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Abstract: This article presents an energy-efficient method of controlling unmanned aircraft (fixed-
wing UAVs), which consists of three groups of algorithms: aerial vehicle route planning, in-flight
control, and algorithms to correct the preplanned flight trajectory. All algorithms shall take into
account the existence of obstacles that the UAV must avoid and wind gusts in the UAV’s area of
operation. Tests were carried out on the basis of the UAV mathematical model, stabilization and
navigation algorithms, and Dryden turbulence model, considering the parameters of the UAV’s
propulsion system. The work includes a detailed description of constructing a network of connection
that is used to plan a UAV mission. It presents the algorithm for determining the actual distances
between the different points in the field of action, which takes into account the existence of obstacles.
The algorithm shall be based on methods for determining the flight trajectory on a hexagonal grid. It
presents the developed proprietary UAV path planning algorithm based on a model from a group of
algorithms of mixed integer linear problem (MILP) optimization. It presents the manner in which
the pre-prepared flight path was used by UAV controllers that supervised the flight along the preset
path. It details the architecture of contemporary unmanned aerial vehicles, which have embedded
capability to realize autonomous missions, which require the integration of UAV systems into the
route planning algorithms set out in the article. Particular attention has been paid to the planning
and implementation methods of UAV missions under conditions where wind gusts are present,
which support the determination of UAV flight routes to minimize the vehicle’s energy consumption.
The models developed were tested within a computer architecture based on ARM processors using
the hardware-in-the-loop (HIL) technique, which is commonly used to control unmanned vehicles.
The presented solution makes use of two computers: FCC (flight control computer) based on a
real-time operating system (RTOS) and MC (mission computer) based on Linux and integrated with
the Robot Operating System (ROS). A new contribution of this work is the integration of planning and
monitoring methods for the implementation of missions aimed at minimizing energy consumption
of the vehicle, taking into account wind conditions.

Keywords: energy efficient path planning; UAV; FCC; flight control; hardware-in-the-loop; MILP

1. Introduction

Many authors weigh in on the architecture of modern unmanned flying vehicles [1].
Researchers and constructors agree that any unmanned vehicle that is capable of operating
autonomously must be equipped with two types of control units: an FCC (flight control
computer) and an MC (mission computer) [2]. The FCC acts as an autopilot and executive
unit to control the flight between consecutive points. The MC is the unit supervising
the correctness of the implementation of the mission plan. Both of these devices work
together in the course of the vehicle’s flight. The article focuses on tasks related to the
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implementation of a reconnaissance mission by unmanned vehicle equipped with EO/IR
sensor and SAR radar. We present a description of the planning and implementation of
the reconnaissance mission realized for a single unmanned vehicle, although the model
can be used for planning missions for drone swarms. We assume that the mission plan,
consisting of the flight path and the payload, is prepared at the ground control station
(GCS) before the mission. This plan is then transmitted to the UAV for its computers (FCC
under MC supervision) to perform it during the flight (in aviation this is described as
the UAV operating autonomously). In some situations, the UAV must modify the flight
plan by itself. This is achieved, for example, when there is no contact with GCS when
algorithms in the MC confirm the inability to perform the entire planned task. In such a
situation, computers must be present on the aerial vehicle which will be able to develop a
new flight and payload operation plan. In our case, that task falls to the MC. The plans will
be transmitted to the FCC which controls the vehicle’s flight. The subject of the article shall
be the architecture of such a system, the UAV flight planning and control algorithms, and
the principles for integrating individual components into a system capable of realizing a
mission autonomously.

The system architecture developed by the authors has been divided into three main
components: mission computer (MC), flight control computer (FCC), and wireless commu-
nication subsystems (WCS). The article does not deal with the communication subsystem.
Human-Machine-Interface (HMI) is a dedicated software for managing the unmanned
system located at the ground control station (GCS). Mission planning usually consists of
two variants—loading a pre-prepared mission from a file, or entering individual route
points and payload functions manually by the pilot/operator. Regardless of the option, it
is always a person who prepares a mission plan. In every unmanned system, the operator
may take account of field obstacles, flight zones, etc., by manually adding additional route
points which the UAV is only to fly through to arrive at the site of the reconnaissance
mission and avoid the obstacle. However, given that the UAV often carries out missions
autonomously or in areas with a large number of obstacles, the pilot is forced to manually
input many less important route points that are less significant from the perspective of
the reconnaissance mission. Therefore, it has been decided to automate the process of
modifying the mission in order to avoid obstacles in the proposed solution. Thanks to the
algorithm developed, the pilot needs only to input key routing points, and it is the MC’s
task to modify the flight path in a manner that allows safe execution of the reconnaissance
mission on the basis of geodetic data (or obstacle data sent by the reconnaissance services),
external sensor data, or other onboard information. This means that the ground control
station’s mission plan, which consists of a UAV route plan and a payload operation plan, is
maintained in the MC. The route currently implemented and the emergency return routes
are maintained in the FCC, which is the unit responsible for the execution of the flight
along the programmed points. MC may, where justified, modify the current flight plan.
Descriptions of situations where the MC modifies the flight plan are beyond the scope of
the article (some examples are shown in [3]). The modified route plan shall be sent to the
FCC. This is specific to situations of lack of communication with the GCS.

The basic control element of the vehicle is the FCC operating in real time with the use
of a dedicated real-time operating system (RTOS). RTOS is responsible for the management
of threads/tasks and, above all, allows the prioritization of individual tasks. The thread
responsible for controlling the vehicle is assigned the highest priority and its diagram is
shown in Figure 1.
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Figure 1. Unmanned aerial vehicle architecture diagram.

The high-level controller comprises three main subsystems:

(1) Vehicle stabilization—algorithms based on PID controllers that aim to stabilize the
angular position of the UAV in space.

(2) Stabilization and control of height, vertical speed, and vehicle flight speed—these
algorithms were also based on PID controllers supported by state machines and
mathematical algorithms based on energy estimation.

(3) Navigation algorithms—heading control, flight along a required route, loiter, etc.
These algorithms were also based on PID controllers supported by mathematical
algorithms and input/output signal shaping systems.

The high-level controller shall find and deliver signals to efficient attitude and altitude
UAV control, including the propulsion system on the basis of the values set and appointed
by the state observer so that the vehicle achieves the preset flight parameters. At this point,
it is worth noting that UAVs are specific aerial vehicles with a low altitude variation profile.
This implies that the change in altitude is linked to high energy expenditure, which is not
recommended for vehicles of this type. An example flight profile is shown in Figure 2.

Figure 2. Example flight profile.

The low-level controller is responsible for transforming signals generated by the
high-level controller from angular values, percentages to appropriate hardware values
enabling the control of servos, engine controllers, or other actuators. In the presented
architecture, the mission computer is based on Robot Operating System (ROS). Flight
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trajectory determination algorithms are supported by geodetic data (altitude grids), other
reconnaissance data, and external sensors. ROS is a dedicated set of libraries and software
to create robotics software. It allowed for the software architecture within the presented
architecture to be divided into smaller modules, so-called nodes. ROS allows to control
nodes and for them to communicate with each other, which significantly simplified the
development of the software. Mission planner determines the sequence of the UAV flight
between the subsequent points along the route. During the planning process, the mission
planner considers basic information on the area of operation, including the location of
obstacles in the field and the direction and speed of wind. The GCS may additionally use
data from the weather forecast. During the flight, the UAV already has accurate wind
direction and speed data specified by the air data computer (ADC). Mission planner may
correct a predefined route. The trajectory planner is a module that determines the actual
distances between the points to which the UAV is flying. The module calculates flight
trajectory between any pair of points in the field based on the position of obstacles and the
margin to be taken into account so as not to expose the UAV to the risk of destruction. The
latter is particularly important in the case of military vehicles. The presented version of
the flight trajectory planning module between two points in the field operates on a hexag-
onal grid, which allows fast trajectory planning and ensures the determination of gentle
mid-air turns.

