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Abstract: In this work, an experimental study and kinetic characterization of the combustion process
and a morphologic study of hydrogen/methane–air mixtures are presented. The experimental study
was performed in an optical access cylindrical constant-volume combustion bomb. This bomb is
equipped to register the instantaneous pressure during combustion and records the combustion
images using the high-speed Schlieren optical technique. This provides straightforward information
to compute the flame propagation speed and direct evidence of the apparition of cellularity on the
flame front. Through the images of the combustion process, it is possible to conduct a morphological
study of the process using a flame monitoring model. Simultaneously, by means of a two-zone
thermodynamical model, with the temporal evolution of pressure as the main intake, significant pa-
rameters are determined during the combustion process of different fuels under premixed conditions:
burning velocity, rate of combustion, burned and unburned temperature, burned mass fraction, and
rate of heat release, among others. Experimental results are compared with kinetic modeling results
obtained with the Cantera package using the Gri-Mech 3.0 kinetic mechanism. Results show that a
greater percentage of hydrogen in the fuel mixture increases the burning velocity and the cellularity
of the flame front surface. At the same time, leaner mixtures and higher equivalence ratios enhance
the apparition of the cellularity onset in the flames. Burning velocity increases with the increase
in the initial temperature and the fuel/air mixture equivalence ratio. All the results obtained were
validated with other data from the literature.

Keywords: hydrogen; methane; combustion bomb; laminar burning velocity; cellularity

1. Introduction

Fossil fuels are the basis of current industry because they are extensively used in all
areas of daily life, making them an important aspect of the global economy. Nevertheless,
the limitation on fossil fuel resources leads to their depletion, increasing oil prices and the
energy dependence of fossil fuel-producing countries. In addition, the combustion of fossil
fuels has a negative effect on the environment and on people’s health. Altogether, this
makes it necessary to look for new cleaner energy sources and new fuels, in addition to
increasing the combustion process efficiency. One possible solution to the above problem is
the development and use of alternative fuels with a renewable origin.

Gaseous fuels have advantages over liquids and solids, as their polluting emissions
can be more easily controlled, achieving greater efficiencies. They produce lower CO or
CO2 emissions because they have a high hydrogen/carbon ratio [1]. However, gaseous
fuels have disadvantages due to their low energy density per unit volume or per unit
mass, which is lower than that of liquid fuels. Therefore, the storage system requires more
space, and this leads to a diminution of the autonomy, since vehicle tanks have a volume
limitation. Natural gas (NG) and hydrogen are some of the most interesting alternative or
residual gaseous fuels.
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The laminar burning velocity (LBV) is one of the main parameters in engine modelling;
it is used in predictive and diagnosis models to understand the combustion process taking
place in an internal combustion engine, as well as for diagnosis and predictive models of
this engine [2,3]. In addition, computational fluid dynamics models are needed to design
new engines, simulate hydrogen/methane combustion in internal combustion engines, and
predict the optimal design. These models need chemical kinetics and LBV results.

Many previous studies on combustion processes focused on the study of methane/air
flames [4–9] and/or hydrogen/air flames [10–13]. Various experimental studies focused on
measuring laminar burning velocity in methane/hydrogen/air blends [7,14–17]. Scholte
and Vaags [18] were the pioneers in measuring the speed of this mixture using the tube
burner method. Liu et al. [19] and Huang et al. [20] conducted more extensive experimental
studies on a wide range of relative doses and hydrogen fraction/content in methane–
hydrogen/air flames. Other investigations focused on the study of instabilities developed
in the flame [21,22] during the combustion process [23–25] which, in some cases, leads
to a cellular flame front. Phenomena that can produce instabilities in the flame front
(in a laminar regime) of a premixed combustion are volume forces, hydrodynamic ef-
fects, and thermo-diffusive effects [26,27]. An unstable structure increases the burning
velocity [28–30]. The understanding of hydrogen/methane combustion and cellularity in
flames is necessary for improving the performance of internal combustion engines.

Studies can be classified into two categories: the first is from the point of view of
improving the methane flame by adding hydrogen; the second is from the point of view of
hydrogen flame inhibition by adding methane. Yu et al. [7] studied the characteristics of the
laminar combustion rate of methane/hydrogen/air flames and observed a linear correlation
between the laminar burning velocity of the fuel mixture and the hydrogen content. Law
and Kwon [16] investigated the possibility of adding hydrocarbons to hydrogen flames
to reduce the risk of explosion and found that adding a small methane content could
significantly decrease the laminar burning velocity and retard the apparition of instabilities
on the hydrogen/air flames (with a thermal–diffusive or hydrodynamic origin).

