are shown in Table S1. AC-ST, AC-HP, and AC-ZN all reduce
the activation energy of plastic pyrolysis. The order of reducing effect on the pyrolysis
activation energy of plastics is AC-ST < AC-HP < AC-ZN.
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Figure 3. The TG and DTG curves of (a) LDPE, (b) PP, (c) PS, (d) PET, and (e) carbon catalyst thermal
pyrolysis and catalytic pyrolysis with carbons. Conditions: heating rate = 10 ◦C/min; N2 atmosphere;
carbon 10 mg and plastic 10 mg.
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3.3. Catalytic Performance of Carbon on Pyrolysis of Plastic
3.3.1. Product Yields

Figure 4 shows the yields of products of catalytic pyrolysis of LDPE, PP, PS, and PET.
We also conducted thermal pyrolysis of LDPE, PP, PS, and PET without carbon, and the
products are mainly solid-phase wax at room temperature with limited gas production.
Under the catalytic condition, all three carbons enhance the depolymerization of LDPE,
PP, and PS but with different effects. For LDPE, the AC-ST, AC-HP and AC-ZN increased
the yields of gaseous products to 28.59, 63.84, and 66.00 wt.% and the yields of liquids to
10–60% wt.%. The catalytic pyrolysis of PP and PS yields mainly liquid (53.66–67.74 wt.%
and 67.2–88.16 wt.%, respectively).
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The carbons enhance the decomposition of PET to a lesser extent than LDPE, PP, and
PS, as PET has higher thermal stability [27]. AC-ST and AC-ZN produce 50 and 70 wt.%
gas, mainly derived from the decarboxylation of constituent monomers [28]. Under the
catalysis of AC-HP, the catalytic pyrolysis of polyethylene terephthalate (PET) produces
about 66 wt.% solid residues indicating the AC-HP is not highly effective in enhancing the
decomposition of PET.

3.3.2. Product Compositions

Figures S2 and S3 show the carbon number distribution of the products produced
by the catalytic cracking of LDPE and PP over AC-ST, AC-HP, and AC-ZN. The product
obtained without carbon contains components that cannot be identified and analyzed by
the herein applied GC-MS methods. The carbon number of liquid LDPE catalytic pyrolysis
products is mostly less than 25. The average carbon number of liquid of LDPE follows
the order of AC-ZN < AC-HP < AC-ST. The lower average number of AC-ZN and AC-HP
indicates that the AC-ZN and AC-HP have a higher catalytic effect on promoting the
scission of the LDPE backbone. This is because Zn and P in the carbon create active acid
sites for forming carbonium ions or carbenium ions. The lower average carbon number of
AC-ZN than that of AC-HP was probably due to two reasons. Firstly, the Zn-correlated
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Lewis acid may cooperate with the Bronsted acid to enhance the activation of the C-C bond.
Secondly, AC-ZN has a higher surface area and thus has more accessible active sites than
AC-HP.

Table 3 shows the compositions of the liquid products produced by LDPE and PP
catalytic cracking. LDPE's liquid composition mainly includes alkanes, olefins, and aromat-
ics and varies with carbons. Under the catalysis of AC-ST, straight alkanes and straight
olefins in the diesel range (C8-21) are the primary compounds in liquid, with a fraction of
58.8% and 31.89%, respectively. No aromatics were found in the product of LDPE under
the catalysis of AC-ST. The alkanes in the liquid present a random distribution spectrum,
indicating that the random chain-breaking [29] occurred.

Table 3. The composition of liquid obtained by the cracking of LDPE and PP.

Product LDPE (area%) PP (area%)