The article presents several innovations and new contributions from the area of al-
gorithm design for fixed-wing UAV flight planning and control. The most important
contributions are:

(a) Planning and adjustment of algorithms of individual flight sections, considering the
occurrence of obstacles and tasks related to terrain scanning, are integrated within
aerial vehicle control algorithms, which allow for rapid corrections of the designated
route plans.

(b) All algorithms were designed in such a way that they could be implemented on
vehicles based on ARM architecture, which is the basic architecture of the contempo-
rary UAV—the model-based design technology dedicated by DO-178C and DO-331,
DO-332, DO-333 [4–6] was used, the MC was based on ROS and the FCC, on RTOS.

(c) Hexagonal grid-based trajectory determination algorithms used are deterministic, fast,
and reliable, which is relevant for the certification thereof by institutions that allow
UAVs to operate in controlled airspace.

(d) All algorithms shall consider the presence of non-zero speed winds.
(e) Vehicle control algorithms shall take into account wind gusts in accordance with the

methodologies described in NATO standards.
(f) The UAV architecture has been presented, which allows for the execution of au-

tonomous missions, where the planning algorithms described are an important com-
ponent of the implementation of the mission.

(g) Hardware-in-the-loop tests were performed.

The remainder of the article presents the following elements. The Related Works
chapter presents works related to land modeling for the purpose of determining UAV flight
routes and selected algorithms from this area that concern route planning and UAV control.
The Models and Methods chapter presents the mathematical model of fixed-wing UAV
and the stabilization and navigation algorithms, for which methods for determining and
correcting vehicle flight path plans are developed. The following section of the chapter
discusses the method for planning and correcting routes simplifying the UAV control
process and the way in which route planning models are integrated with UAV controllers.
The range of possible interference with FCC control by the MC is discussed in two specific
cases: SAR radar reconnaissance flights and reconnaissance in conditions with gusts of
wind. For both cases, it was demonstrated how the MC influences the operation of PID
controllers that are part of the FCC. The Results chapter presents the results obtained
by authors for the unmanned vehicle presented in the article. The Conclusions chapter
summarizes the results achieved.
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2. Related Works

Sanchez et al. [1] and Boubeta-Puig et al. [7] present the overall construction of an
unmanned autonomous system which allows the UAV to change the trajectory in the
absence of GCS control. The system consists of several modules, depending on its intended
use, responsible for the implementation of the mission plan in autonomous mode (without
contact with GCS). Another example of UAV avionic equipment architecture is presented
by Ilarslan et al. in [8]. In this approach, the MC acts as the main control system and is
therefore based on the RTOS, with the FCC autopilot being a slave system. It uses generally
CAN and RS232 interfaces.

FCC is equipped with a state machine with an embedded logic of special and emer-
gency situations which enables it to determine incorrect operation of the MC on its own.
Therefore, the MC could be developed on the Robot Operating System open-source soft-
ware [9]. ROS is widely applicable in robotics, allows for a division of an entire system
into individual nodes, which makes the addition of new functionalities much easier. MC is
equipped with mission planning software that takes into account the performance of the
payload and supports FCC, thus making it possible to make optimal use of UAV capabil-
ities for its mission. Descriptions of the elements of the state machines implemented on
computers of the aerial vehicle can be found in [3,10,11].

In many works, where an additional computer is used, which acts as a calculation unit,
e.g., to navigate obstacles, modify flight paths, and other additional functions, ROS (Robot
Operating System) is used. In the work of Yu et al. [12], a commercial UAV was used, which
was connected to a computer based on ROS to control the UAV using predefined human
gestures. A similar approach was presented by Carvalho et al. [13], where the PX4—FCC
open-source autopilot was combined with a computer with Linux and ROS. In addition,
ROS is often used for prototyping mission planning algorithms and testing them in a virtual
3D environment (Zhang et al. [14]). Having analyzed the abovementioned works, it can be
concluded that the vast majority of them use ROS for an additional/external computer. The
FCC is responsible for the basic functions of stabilization and control and is able to operate
independently of the mission computer that plays a supporting role. Communication
between FCC and MC uses network interfaces equipped with a sensor system. Such a
connection shall allow direct access to data of both FCC and MC.

The integration of FCC and MC may involve the exchange of information of two types.
First, the MC may send a correction of the mission plan to the FCC when the MC’s analyses
show that, as a result of changes in weather conditions, the UAV is unable to perform the
task within the time frame set. In such a case, MC modules set out a mission correction by
solving VRPTW optimization tasks shown, for example, in [15] or [16]. The second type of
integration is the impact on the current FCC control in order to run a certain behavior of
the aerial vehicle. For example, in order to correctly scan the area using SAR radar, it is
important that the UAV does not exceed the maximum roll angle in spite of desired path,
as described in [16]. In this case, FCC mechanisms must respond to MC control signals and
block the operation of the standard controller, as shown in the article.

In order for the FCC to be able to receive a modified mission plan designated by the
MC, the MC needs first to have a model of the area where the operation is to be carried
out. Land models used to represent the UAV area of operations are directly conditional
on the types of algorithms that can be used for mission planning and flight trajectory
determination. The article is based on a model of a grid of connections in the form of a
graph built before the mission planning task is solved (see Figure 3). From a formal point
of view, a grid is constructed, S the edges of which model UAV flight sections and the
vertices model locations where flight parameters of the unmanned system or equipment
are changed. At the area modeled with a vertex, it is also possible to identify a small
object. However, there is a presumption that the grid itself is not changed in the process of
determining the solution, i.e., mission plan development. In case of new obstacles, the grid
may be modified and the algorithm itself restarted. The key aspect here is the grid design
algorithm for S =< G, Φ, Ψ >, where G means a consistent graph within the meaning of
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the graph and grid theory, Φ means a set of functions defined at the vertices of the graph,
and Ψ means a set of functions defined on the graph edges. On the edges, the flight path of
one or more unmanned vehicles is determined. Several basic network design methods are
used for the construction of graph-based networks.

Figure 3. Fragment of a UAV mission plan with marked alternative routes and the object of recon-
naissance and danger zone in the form of a grid of connections in the field. The section (k,m) is
reconnoitred using the available sensor. An area is marked from where the object to be reconnoitred
is visible in the form of a cone with the middle where the target is located (marked with a black
triangle). The area covered by the sensor is marked with a dark blue trapeze.

The first, simplest way of constructing a graph modeling potential routes in the area
where the vehicle can move around is a square grid. Each square (usually the same size)
is the vertex of the grid and is connected to adjacent squares, which is modeled through
the edges of the graph. The grid of squares is the most commonly used land model
for autonomous vehicle routing [17]. From the perspective of vehicle movement, the
construction of such a network seems natural, although recently, more frequent models
based on regular hexagons (hexagonal grids) are used, which allows modeling smooth
turns for the vehicles [18]. The problem with the use of such land representation is the
number of grid vertices created in the planning of the unmanned aerial vehicle mission,
which operates over several hundred square kilometers and altitudes between 500 to a few
thousand meters above ground level. In such a case, the grid may be constructed from
thousands of vertices for which it is necessary to verify whether they are within the mission
area, a dangerous area, a safe area, or an other area. Therefore, the article assumes that the
UAV flight profile relates to a flight at a specified operating altitude throughout a major
part of the mission, which is a correct assumption and most frequent for UAV mission
planning. The article presents a method for determining routes between any vertices of
a hexagonal grid. This approach, which is increasingly popular in planning the traffic of
unmanned systems, has two main advantages: it is very efficient calculation-wise and
ensures that turns are defined, which are easy for the UAV to perform.