The addition of hydrogen to methane increases the H/C ratio, which leads to a reduc-
tion in the CO, HC, and CO2 emissions. However, increasing the percentage of hydrogen
increases the flame temperature and NOx emissions [3,31–35]. Jiang et al. [36] investigated
in a combustion chamber the relationship between the cellular structure of a flame front and
the pressure of methane/hydrogen/air mixtures under laminar premixed flame conditions
for different equivalence ratios and percentages of hydrogen. Kim et al. [37] conducted
an experimental investigation about the onset of cellular instabilities and the acceleration
of the flame. Wu et al. [38] conducted an experimental investigation to study the self-
acceleration of hydrogen flames under cellular conditions. Tinaut et al. [24] characterized
hydrogen flames morphology under cellularity conditions using a parameter to quantify
the cellularity in the flame. Di Sarli et al. [39] investigated the laminar burning velocities of
hydrogen/methane/air mixtures using a kinetic mechanism varying the equivalence ratio
and fuel composition. El-Sherif [40] proposed the control of emissions by adding hydrogen
to methane flames, studied hydrogen/methane flames using a kinetic mechanism, and
obtained correlations.

This paper focuses on the study of hydrogen/methane/air combustion in a cylindrical
constant-volume combustion bomb analyzing the laminar burning velocity and morphol-
ogy of the fuel mixtures. For this goal, three concurrent methodologies are employed:
temporal pressure register (examined with a two-zone diagnosis model), radius evolution
obtained from the flame development recorded with the Schlieren technique, and kinetic
modeling. In addition, a morphological study of the hydrogen/methane/air blends is pre-
sented, and flame front thickness is studied. Finally, experimental results are also compared
with kinetic modeling results using Cantera in terms of laminar burning velocity and NOx,
CO, and CO2 emissions with the increase in hydrogen in the fuel mixture.



Energies 2022, 15, 3722 3 of 20

2. Experimental Specifications

Laminar burning velocity of the premixed gas was measured in a cylindrical constant-
volume combustion bomb with a diameter of 114 mm and a height of 135 mm, a high-speed
image system, and an ignition system (Figure 1). Through this facility, it is possible to
observe the flame development and the flame front morphology. For each experiment,
the combustion chamber was vacuumed and filled with hydrogen/methane/air mixtures
according to the corresponding partial pressure. After that, the mixture was ignited at the
center of this chamber by two electrodes. The flame propagation was filmed using the
Schlieren technique with a high-speed camera Phantom V210 at 7000 frames per second.
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Figure 1. Scheme of the experimental setup.

A mathematical algorithm was built for the processing of the images obtained with
the optical assembly. Pressure was recorded, during the combustion process, using a
piezoelectric pressure transducer (model Kistler type 7063). The complete components of
the experimental installation, the methodology used in this research, and a full description
of the algorithm for image processing were detailed in a previous study [24].

Characterization of cellularity regimes includes items such as the identification of
the conditions of the instability’s onset, which depends on the main operating conditions:
pressure, temperature, and equivalence ratio. A detailed description of the experimental
installation was presented in previous studies [24,41].

3. Results

In this section, results obtained from the experiments of hydrogen/methane–air mix-
tures are presented. The experiments were performed for different fuel/air mixtures,
varying the percentage of hydrogen in the mixture from 0% to 100% and the equivalence
ratio from 0.5 to 1.0. Initial pressure and temperature were fixed at 0.1 MPa and 315 K
for all experiments. Lean fuel/air mixtures were chosen as the region of interest in spark
ignition engines, and different mixtures of hydrogen and methane were used to determine
the influence of the hydrogen addition on the methane combustion.
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3.1. Laminar Burning Velocity Results

The results presented of the laminar burning velocity were obtained using three
different methodologies: firstly, from the diagnosis of the instantaneous pressure inside
the combustion chamber, up

l (with the two-zone thermodynamical model); secondly, from
the recording of the combustion images, ul; thirdly, using Cantera software with a kinetic
mechanism, LBV. In the three cases, the influence of the hydrogen content and the fuel/air
equivalence ratio was investigated. Results obtained with different methods were compared
among themselves and with the available literature to check the dispersion of the results.
Finally, a morphological study of the hydrogen/methane flames was performed.

3.1.1. Laminar Burning Velocity from the Pressure Register

Initially, the laminar burning velocity was obtained from the temporal pressure reg-
istered during the combustion with a two-zone thermodynamic model, in which the com-
bustion chamber was divided into two zones: burned and unburned; more details of the
model can be obtained in Tinaut et al. [24]. The burned mass fraction was evaluated from
the pressure register by means the thermodynamic model, detailed in Reyes et al. [9]. The
laminar burning velocity up

l was calculated from the mass burning rate
.

mb, the unburned
mixture density ρu, and the flame front surface Af, according to the following expression:

up
l =

.
mb

ρu·A f
. (1)

In Figures 2 and 3, curves of the evolution of the pressure inside the combustion bomb
versus the combustion time and curves of the laminar burning velocity (up

l ) versus the
temperature of the unburned zone are presented.
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Figure 2 presents the temporal evolution of pressure for mixtures with different
percentages of hydrogen (from 0% to 100%) and with different equivalence ratios (0.6, 0.8,
and 1.0), all for constant initial pressure (0.1 MPa) and temperature (315 K). It is possible to
see that hydrogen enhanced the combustion process, reaching the peak pressure earlier, for
all the equivalence ratios tested. Accordingly, Figure 3 shows the corresponding burning
velocities obtained with the thermodynamic model, where it is possible to see the increment
in the laminar burning velocity with the percentage of hydrogen in the fuel mixture. The
percentage of hydrogen increased the H concentration produced during the combustion,
increasing the burning velocity of the fuel/air mixture.