AC-ST AC-HP AC-ZN AC-ST AC-HP AC-ZN

Alkanes 57.34 60.21 48.56 17.88 24.65 14.11
Straight Alkanes 57.34 60.21 48.56

Branched Alkanes 4.93 2.08 11.9
Cycloalkanes 12.95 22.57 2.21

Alkenes 36.82 13.68 67.44 29.56 43.84
Straight Alkenes 36.82 0.42 4.44 2.1

Branched Alkenes 13.26 61.71 1.24 41.75
Cycloalkenes 1.29 26.22 2.09

Aromatics 22.02 49.77 0.71 37.06 41.47
Benzene 0.57
Toluene 0.36 0.66 5.16

Ethylbenzene 0.34 1.12 0.58
Xylene 0.61 2.11 2.04 11.71

Mesitylene 0.16 0.5 0.71 19.01 15.76
Chain alkyl Aromatics 10.61 25.62 14.11 6.6

Naphthalenes 7.73 11.09 1.9 1.09
Other PAHs 2.21 8.67

Others 3.62 3.7 1.67 13.97 8.73

The acid sites on AC-HP and AC-ZN promote the conversion of olefins intermediates
to aromatics. When AC-HP is used as a catalyst, the olefins reduce to 13.68%, and the
aromatics increase to 22.02%. In addition, data show that the AC-HP yields relatively
higher alkanes in gas, indicating that hydrogen transfer occurs during aromatic formation
on AC-HP. The published studies regarding the conversion of polyethylene to aromatics
over carbon have no solid evidence to give conclusive results of the reaction mechanism.
It is usually believed that the transformation of alkanes or olefins to aromatic over solid
acids is through the cyclization of two olefins or diolefins with the companion of hydrogen
transfer or direct dehydrogenation [30,31], depending on the nature of the acid. The
Bronsted acid, such as COOH, on AC-HP catalyzes cyclization of olefins and hydrogen
transferring to form aromatics. The Lewis acid groups, such as P=O and C=O, may catalyze
dehydrogenation. Meanwhile, the cooperation of P=O and C=O may also occur—P=O can
act as an electron donor to enhance the C=O active site's dehydrogenation activity [32].
When the AC-ZN catalyzes the LDPE pyrolysis, the olefin fraction further reduces to zero,
and aromatics increase to about 53%. The high aromatics yield over AC-ZN relates to its
presence of the Zn-involved acid sites. The publications show that the aromatization of
olefins over Zn-involved acid sites occurs mainly through cyclization of diolefins followed
by direct dehydrogenation. This reaction mechanism requires lower energy than that over
the Bronsted acid site, yielding higher aromatics.

Interestingly, we also found the long-chain alkylbenzenes, a high-value chemical, in
the liquids of AC-ZN and AC-HP. The long-chain alkylbenzenes are probably formed by
acid-catalyzed alkylation of aromatic hydrocarbons [12].



Processes 2022, 10, 2668 10 of 17

Table 4, Figures S4 and S5 show the composition carbon distribution of the products
produced by catalytic cracking of PS and PET over AC-ST, AC-HP, and AC-ZN. The primary
component in the liquid of PP catalyzed by AC-ST is branched olefins derived from mid-
chain scission and intramolecular hydrogen transfers of the PP carbon chain (P6 and 7,
Scheme 1b) [33]. Compared to AC-ST, the AC-HP liquid products have a lower fraction of
branched olefins and a higher fraction of cycloolefins, cycloalkanes, and aromatics. This
is because the Bronsted acid promotes the cyclization of olefins. The major compounds
in the liquid of AC-ZN are branched olefins and aromatics. The AC-ZN produces fewer
cycloolefins and cycloalkanes than AC-HP because AC-ZN has fewer Bronsted acid sites for
cyclization. In addition, the AC-ZN produces benzene, toluene, and ethylbenzene, which
are not found in the liquid of AC-ST and AC-HP. The benzene, toluene, and ethylbenzene
are most likely generated by the dehydrogenation of cycloalkanes and cycloalkene over
Zn species [34]. We also found a considerable amount of mesitylene (19.01% and 15.76%)
in the PP pyrolysis liquid of AC-HP and AC-ZN. The mesitylene is probably generated
via cyclization and dehydrogenation (P4, Scheme 1b) of trimethyl alkane and olefins that
significantly exist in the liquid product of PP pyrolysis.

As shown in Table 4, the catalytic pyrolysis of PS over AC-ST, AC-HP, and AC-ZN
primarily produce PS’s monomer styrene, indicating that the end-chain-scission is the
principal reaction during PS degradation [35]. Additionally, benzene, toluene, ethylbenzene,
and α-methyl styrene were also produced. Benzene and toluene may be formed through
protonation of the carbon on the aromatic ring [36], which then undergoes β-scission to
form benzene and toluene, respectively. The α-methyl styrene is probably generated via
the activation of carbon on the aliphatic chain by Bronsted acid, followed by β-scission and
hydrogen rearrangement [37].

Compared with AC-ZN, the ethylbenzene content significantly increases when AC-HP
and AC-ZN are used as catalysts. The ethylbenzene can be produced through β-Scission of
carbocations (P6, Scheme 1c) or hydride transfer of a triple-coordinated carbocation (P4, P5,
Scheme 1c) [38]. However, which acid site played the critical role is not reported in the litera-
ture. Researchers studied the catalytic degradation of PS over the Bronsted-acid-dominated
catalyst (HZSM-5 and HY) with the highest fraction of 16.2% for ethylbenzene [39,40]. In
contrast, in our experiments, ethylbenzene reaches as high as 28.59%. This indicates that
the P- and Zn-involved Lewis acid sites on the carbon played an important role.
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Scheme 1. Possible reaction pathways for (a) LDPE, (b) PP, (c) PS, and (d) PET catalytic pyrolysis.
The red frame represents the reactions promoted Bronsted acid on carbon. The blue frame represents
the reactions promoted by Zn- or P-involved species.