When analyzing mission planning and flight trajectory designation algorithms, ac-
count should also be taken of the used obstacle model affecting the UAV flight. Relevant
literature discusses static and dynamic models of objects posing a threat to UAVs (e.g.,
Wen et al. [19]).

The paper [20] focuses on the constrained control of UAVs in geofencing applications.
The constraints defined for the obstacles are vertical infinite cylinders and are located inside
the boundaries defined by other constraints. It is demonstrated that the system is effective.
The paper shows experiments for a small number of obstacles. For an environment with
many obstacles, the number of constraints will be very large. This is why we decided to
use a grid-based map of the environment in our system.
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In [21] it is assumed that nodes collect the environmental parameters. The data are
transferred to the UAV and to the remote base station. The land system computes the UAV’s
flying trajectory, and the parameters such as distance and time are taken into account. In
our system, we do not have sensors that study environmental conditions, but parameters
such as energy consumption and path length can be taken into account.

The article does not deal with the subject of dynamic obstacles. With regard to the use
of static obstacle/hazard models, we rely on two basic assumptions. Firstly, the objects
threatening the UAV are anti-drone systems of various types, with ranges modeled using a
semi-sphere, as shown in Figure 3. Such models work in most applications when we know
the risk or at least can presume its type. When we do not know the exact nature of the
hazard, we define the area in which it occurs (usually it is convex polygons) and determine
the maximum altitude to which the object threatens the aerial vehicle for this area. It is
a very practical assumption due to the fact that the majority of UAVs have operational
ceilings, in addition to which the cost of the flight is much higher. Moreover, frequent
changes in the flight altitude of the platforms significantly reduce their flight duration, so
the assumption that obstacles should be circumvented rather than flown over is justified.
The article uses a model of obstacles in the form of convex polygons, which does not reduce
the general nature of considerations. The presence of obstacles in the field increases the
number of grid vertices where mission planning tasks are solved.

Following the designation of the grids of connections, UAV flight routes may be
determined. If the literature of the subject regarding the design of heuristic algorithms
accelerating the achievement of an acceptable and suboptimal solution for the problem
described in the article is analyzed, particle swarm optimization (PSO), genetic algorithms
(GA), or their modifications based on the Tabu Search technique (Fu et al. [22]) are the
most frequently described in the group of algorithms taking time windows into account,
whereas algorithms using Tabu techniques (Lau et al. [23], Gmira et al. [24]) are among
the most commonly used. The general principle of operation is to predefine the allowable
allocation of tasks to a predetermined number of vehicles so that in subsequent iterations,
they attempt to randomly improve the allocation of tasks by replacing one or more tasks
assigned to specific vehicles. In order to avoid multiple repetitions of the same movement, a
list of prohibited movements is introduced (Tabu list). Different approaches to building the
initial solution and exchanging assigned tasks between vertices are introduced in different
implementations of this class of algorithms.

The works [25,26] present the application of reinforcement learning and deep learning
for UAV control. The use of reinforcement learning is promising, but it is very expensive to
test with a real environment. The most important issue in our project is robustness which
is why we decided to use a classic PID controller in the current version of our system.

In our work so far, we focused primarily on planning a reconnaissance mission, in
particular on determining UAV flight routes and the payload operation plan. To solve the
UAV route planning task, we use task scheduling algorithms with time windows (vehicle
route planning with time windows—VRPTW) that take into account the specificities of the
unmanned vehicle flight. The algorithms presented may be used both in the planning of
individual UAV missions and where UAV groups cooperate in multi-agent systems. The
approach presented is a practical way of establishing mission plans implemented in actual
unmanned systems. A very good overview of algorithms of this type can be found in
Zhou et al. [27].

3. Models and Methods
3.1. UAV Mathematical Model

It was necessary to develop a mathematical UAV fixed-wing model. The UAV selected
was the AFIT Neox [28]. A simplified model is shown in Figure 4. The figure indicates
the reference systems used in the mathematical modeling process and the main actuating
systems (electric motor—M and two servos: right—sr and left—sl).
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Figure 4. UAV Neox model.

The mathematical model describes a rigid body dynamics considering forces and mo-
ments equation system. The differential equations of kinematic and dynamics of UAV were
determined using Newton’s second law of motion. To implement the above-mentioned
relationships to the simulation environment, simplifications are performed, neglecting less
important phenomena. However, they allow the calculation process to be accelerated.

The following simplification assumptions have been taken into account in the formu-
lation of the UAV mathematical model:

• It is assumed that the object under consideration is rigid, not deformable, of constant
weight, and constant inertia.

• The center of mass is fixed and does not change.
• The impact of the Earth’s curvature has been neglected and it has been assumed that

the gravity field is homogeneous.
• UAV movement equations were derived from the angular and linear moment change law.

To describe the forces and moments affecting UAVs, frames of reference compliant
with PN-ISO 1151 (flight dynamics—concepts, quantities, and symbols) and markings
from [PN-ISO 1151] have been adopted. Coordinate systems (Figure 5a,b) are described
as follows:

• Oxyz—UAV/body frame.
• Oxgygzg —Earth frame.
• Oxayaza—wind frame.

The transformation matrices between individual frames of reference are shown below:

Lqg =

 cosψ · cosθ sinψ · cosθ −sinθ
cosψ · sinθ · sinφ− sinψ · cosφ sinψ · sinθ · sinφ + cosψ · cosφ cosθ · sinφ
cosψ · sinθ · cosφ + sinψ · sinφ sinψ · sinθ · cosφ− cosψ · sinφ cosθ · cosφ

 (1)

Lqa =

 cosα · cosβ −cosα · sinβ −sinα
sinβ cosβ 0

sinα · cosβ −sinα · sinβ cosα

 (2)
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where

Lqg—transformation matrix between Oxgygzg and Oxyz.
ψ—yaw angle.
θ—pitch angle.
φ—roll angle.
α—UAV attack angle.
β—UAV slip angle.

(a) (b)

Figure 5. Frames of reference compliant with PN-ISO 1151 describing the forces and moments
affecting UAVs. (a) Oxgygzg and Oxyz frames of reference. (b) Oxayaza and Oxyz frames of
reference.Oxayaza and Oxyz frames of reference.

The aeroplane model is described by twelve differential Equations (3)–(12), the solution
of which consists of a state vector (13):

U̇ =
Fx

m
+ rV − qW (3)

V̇ =
Fy

m
+ pV − rU (4)

Ẇ =
Fz

m
+ qU − pV (5)

ṗ =
Mx + (Iy − Iz)qr

Ix
(6)

q̇ =
My + (Iz − Ix)rp

Iy
(7)

ṙ =
Mz + (Ix − Iy)pq

Iz
(8)

φ̇ = p(qsinφ + rcosφ)tanθ (9)

θ̇ = qcosφ− rsinφ (10)

ψ̇ =
rcosφ + qsinφ

cosθ
(11) ẋg

ẏg
żg

 = L−1
qg

 U
V
W

 (12)
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X = [U, V, W, p, q, r, φ, θ, ψ, xg, yg, zg]
T (13)

where

U, V, W—linear speeds in the body frame Oxyz.
p, q, r—angular speeds in the body frame Oxyz.
Fx, Fy, Fz—forces acting on the object in the body frame Oxyz.
Mx, My, Mz—moments acting on the object in the body frame Oxyz.
m—mass of the UAV.
Ix, Iy, Iz—moments of inertia of the UAV.
Oxgygzg—UAV position in the Earth frame.

For fixed-wing UAVs, the key performance parameters are aerodynamics of the ve-
hicle. Aerodynamic derivatives and dynamic pressure influence aerodynamic forces and
moments according to dependencies [10]:

Fxa = −Cxa ·
ρ|Vaer|2

2
S (14)

Fya = Cya ·
ρ|Vaer|2

2
S (15)

Fza = −Cza ·
ρ|Vaer|2

2
S (16)

Laer = −Cl ·
ρ|Vaer|2

2
S (17)

Maer = Cm ·
ρ|Vaer|2

2
S (18)

Naer = Cn ·
ρ|Vaer|2

2
S (19)

where

Uaer = U −Uwind.
Vaer = V −Vwind.
Waer = W −Wwind.
|Vaer| =

√
(U2

aer + V2
aer + W2

aer).
Fxa —drag force.
Fya —side drag force.
Fza —lift force.
Laer—roll moment.
Maer—pitch moment.
Naer—yaw moment.

According to the above relationships, generated forces and moments strongly depend
on aerodynamic speed. Therefore, wind and turbulence parameters have a significant
impact on the energy demands for a flight with desired parameters. In addition, the above
relations show that if the wind strength will generate too big a drag force, there may be
a situation where the aeroplane is unable to generate enough thrust that will enable the
UAV to move in the intended direction. In this article, the UAV is equipped with a drive
set based on a BLDC electric motor and a two-blade propeller. The drive set is located in
the rear part of the UAV.

As part of the implementation of the project by AFIT for State security and defense
financed by The National Centre for Research and Development under the code name
of “BRUS”, tests have been carried out to determine the characteristics of the propulsion
system under flow conditions (Figure 6).



Energies 2022, 15, 3730 11 of 31

Figure 6. Drive unit set at an angle of 90°in relation to the direction of inflow.

The tests were performed for three dynamic pressure values, q = 200 Pa, q = 300 Pa,
and q = 500 Pa, at three angular settings of the drive unit 90°, 30°, and 15°. The dynamic
pressures were 18.2 m/s, 22.2 m/s, and 28.7 m/s, respectively. Characteristics were
determined using a laboratory station for measurement of the drive unit specially designed
and developed as part of the project. The drive unit measurements performed for the
angle of inclination 90° (inflow direction in accordance with the axis of the propeller shaft)
provided the data necessary to determine the characteristics of the propeller:

1. Thrust coefficient (Ct) in function of (J).
2. Power coefficient (Cp) in function of (J).
3. Propeller efficiency (η) in function of (J).

Calculations use the following relations:

J =
V

nD
(20)

Ct =
T

ρn2D4 (21)

Cp =
P

ρn3D5 (22)

Pout = TV (23)

Pprop = Mω (24)

η =
Pout

Pprop
(25)

where

Ct—thrust coefficient.
Cp—power coefficient.
T—thrust (N).
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ρ—air density (kg/m3).
η—propeller rotations (rps).
D—propeller diameter (m).
J—propeller advance ratio.
V—airspeed (m/s).
Pout—power converted into thrust by the propeller T (N) at speed V (m/s).
M—moment on the propeller shaft.
ω—propeller rotation speed (1/s).

Geometric parameters of the propeller used:

Diameter—0.304 m (measured).
Pitch—0.102 m (according to manufacturer data).
H/D—0.336.

It can be noted that the tested drive unit has a relatively low efficiency (Figure 7).
This is due to the fact that the tests were carried out for a propeller dedicated for a VTOL
craft. The higher the airspeed, the lower the efficiency. Therefore, the UAV drive can
be optimized in relation to the minimum and maximum speeds. Conversely, in order to
achieve maximum performance, wind direction and speed and flight speed should be taken
into account in the planning of the mission.

Figure 7. Diagram of the efficiency of the propeller used in measurements as a function of propeller
advance ratio.

The model inputs such as object mass, inertia moments, propulsion system parameters
and models, and aerodynamic derivatives were determined analytically and experimentally
during the autopilot construction project.

The UAV mathematical model was implemented in the Matlab/Simulink, which
includes the following subsystems:

• Standard atmosphere model [29].

– Dryden wind and turbulence model [30].

• On-board sensor simulator: GPS, IMU, magnetometer, LIDAR, and battery.
• Models of selected elements of mechanical equipment.

A model completed thus was adapted in accordance with the model-based design
methodology using reference models [31] for automatic generation of code C per real-time
ARM processor. This model is a reference that is used by the control algorithms. Below are
the input and output signals of the implemented model. The main control signals are
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• Throttle—value of electrical control signal in the range from 0 to 100
• Bh—angular value of the elevator.
• Ba—angular value of the ailerons.

The model so prepared was used to develop and test control and navigation algorithms.

3.2. Stabilization and Navigation Algorithms

The aircraft’s waypoints navigation consists of the continuous control of its course. The
course change is carried out by changing the aircraft bank angle. Additionally, a distinction
is made between flight to a point and flight along a given path. The above-mentioned tasks
are performed by the high-level controller. The high-level controller is based on a cascade
connection of the PID controller in accordance with the following block diagram.

Stability control ensures that desired roll angle is maintained regardless of external
disturbances. The internal controller shown in Figure 8 ensures transverse stability of the
vehicle—stabilization of the roll angle. According to the aerodynamic derivative analysis
and the relationship between the dynamic pressure variation proportional to the squared
aerodynamic speed, it is necessary to scale (change the operating point) the PID regulator
using the parameter airspeed scaler, which is designed to provide controller stability within
the full UAV flight speed range. The φcmd value and φ determined εφ, which defines the
error in the roll channel. Subsequently, on the basis of the deviation, the controller sets the
angle σa of the ailerons, which the low-level controller converts to the electrical value of the
left and right servos (sl , sr).

Figure 8. UAV controller block diagram.

The navigation control block consists of a combination of two PID controllers and
a heading generator that can take values from an external/master device, e.g., mission
computer. The heading to roll PID controller is responsible for maintaining the set course
(χcmd) by determining the correct value of the φcmd. This subsystem takes into account the
possibility of receiving an external limitation of the φcmd output, which enables the flight
with low values of the roll angle at the expense of reducing the maneuverability of the
aircraft. The trajectory to heading generator is responsible for determining the χcmd based
on the current geographical position of the platform and the destination point. When the
χcmd is determined by the mission computer, the trajectory to heading generator subsystem
is omitted and the target course is transmitted through a separate parameter—external
heading Cmd. The course determined in this way allows only a flight towards the point;
however, it does not allow for a flight along a given path. For this purpose, the distance to
heading PID controller is used. This subsystem is triggered from the trajectory to heading
generator to improve maneuverability. Similarly to stability control, navigation regulators
are scaled by the ground speed scaler, which improves the accuracy of navigation at various
flight speeds, taking into account the wind gusts.

Below, the figure based on Barton’s work [32] shows the tasks performed by individual
PID controllers.
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Figure 9a shows mission implementation only through the application of the heading
to roll controller. It can be noted that this controller allows individual route points (way-
points) to be counted, but does not allow a flight on a set path. Additionally, due to wind,
it is not able to loiter with the required precision. The distance to heading controller adjusts
the flight route set from the generator based on the UAV’s distance from the set route line
(XTE—Xcross track error) as indicated in Figure 9b. In the cited article [29], the algorithms
described do not allow to achieve the correct execution of the loiter function. This is due to
the lack of aerodynamic capability of the aircraft and that the distance to heading controller
cannot be shut down. The purpose of this controller is only to correct the set course and it
should not be used throughout the control process. Therefore, in the proposed algorithm,
this controller is switched on and off at appropriate moments via the enable signal. In
addition, on an ongoing basis, the autopilot uses the force balance equation to determine
the minimum loiter radius that the vehicle is able to achieve with given flight parameters:

Rmin =
(norm(UVW))2

g · tanϕmax
(26)

(a) (b)

Figure 9. An example of the implementation of controls with the use of controllers (according to
Barton [32]).