Table 4. The composition of liquid obtained by the cracking of PS and PET.

Product PS (area%) PET (area%)

AC-ST AC-HP AC-ZN AC-ST AC-ZN

Alkanes 0.08 0.65
Benzene 0.83 0.49 49.05
Toluene 5.58 4.9 8.23 0.52 10.62

Ethylbenzene 3.73 25.59 28.59 0.4 4.01
Styrene 65.51 43.51 39.11 0.36 4.87

.alpha.-Methyl Styrene 7.71 5.87 7.16
Other Monocyclic Aromatics 0.35 2.16

Naphthalene 0.57 9.29 5.36 0.46 2.83
Biphenyls 7.74 4.85 5.8 16.08 21.86

Other PAHs 0.19 4.16 2.86 2.41 2.5
Benzoic Acid 22.5 0.78

Acetophenone 15.17 1.51
Benzophenone 17.39 0.22

Others 0.5 0.24

As shown in Table 4, catalytic pyrolysis of PET over AC-ST primarily yields benzoic
acid, acetophenone, benzophenone, and biphenyls (accounting for 22.5%, 15.17%, 17.39%,
and 16.08%, respectively). The benzoic acid and acetophenone are formed via decarboxyla-
tion of terephthalic acid and degradation of benzoic acid vinyl ester (P1, Scheme 1d) [41],
respectively. Benzophenone is formed via the dehydration of benzoic acid and benzene.
The biphenyl is formed via a combination of two benzene rings (P7, Scheme 1d) [42].
Toluene and ethylbenzene, with less than 1%, are also found in the liquid of AC-ST. Toluene
and ethylbenzene might be derived from the alkylation of benzene. When the AC-ZN
catalyzes the PET pyrolysis, and the deoxygenation of the oxygenated compounds takes
place considerably [43], resulting in the content of monoaromatics increasing to more than



Processes 2022, 10, 2668 13 of 17

60%. However, the pyrolysis of PET on AC-HP does not yield liquid products for no
apparent reason.

In the gas products of LDPE, PP, and PS, the C1-C3 alkanes, olefins, and hydrogen
are the primary components (Figure 5). In addition to C1-C3 alkanes and olefins, 20%
C7H14 and 14% C6H14 are found in the gas of LDPE and PP catalyzed by AC-ST. PET’s
gas products are mainly CO and CO2 [44,45]. Significantly higher hydrogen contents are
found in the gas of four plastic catalyzed by AC-HP and AC-ZN than AC-ST. The AC-ZN
yields a highest percentage of H2 in gas in three plastics due to the strong dehydrogenation
capability of the Zn-involved species [46].
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3.4. Effects of Mass Ratio of Activator on Carbons’ Performance

The effects of the mass ratio of phosphorous and zinc chloride to industrial organic
solid waste are studied on the pyrolysis of LDPE. Tables S2 and S3 show LDPE's product
yield and distributions under different activation conditions. The increased mass ratio of
AC-HP results in a more profound degradation of LDPE. The AC-HP prepared at mass
ratio 1:1 cannot effectively catalyze LDPE degradation, and the wax is the main product.
When the mass ratio increases to 1.5, the LDPE is entirely decomposed into liquid and
gaseous products. At the mass ratio of two, as much as 78.5 wt.% of gas was recovered.

ZnCl2 seems more effective than H3PO4 in activating industrial organic solid waste
for catalytic pyrolysis of LDPE. At the mass ratio of 0.5, only 22 wt.% of solid residue is
received, much lower than that of AC-HP1. When the ZnCl2 mass ratio increases to 1.5,
the LDPE completely degrades into gas (89.50 wt.%) and liquid (10.5 wt.%). The variation
in product yield with increasing ZnCl2 mass ratio could be due to the different strength,
concentration, and location of the Lewis and Bronsted acid site on the carbon [34]. These
factors would change the reaction routes and kinetics during polymer degradation [47].
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In terms of the liquid composition, with increased H3PO4 and ZnCl2 mass ratios,
a small change was found for the contents of straight alkanes in the liquid, while the
cycloalkanes reduced. It is also found that the content of PAHs increases with H3PO4
and ZnCl2 mass ratio. This is probably because the increased acid sites promote the
dehydrogenation of cycloalkanes and the condensation of phenyl rings.