In addition, similarly to the stabilization algorithm, navigation algorithms are scaled
according to a scale from ground speed. This makes it possible to achieve better quality
navigation parameters in the full flight speed range and variable wind speed values. The
result of loitering implementation with the developed algorithms is shown in Figure 10.
In the upper right corner, the green circle shows the direction and speed of wind in m/s.
The dashed line shows a set trajectory of loitering, while the thin yellow line shows the
completed trajectory of the flight. It can be noted that compared to Figure 9, in Figure 11,
implementation of a set loiter trajectory is significantly better. In addition, the figure clearly
shows what adjustments the control algorithms make in order to perform a flight with a
side wind. The red line marks the direction of the longitudinal axis of the UAV and the
green, direction of the speed vector. The angle of drift is the angle between these lines and
its value derived from the wind direction and speed. This example demonstrates high
quality of wind compensation control algorithms.
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Figure 10. Own navigation algorithm for loitering with side wind.

Figure 11. Diagram of the UAV roll control procedure on the SAR operating section.



Energies 2022, 15, 3730 16 of 31

The key element of the presented architecture and the developed algorithms, imple-
mented in FCC, is to make connection of an external device, which may modify the control
signals concerning the set UAV course, limit the UAV roll command value, or alternatively
activate or deactivate the distance to heading controller. In certain situations, this type of
action is necessary. Control information to the FCC in the described architecture is sent by
the MC. Thus, heading control is used when operating on a set trajectory, while the roll
limitation is required, for flights with SAR pod.

The FCC component described as trajectory to heading generator is placed in the
memory of a microcontroller where the FCC stores the flight path in the form of a point
matrix. The FCC may have a recorded main flight path, but usually emergency flight routes
are added to this set, used when a sudden return to base is necessary, making the UAV
architecture with such FCC more reliable. The MC has an identical set of routes, but MC
as the main reconnaissance unit also has additional data that allow it to verify the state of
implementation of the mission. If the MC software considers that the UAV is too low, on a
collision direction, or flying in specific atmospheric conditions, it is not possible to fly along
a set route in such a way as to fit into the time window defined for a point on the route (see
UAV route planning model), then the MC may adjust the flight path and send it to the FCC
component as a new applicable route. Furthermore, the MC may send single points to the
FCC to which the FCC should direct the UAV without the need to cancel the entire route,
which may be performed in sense and avoid algorithms.

The UAV roll angle control is very important for the use of sensors such as the SAR.
Detailed rules for SAR activities are described in [16]. It is worth to mention that the SAR
must scan through a section of the surface equal to the so-called synthetic aperture in
order to make a correct scan. Without delving too deeply into aperture calculations, it
can be noted that it depends on the required scan resolution and the UAV’s distance to
target. Greater distance and more detailed scan can be performed for longer flight, at least
a few hundred meters. Then the roll angle should be minimal, no more than a few degrees.
However, it is acceptable that during the preparation of the scan, the UAV will not hold its
course and will be carried by the wind. When performing an SAR scan, the most important
aspect is to minimize roll. Therefore, the MC, which controls the scanning process, must
be able to operate with the maximum platform roll range set by the FCC in its controllers
when it flies between waypoints. The external roll command limit control input is used for
this purpose. The diagram of the roll angle control procedure for the described situation in
the UML modeling language in the form of a sequence diagram is shown in Figure 10. MC
software checks in the loop whether the UAV reached the point marking the beginning of
the section to be scanned with the SAR. In such a case, the MC, having wind measured data,
sets the maximum permissible platform roll. In addition, it sets the heading parameter,
which indicates the direction of the UAV flight.

Once the UAV leaves the section of SAR scanning, the default roll limit values will
be restored to allow a return to the prescribed trajectory. In practice, course control is
used when the MC detects a dangerous situation which it analyzes over a specified time
interval. In this case, the UAV will proceed to the preset course mode at the minimum
allowable speed that is safe under the relevant conditions. MC will indicate the course to the
navigation block controller. Depending on weather conditions, velocity over ground may
also be reduced, thereby limiting the UAV’s flight time during which the UAV conducts
auto-testing procedures. The external heading command input is used for this purpose.
Setting the course by the MC results in setting the enable signal for the distance to heading
PID controller. In the proposed architecture, communication between the MC and FCC is
realized via a CAN bus.
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3.3. Flight Velocity Stabilization Algorithms

In accordance with the relations describing the forces acting on the UAV, the main
force that counteracts the resistance forces is the power generated by the propulsion system.
Regardless of atmospheric conditions and turbulence, the control shown below is intended
to maintain a constant indicated airspeed (IAS).

The control algorithm shown consists of three main elements (see Figure 12):

• Low-level controller—subsystem intended to convert the thrust T into the electrical
input of M drive, considering the battery’s charge level. Output thrust T ranges
from 0 to 100% and it has to be converted to electrical signal, e.g., PWM, PPM, CAN.
Moreover, some of the commercial motor controllers do not allow for setting a specific
rotational speed, in which case the battery charge level should be taken into account
for the output control value.

• Feed forward (FF) algorithm—based on the set flight speed IAScmd and wind parame-
ters, an initial thrust value is determined which is corrected by the PID controller. The
algorithm includes set speed value, direction, and wind speed to calculate final thrust.
This algorithm is implemented as a polynomial function, where input is a sum of wind
coefficient and IAScmd. Feed forward allows to immediately reach an approximate
thrust value that will allow to fly at a desired speed.

• IAS to thrust—PID controller, which, on the basis of a deviation, εIAS designates
control around the work point designated by the feed forward algorithm. In most
applications, a PI controller is sufficient, where P eliminates a wind gusts, while I is
supposed to regulate a fixed deviation (constant wind, inaccuracies of FF algorithm
and battery charge compensation). Additionally, the I component is reset to zero
each time at the moment of changing the IAScmd. It is needed because the FF value is
changing too.

Figure 12. Diagram of the UAV velocity control system.

The algorithm takes effect by changing the energy delivered from the battery to
the vehicle via the propulsion system. The results of the tests under conditions without
parameter flow of the propulsion system are shown in Figure 13.

It can be noted that power is a nonlinear function of thrust and increases exponentially.
The above results of tunnel and static tests and analyses show that both aerodynamic forces
and propulsion system characteristics depend strongly on wind parameters. It is therefore
appropriate to optimize the flight route as the wind function.
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Figure 13. Results from tests in conditions without flow of the propulsion system parameters (change
of energy supplied from the battery to the vehicle via the propulsion system).

4. Missions Planning

The implementation of the UAV mission consists of flying over selected points in a
specific order. The order (fly sequence) is determined during the construction of the mission
plan. The distance between points is based on computation of an area model as a digital
map, considering the forecasted wind direction. When SARs are used, taking into account
wind parameters is mandatory due to the limitations of the device described above.

4.1. Determination of Actual Field Distances between Individual Vertices

The choice of the path planning method is closely related to area representation. The
maps described in the literature are divided into two main groups: metric maps and non-
metric maps (topological and semantic). Metric maps are represented as a grid-based map
(two- or three-dimensional) or as a features map [33].

Topological or semantic area representations are useful in the decision-making process,
but path planning requires metric information on the position and sizes of obstacles, and
the position of the vehicle. Drones move through space; theoretically, path planning should
take place in a 3D space, but 2D grids may be used to plan the flight path of an unmanned
aerial vehicle. When analyzing so-called UAV flight profiles, flight plans of such platforms
involve only minor changes in altitude. This entails a very large energy expenditure linked
to a rapid change in the vehicle’s height, which is assumed to be rather a glider. Therefore,
it can be assumed, without significant loss of generality, that the vehicle will maintain a
constant altitude in selected regions, which allows the use of land models in the form of
2D maps.

Grid-based maps are proposed in [34]. In this approach, the environment is divided
into square areas that are assigned a value indicating the degree of probability that the cell
is occupied by obstacles. On the basis of a grid-based map and semantic information, a
traversability map is created. Such a map will specify the cost of travel through individual
cells. Traversability maps are widely used in path planning tasks.

Feature maps do not require a large amount of memory, and it is assumed that the
features are predefined, so the structure of the environment must be known in advance.
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This way of representing the area is not convenient in path planning. That is why the
method we propose uses grid-based representation of the area.

The article omits the problem of determining the trajectories of moving obstacles. The
dynamic correction of the UAV flight trajectory requires the integration of the obstacle
identification subsystem and the modified flight path calculation subsystem. This article
does not address the use of certain sensors to detect moving obstacles. Advanced examples
of such data fusion algorithms are the articles [35,36]. Chen et al. introduced a robust
technique of selecting dynamic obstacles from among the static ones. Then, they proposed
a method of determining the desired speed of a vehicle traveling along a correlated route.
Wang et al. used a deep learning solution and combined depth camera with data fusion to
find a new UAV trajectory with a geometric approach.

A classic approach in which cells are square has a number of disadvantages. The most
important thing is that neighboring cells do not always have common edges, e.g., diagonal
cells only come into contact at one point, and curved shapes are not well represented. The
closed shapes may be represented on the grid-based map as open shapes. An example of
this type of problem can be found in Figure 14. The red color marks a rectangle as an open
shape on the rectangular grid. The article proposes a representation of the area in the form
of a hexagonal grid; an example thereof is presented in Figure 15.

Figure 14. Closed shape represented as an open shape on the grid-based map.

Figure 15. Sample environment, corresponding hexagonal map, and zoomed fragment of the hexago-
nal map [18].

When analyzing biological vision systems (e.g., human eye retina), we observe that
photoreceptors are usually arranged as a hexagonal grid. The work [18] indicates that
hexagonal grids have the following advantages that are relevant for path planning:
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• Distance between neighboring cells is the same along each of the six main directions.
• Curved structures are represented more accurately than in rectangular pixels.
• Less hexagonal pixels than square pixels are required to represent the map.
• Closed shapes are represented as closed on the map.

In the case of rectangular grids, with coordinates of a point (x, y), we can easily
calculate the corresponding coordinates of the grid-based map cells. The work [37] presents
a convenient method of hexagonal maps representation. The map is recorded using two
arrays. The cell is described as follows:

(a, r, c) ∈ {0, 1} × Z× Z, (27)

where:

Z—non-negative integer.
a—array number 1 or 0.
r, c—row and column number in the relevant array.

We propose using a diffusion path planning method on hexagonal grids. The method
is described in [18]. In the article it is shown that the paths generated are shorter than for
rectangular grids. The path recorded in the form of a hexagonal cell sequence is easier to
smooth out as there is no connections at 90 degree angles. The method is complete and the
situation where the goal is surrounded by obstacles is easily detected.

Another advantage of this method is that the path planning process takes into account
not only its length but also the cost of travel. This makes it relatively easy to take into
account the expected wind direction in the trajectory planning process. Figure 16 presents
an example map. The black rectangle represents the obstacle, red marks the starting point
and the target, and yellow marks the generated trajectory. Figure 16b,c present the form of
a route if wind direction (red arrow) is taken into account. In this case, movement in the
gray area is not safe, as it may result in a crash into an obstacle. The adopted algorithm
assumes a high cost of crossing through cells marked with gray. We can see the impact of
taking into account the wind direction on the form of the planned route.

(a) No wind (b) Head wind (c) Side wind

Figure 16. Miscellaneous UAV trajectories depending on wind direction.

As a result of the operation of the above algorithm, we receive a set of path lengths
between individual vertices, which takes into account the location of obstacles and the
maneuverability of the aerial vehicle.

4.2. Aerial Vehicle Mission Planning Task

For the purpose of solving the mission planning task, the area of activities is modeled
in the form of a grid S (details are presented in [16]).
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The structure of the area is represented by a graph G =< V, E >, the vertices of
which model possible points of the UAV flight path and the edges model the UAV flight
possibilities on individual route segments. Selected vertices i ∈ VVV and edges (i, j) ∈ EEE
modeling the area of operations have defined parameters such as reconnaissance priority
pi (analogically for the curve pij), payload working time in the vertex ti (analogically
for the edge tij), and required time window for diagnosis (set in the form [ei, di], where
ei—the earliest possible date of entry to the point modeled with the vertex i ∈ VVV (start of
reconnaissance), di—the latest date of entry to the point modeled with the vertex) (start
of reconnaissance i ∈ VVV). A complete set of parameters and variable tasks is provided
in [15,16]. The articles also underline the analogy with the tasks of VRPTW, which includes
the tasks of determining UAV flight routes based on the MILP models presented.

The following types of constraints can be distinguished in the presented models:

• Typical constraints for grid flows.
• Constraints for the unmanned platform which carries out object reconnaissance.
• Technical constraints related to the need to eliminate cycles.

The article presents methods of route planning for a single UAV. Nevertheless, the
enlargements presented in this section mean that the method presented can be used for
planning and implementing drone swarms.

The key elements of the formal mission planning model for drones are discussed
below. The following groups of variables were used in the developed VRPTW models:

xih—assuming the value of 1 when the UAV’s h ∈ HHH mission plan includes flight through
a point modeled with a vertex i ∈ VVV; 0 w p.p.
yijh—assuming value 1 when the UAV’s h ∈ HHH mission plan includes flight through a
route segment modeled with an edge (i, j) ∈ E; 0 w p.p.
tih—determining the time slot during which the UAV h ∈ HHH should fly through a vertex
i ∈ VVV; 0 w p.p.

From the perspective of mission planning, the following operational constraints in-
dicated by [15], which belong to a group of limitations characteristic of grid flows, must
be met.

(a) UAVs with index h have to take off:

∑
j∈VVV

y0jh = 1, ∀h ∈ HHH, (28)

The initial vertex has an identifier of 0, which does not reduce the overall formulation
of the task.

(b) Every UAV that has taken off, has to land:

∑
j∈VVV

yjbh − y0jh = 0, ∀(h ∈ HHH, b = ||V||), (29)

∑
j∈VVV

y0j = 1, ∀(h ∈ HHH, b = ||V||). (30)

It was assumed that the vertex of the network with the highest number (b=|(|V|)|)
is the UAV landing zone. The constraints (29) and (32) ensure that the UAV that has
taken off must also land.

(c) The area modeled with the vertex of the network has to have the same number of
UAVs taking off and landing:

∑
i∈VVV,i 6=j

yijh − ∑
k∈VVV,j 6=k

yjkh = 0, ∀(h ∈ HHH, j ∈ V), (31)
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(d) The number of UAVs that may pass through the route segment modeled with an edge
is the number specified by the planner with parameter κ:

∑
h∈HHH

yijh ≤ κ, ∀((i, j) ∈ EEE : i 6= j). (32)

Our work deals with UAV flight planning and considers constraints related to the
unmanned platform, which performs object reconnaissance. In particular, the actual
problems of determining flight segments in the area where the object can be identified are
described. The procedure for determining such segments is described in [16] for SAR radar
and [38] for EO/IR head. There is given a wide description of how to determine possible
segments of the UAV flight on which SAR scanning is activated. Several possible flight
segments may be proposed (if technically feasible) for each reconnaissance object, which
are modeled by branches of the connection grid (see Figure 3).

Articles [15,16] show how to build the VRPTW task, which takes into account the
situation described above. We limit the articles to only two alternative route segments for
each reconnaissance object:

xih − xjh = 0, ∀(h ∈ HHH, i, j ∈ VVV : i ∈ {k, l}, j ∈ {m, n}), (33)

∑
i∈VVV:i∈{k,m},j∈VVV:j∈{k,m},i 6=j

yijh ≤ γ, ∀(h ∈ HHH), (34)

∑
i∈VVV:i∈{l,n},j∈VVV:j∈{l,n},i 6=j

yijh ≤ γ, ∀(h ∈ HHH). (35)

Constraints (33)–(35) model the possibility of identifying an object by one or more
UAVs that will perform reconnaissance flights on different predefined sections of designated
routes. In the case of a reconnaissance conducted by several platforms, this is a frequent
situation. γ is the number of platforms that can perform object reconnaissance. The model
assumes that the analysis has been defined only for two flight segments for purpose target
identification (see Figure 3): edges (k, m) and (l, n). The links presented do not force the
direction of the flight on the selected segment. Constraints presented are typically used
for an unmanned platform that performs reconnaissance of objects on one of the possible
flight segments.