3.5. Discussion of Possible Reaction Mechanism over Carbons

The possible reaction pathways of different plastics over carbons are presented in
Scheme 1. The literature has discussed the reaction pathway of LDPE over carbon catalysts,
which is similar with the findings of this study. Polyolefin pyrolysis proceeds through
random scission, end-chain scission, or carbocation mechanisms [47]. At 500 ◦C, the thermal
pyrolysis LDPE and PP are mainly subject to random C-C bond breaking and end-chain
scission to produce a product with a carbon number larger than 30. The Bronsted acid sites
on carbons promote radical transfer and carbocation formation, yielding products with a
carbon number less than 20. The incorporation of P and Zn creates additional active sites
for plastic conversion. On AC-HP, the P–OH, C–O–PO3, and C–PO3 form a tri-coordinated
carbenium ion or penta-coordinated carbonium ion [36], which is deprotonated to produce
hydrogen or proceeds to C-C scission to produce olefins or alkanes.

Meanwhile, the light olefins may undergo oligomerization, cyclization, or Diels–Alder
to form monoaromatics. Cooperation of P=O and C=O also occurs, enhancing the dehy-
drogenation capability. On AC-ZN, the zinc cation species or ZnO [48] play an essential
role in aromatization (P7, P8, Scheme 1a). The olefins first oligomerize on the zinc species
to produce a polyene-like hydrocarbon. Then, the generated polyene-like hydrocarbon
was stabilized on zinc species with subsequent dehydrogenation to form highly unsatu-
rated dienes or allenes. The highly unsaturated dienes or allenes are finally protonated
by the nearby Bronsted acid site, followed by chain cyclization and deprotonation to
produce monoaromatics.

The reaction pathways of PS and PET over carbon catalysts or solid acid catalysts are
rarely reported. Based on our data, the pyrolysis of PS is inferred to involve thermal and
catalytic degradation. Thermal degradation of PS undergoes random scission and end-chain
scission to form an oligomer of styrenes [49]. During the catalytic degradation, the Bronsted
acid sites protonated the carbon on the rings which transforms to a penta-coordinated
carbocation [40]. The protonated carbocation on the ring then undergoes dealkylation
(P2, Scheme 1c) to form benzene and phenyl cations. Meanwhile, the phenyl cations
might undergo β-scission to form toluene, ethylbenzene, and styrene (P6, Scheme 1c).
P- and Zn-involved acid sites extract hydride ions from the benzyl carbon, generating a
tri-coordinated [38] carbocation, which undergoes β-scission and hydride transfer to yield
benzene and ethylbenzene (P4 and P5, Scheme 1c).

The catalytic product of PET indicated that degradation of PET might begin with beta
hydrogen transfer, followed by ester bond breakage to form carboxyl- and vinyl-terminated
products (P1, Scheme 1d) [50,51]. The vinyl ester groups on the vinyl benzoate are then
rearranged and decarbonylated to form acetophenone (P2, Scheme 1d). The dehydration
of benzoic acid and benzene coupling may occur to form benzophenone (P5, Scheme 1d).
In the presence of AC-ZN, successive decarboxylation of terephthalic acid takes place
to produce CO2 and benzene (P3, P4, Scheme 1d). The benzene undergoes a reaction of
alkylation to form toluene or ring combination to form biphenyl and polycyclic aromatic
hydrocarbons (P6 and P7, Scheme 1d).

4. Conclusions

The catalytic pyrolysis of waste plastics over industrial organic solid-waste-derived
carbon was investigated. The effects of the activation method on the carbon’s catalytic
performance are discussed. The thermogravimetric results indicate that all three carbons
reduce the temperature of plastic pyrolysis. Chemical activation using H3PO4 and ZnCl2
produces carbon with a higher specific surface area and more abundant porosity than
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steam/carbon. In addition, the H3PO4 and ZnCl2 activation create P and Zn-involved
acid sites on carbon. These characteristics of AC-HP and AC-ZN contribute to their better
catalytic performance in degrading plastics than AC-ST. The AC-HP and AC-ZN promote:
(1) C-C cracking and aromatization of polyolefins; (2) the protonation of phenyl carbon of
PS to yield higher benzene, toluene, and ethylbenzene; and (3) the decarboxylation of the
terephthalic acid intermediate of PET, resulting in higher CO2 and benzene.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr10122668/s1, Figure S1. The N2 adsorption/desorption isotherms
(a) and pore size distribution (b) of AC-ST, AC-HP, and AC-ZN; Figure S2. Carbon distributions of
products for upgrading of LDPE using activated carbon; Figure S3. Carbon distributions of liquid
products for upgrading of PP using activated carbon; Figure S4. Carbon distributions of liquid
products for upgrading of PS using activated carbon; Figure S5. Carbon number distributions of
liquid products for upgrading of PET using activated carbon; Table S1. Pyrolysis characteristics of
plastics and activated carbon mixture at a heating rate of 10 ◦C/min; Table S2. Product yields under
different activation conditions; Table S3. Components of the oil products on LDPE catalyzed by
activated carbon modified by H3PO4, and ZnCl2 under different activation conditions.
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