The set of constraints related to the execution of the UAV mission or the UAV swarm
also includes time window constraints (36) and (37) in which the platform may fly into
a given vertex of the grid, constraint for the maximum flight time (maximum mission
time—constraint (38)), and sequential constraints related to the identification of objects in a
designated order. In accordance with the latter constraints, the time to reach the next recon-
naissance object is no less than the sum of the time to complete the reconnaissance of the
previous object in the mission plan and the flight time between subsequent reconnaissance
objects (constraint (39)).

xih · eih ≤ tih, ∀(h ∈ HHH, i ∈ VVV), (36)

xih · dih ≥ tih, ∀(h ∈ HHH, i ∈ VVV), (37)

∑
i,j∈VVV:i 6=j

Tijh · yijh + ∑
i∈VVV

Tih · xih ≤ τh, ∀(h ∈ HHH), (38)

tjh ≥ tih + Tijh · yijh + Tih · xih −M · (1− yijh), ∀(h ∈ HHH, i, j ∈ VVV : i 6= j). (39)

In case of constraint (39), the “big M” rule was applied, as described in the article [15].
The presented models defined several goal (cost) functions related to the solving

moments for finding the optimal solution (or suboptimal solution when configured so as
to minimize the time of finding an acceptable solution that is within a set distance from
the optimum solution). Here, it is worth focusing on the interpretation of the value of the
function of the target that is obtained during the task implementation. From the point of
view of the formal solution to the MILP task, what interests the analysts is finding the
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extreme of the function, which guarantees an optimal solution. In any way, calculations may
be stopped earlier by checking the differences between the successive feasible (acceptable)
solutions found by the solver. By selecting the proper search direction of the branch and
bound tree accordingly, it is quite simple to detect the moment when the distance from the
lower estimation (potential best solution) is sufficiently small and the consecutively found
solutions differ by a set value. At this time step, further searching for an optimal solution
does not need to be continued. From the point of view of the person planning the UAV
flight path, the optimum solution is usually accepted subject to constraints, obtained as
soon as the designated routes allow the reconnaissance of a maximum number of objects
and the flight time itself is within a set range. Furthermore, it usually does not matter
if a slight modification of the recognition order does not speed up the completion of the
mission. This assumption concerns the usefulness of MILP models as a whole in planning
unmanned systems missions.

The first primary function of the objective was to maximize the recognition profits
understood as the sum of bonuses for identifying certain objects (see function (40)). This
is the most obvious function of the objective for the VRPTW task. However, it requires
the recognition of UAV reconnaissance capabilities. Otherwise, the solver will always find
routes within the meaning of the graph and networks theory, which will contain all vertices
and edges with non-zero bonus values:

∑
h∈H,i∈VVV

xih · pi + ∑
h∈H,(i,j)∈EEE

yijh · pij. (40)

Another function of the objective was to minimize the duration of the UAV mission.
The function included an additional component that reduced the value of the function
when the vertex or edge with a profit was included (function (41)). For this function, it is
necessary to introduce scaling factors for individual parts, which, as mentioned above, is a
potential source of malfunction of the algorithm:

δ · ∑
h∈H,(i,j)∈EEE

Tijh · yijh − [ ∑
h∈H,i∈VVV

xih · pi + ∑
h∈H,(i,j)∈EEE

yijh · pij]. (41)

From a formal point of view, for the planning of the mission, it is not necessary to
take into account a detailed forecast of wind directions and speeds at different altitudes.
Meteorological services note the need for development in this direction. Nevertheless, it is
worth noting that mission plans can also be prepared without the availability of detailed
wind direction and speed data. Consideration should be given to the fact that unmanned
flying systems, both military and, even more so, civilian, have predefined maximum atmo-
spheric conditions under which they can perform their missions. Thus, at the maximum
wind speeds set, the planner is able to report the maximum approximate flight time for
each UAV. This is sufficient to ensure flight safety for the prepared plan. However, this
does not change the overall need to extend mission planning models to include elements
related to the impact of atmospheric conditions on UAV flight, in particular taking into
account the mathematical model of wind and its turbulence based on the Dryden model
defined in MIL-STD-1797A 1990, MIL-F-8785C, and MIL-HDBK-179. However, according
to our knowledge, there is no work on such issues in the context of mission planning.
Unfortunately, this is due to the need to include aircraft models in the calculations, which
manufacturers (in particular from the military industry) will not want to do.

Extending the mission planning model to include elements that take into account wind
direction and speed requires at least three additional constraint groups to be introduced
into the model:

• In the scope of determining flight time on a segment depending on UAV velocity
relative to air (so-called indicated air speed (IAS))—constraint (42).

• For the determination of ground speed (GS) based on wind direction and speed and
possible UAV performance (expressed as IAS range)—constraints (43)–(45).



Energies 2022, 15, 3730 24 of 31

• With regard to energy consumption (electric or combustion engine) without which
the optimization engine sets speed to the maximum permissible values—constraints
(46)–(51):

tijh · vGS
ijh ≥ dij, ∀(h ∈ HHH, (i, j) ∈ EEE). (42)

In constraint (42), UAV flight time tijh between vertices is a variable in the task. The
constraint is nonlinear and may require linearization if the solver is unable to accept such a
constraint. For CPLEX, linearization is not necessary and UAV velocities are following:

vGS
min ≤ vGS

ijh ≤ vGS
max, ∀(h ∈ HHH, (i, j) ∈ EEE), (43)

vIAS
min ≤ vIAS

ijh ≤ vIAS
max, ∀(h ∈ HHH, (i, j) ∈ EEE), (44)

(vIAS
ijh )2 ≥ (vGS

ijh )
2 + (vW

ij )
2 − 2 · vGS

ijh · v
W
ij · cos(

−→
vGS

ijh ,
−→
vW

ij )−M(1− yijh), ∀(h ∈ HHH, (i, j) ∈ EEE), (45)

where vGS
ijh means UAV velocity relative to the ground. vIAS

ijh means UAV velocity relative
to the wind. If CPLEX is used, constraint (45) requires the linearization of at least one
variable (sufficient for CPLEX). In the conducted experiments, IAS was linearized with

linear function pieces.
−→
vGS

ijh means a vector of UAV velocity relative to the ground,
−→
vW

ij means
a vector of wind velocity on the flight segment. It was assumed that the wind vector at the
time of termination of the task was permanent. The velocity vector relative to the ground
will comply with the route segment on which the UAV moves as follows:

vIAS
mid − vIAS

ijh ≥ M(1− zIAS1
ijh ), ∀(h ∈ HHH, (i, j) ∈ EEE), (46)

vIAS
mid − vIAS

ijh ≤ M(1− zIAS2
ijh ), ∀(h ∈ HHH, (i, j) ∈ EEE), (47)

zIAS1
ijh + zIAS2

ijh = 1, ∀(h ∈ HHH, (i, j) ∈ EEE), (48)

Υijh ≥ (λ11 · vIAS
ijh − λ21)−M(1− zIAS1

ijh )−M(1− yijh), ∀(h ∈ HHH, (i, j) ∈ EEE), (49)

Υijh ≥ (λ12 · vIAS
ijh − λ22)−M(1− zIAS2

ijh )−M(1− yijh), ∀(h ∈ HHH, (i, j) ∈ EEE), (50)

Υijh ≤ M · yijh, ∀(h ∈ HHH, (i, j) ∈ EEE). (51)

Constraints (46) and (47) help to linearize a nonlinear function modeling Υijh UAV
energy consumption according to velocity. Since the platform, after exceeding a certain IAS
velocity (marked in the model as vIAS

mid ), the vehicle consumes significantly more energy;
there are two inequalities (49) and (50) in the model which model this fact (λ coefficients
are selected depending on the type and power of the engine). Usually only in specific cases
will the solver increase velocity above vIAS

mid . This will only be the case if a point with a
high profit has to be reached under conditions of strong winds from the opposite direction.
The constraint (51) supports an optimization engine in setting a zero energy consumption
value for the section not traveled by the UAV. Constraints (46)–(48) help to indicate the
speed range in which the UAV operates. The article presents the simulation results for one
selected route segment so that the results are easy for the reader to analyze.

5. Results

The proposed technique for flight control and mission planning of the aerial vehicle
was applied and tested employing ARM processor architecture. The hardware-in-the-loop
(HIL) environment shown in Figure 17, that includes FCC and MC, was used for the tests.
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Figure 17. Simplified HIL simulation workstation for the described system. FCC does not contain
redundant components such as autopilot, air data computers, and dead reckoning subsystems. The
photograph shows a control computer with GCS software, MC (based on Jetson Tegra solution), and
FCC based on ARM architecture.

The UAV flight path plan from the point of take-off to landing through subsequent
points of the route is displayed in Figure 18. Route plans were selected which start with
a flight from the take-off point (WPT1) to WPT8 (first point in the route). An HIL flight
simulation has been realized as presented in Figure 18a,b. In the case of changes in
reconnaissance priorities (see Figure 18c,d), the planning module selects a different flight
path even within the same weather conditions.

The route planning task for a UAV consists of finding a best route subject to wind
direction and speed, as reflected by task constraints (42)–(51). The introduction of these
constraints makes the entire MILP task a model with constraints in quadratic functions.
Constraint (45) binding GS and IAS speeds is particularly problematic. It requires linearity
between one or more variables (for CPLEX). In ongoing studies, the IAS functions are
linearized using CPLEX. In practical applications using a Jetson Tegra class computers,
solutions such as the CBC solver from the Coin-OR package may be used. Examples of
algorithm performance results for different wind speeds are shown in Figure 18.

An important element that affects the efficiency of the algorithm is the minimization
of the number of waypoints for which time windows are defined. In a situation where the
number of such waypoints is large, the total number of vertices of the network SSS on which
the calculations are performed should be minimized. For this purpose, widely known
triangulation methods or the method presented in [16] can be used.

In the case of building mission plans in large networks, where the number of observed
objects is often modified (which is equivalent to adding or subtracting points with defined
time windows), it is worth using “warm start” mechanisms. “Warm start” allows the solver
to start determining the solution of the modified task on the basis of the solution that has
been assigned so far. This is especially needed when only a few additional reconnaissance
objects are added to mission planning. The warm start mechanism in CPLEX is embedded
in CPLEX solver.
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(a) (b)

(c) (d)

Figure 18. Examples of UAV flight routes for different reconnaissance priorities for objects and
different wind forces. (a,b,d) Eastern wind of varying speed. (c) No wind.

Another important element of optimization is determining how far from the optimal
solution the solution found by the solver can be. The search for the optimal solution
is not always economically justified. The time needed to obtain such a solution may
be too long. Therefore, it is worth allowing suboptimal solutions. In this case, it is
not worth waiting many minutes to search the entire solution space. In this task, the
CPLEX_PARAM_MIPEMPHASIS set parameter is 5 (in this case, the solver tries to find an
acceptable solution as soon as possible, using the implemented heuristics).

Some acceleration of calculations can be achieved by using mechanisms column
generation while solving an MILP class problem. These mechanisms are described, for
example, by Barnhart et al. [39]. In some cases, it is possible to achieve acceleration of
calculations by several percent.

Figure 19 shows results of simulations performed in hardware-in-the-loop tests of
route planning and control algorithms described above. For the clarity, only UAV flights
on one of the route segments of the designated route were considered. For each segment,
as shown in the description of the route planning method, the points through which the
UAV must fly in order to avoid obstacles are identified. Figure 19 has six subfigures
(Figure 19a–f). Each simulation was performed for the same flight path. The variable values
were wind direction parameters (blue arrow; no arrow means no wind) and activation
in cooperation with the management algorithm and permanent shutdown of distance
to heading regulator (ON/OFF). The wind speed amplitude was 8 m/s. The flight path
planned by the operator using GCS and HMI consisted in this case of two points (WPT1 and
WPT8 as shown in Figure 18) and the flight path was to be a straight line (red arrow). Due to
the obstacles on the route segment between WPT1 and WPT8 (see Figure 18), MC modified
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the flight path to 13 points, shown in the figures, based on the trajectory determination
algorithms described above.

(a) (b) (c)

(d) (e) (f)

Figure 19. Results of simulations performed in hardware-in-the-loop tests. (a) No wind. (b) Head
wind. (c) Side wind. (d) Tail wind: distance to heading PID controller (OFF). (e) Tail wind without dis-
tance to heading PID controller (OFF). (f) Side wind without distance to heading PID controller (OFF).
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The results of presented simulations show that wind, despite advanced control algo-
rithms, plays a key role in the shape of the flight trajectory. In addition, one can observe how
important the proper functioning of distance to heading regulator is. For each examined
case, when the controller generated control signals, the UAV performed the mission safely.
On the other hand, in Figure 19e, it can be seen that the UAV avoids collision and flies over
the obstacle.

A further simulation was carried out to verify the operation of the roll angle limitation
algorithm to the SAR mission. Figure 20a shows the flight trajectory without the roll
limitation. Presented results show that, despite disturbances in the form of wind, UAV
operates the route according to the defined path. However, in the case of a flight with a roll
angle limited to 5 degrees for the SAR mission, the UAV will continue to attempt to follow
the set path (see Figure 20b). The fact that the set path is achieved after much more control
time is due to the fact that, according to dependence (26), the minimum turning radius
has increased.

On the other hand, the UAV is still able to operate a set route. In this case, however,
the MC must take into account the change of maneuverability of the UAV when correcting
the mission.

(a) (b)

Figure 20. Example of UAV flight simulation over a route segment. (a) FCC not limited to roll the
vehicle. (b) Maximum roll angle is defined.

6. Conclusions

The article presents the UAV control enabling the mission to be realized in an au-
tonomous mode (without GCS contact), which includes FCC and MC computers responsi-
ble for modification of UAV flight routes and airframe control using PID controls. Three
groups of algorithms described (platform flight path planning, in-flight platform control,
and planned trajectory adjustment algorithms) are integrated and used in many situations,
including the modification of the flight path due to prevailing wind conditions when
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the UAV cannot use SAR radar due to excessive lateral rolls. The studies were carried
out on the basis of the mathematical model of the actual unmanned platform used in
the AFIT project. The developed stabilization and navigation algorithms use the Dryden
turbulence model.

This article presents the algorithm for determining the actual distances between the
different points in the field of action, considering the existence of obstacles. The algorithm
deals with determination of flight trajectory on a hexagonal grid, which makes its use with
a set UAV profile that does not significantly change altitude rapidly.

A great deal of attention has been paid to the methods of planning and implementing
the UAV mission under wind gust conditions. The main purpose of the flight route planning
was to plan the route, minimizing the energy costs of the UAV. The mission planning task
model was developed in the form of an MILP task.

The developed algorithms were tested on a computer architecture based on ARM
processors using the hardware-in-the-loop (HIL) technique, which is currently a standard
approach in the design of unmanned platforms.
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