Results of the laminar burning velocities for different fuel mixtures (percentage of
hydrogen) and various equivalence ratios (from 0.5 to 1.0) are presented in Figure 4, for
0.1 MPa and 315 K initial conditions. As shown in Section 1, the behaviors of hydrogen and
methane are very different; depending on the amount of hydrogen added to the mixture, the
behavior will be close to that of hydrogen (known as a dominant hydrogen mixture) or to
that of methane (a dominant methane mixture). The transitional regime was obtained in this
work for percentages of hydrogen in the fuel mixture higher than 30% and lower than 80%.
This regime was characterized by the laminar burning velocity increasing exponentially
with the hydrogen content in the fuel mixture. When the percentage of hydrogen in the fuel
mixture was lower than 30%, methane dominated the combustion process, and the laminar
burning velocity increased linearly with the hydrogen content. On the other hand, when
the percentage of hydrogen exceeded 80%, the combustion was dominated by hydrogen
dominated and the laminar burning velocity increased linearly, but with a higher slope
than in the methane-dominated regime. Other studies obtained similar tendencies; for
example, Di Sarli et al. [39] divided the hydrogen/methane combustion into three regimes
according to the degree to which the hydrogen content affects the laminar burning velocity
of the fuel mixture: methane-dominated combustion (XH2 < 0.5) where the laminar burning
velocity increases linearly with the hydrogen content, the transition regime (0.5≤ XH2 ≤ 0.9)
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where the laminar burning velocity increases exponentially with the hydrogen content, and
hydrogen-dominated combustion(XH2 > 0.9) where the laminar burning velocity increases
linearly with the hydrogen content. In addition, in all tested mixtures, the equivalence ratio
enhanced the laminar burning velocity, due to the improvement of the reaction activity.
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Figure 4. Laminar burning velocity, obtained with pressure register, versus the percentage of hydro-
gen in the fuel/air mixture, with initial conditions of 0.1 MPa and 315 K.

3.1.2. Laminar Burning Velocity Obtained from Schlieren Images (ul)

The premixed combustion, originating at the center of the combustion bomb, prop-
agates spherically with the flame propagation speed Sn = dru/dt, where ru is the flame
radius obtained as a correction of the instantaneous radius observed by Schlieren images
(rsch) [4,42], shown in Equation (1), where ρu and ρb are the unburned and burned densi-
ties, respectively, and δl is the laminar flame thickness given by δl = ν/u l, in which ul is
the laminar burning velocity estimated using rsch, and ν is the kinematic viscosity of the
unburned mixture.

ru = rsch + 1.95·δl ·ρu·ρ0.5
b . (2)

The stretched laminar burning velocity, un, can be obtained from the propagation
speed (un = ρb/ρuSn) using the thermal expansion coefficient (σ = ρu/ρb) [43].

The expanding rate of a spherically expanding flame due to the flame front curva-

ture [4] is the flame stretch rate: α = 1
A f

· dA f
dt = 2

r Sn, where Af is the flame front area.
The laminar burning velocity is affected by the flame stretch because of the coupling

between diffusion and hydrodynamics caused by the change in the velocity of the gas flow
due to the gas expansion. The relationship between the stretched and unstretched laminar
burning velocity is as follows: un − ul = −Lbα, where Lb is the Markstein length and ul
is the unstretched laminar burning velocity [44]. The stretch influence can be eliminated
from the flame propagation speed, obtaining the unstretched flame propagation speed,
Sl, extrapolating the flame propagation speeds for a stretch of zero (see Figure 5), and
obtaining the laminar burning velocity from u l = ρ b/ρ uS l .

Figure 5 shows the flame propagation speed, Sn, versus the stretch rate, α, for an
80% H2/20% CH4 mixture at φ = 0.9. In this figure, the laminar and cellular regimen can
be clearly visualized. For high stretch rates (small flame radius), the flame propagation
speed was high. As the flame expanded, the speed of the flame slowly dropped due to
the decrease in flame stretch rate. As stretch was further reduced, a point was reached
where the flame became unstable (critical point) and visible cellularity developed in the
flame front, producing an increase in flame propagation speed. The point at which the
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flame velocity begins to rapidly accelerate with decreasing stretch defines a critical point.
This critical point is associated with a Peclet number, Pecr, given by the flame radius at
the start of the flame acceleration, normalized by the flame thickness (Pe = r/δl). The
unstretched flame velocity, Sl, was calculated as presented in Figure 5, and the values of Sl
were determined from a linear fit of Sn against α over the largest possible range of radii,
excluding cellular flame regions and those affected by the spark. When the stretch rate cuts
the ordinate, i.e., α = 0, it gives rise to the value of Sl, Figure 5.
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Figure 5. Flame propagation speed versus the stretch rate for 80% H2/20% CH4 mixture at initial
conditions of φ = 0.9, 0.1 MPa, and 315K.

In Figure 6a, the temporal evolution of the flame radius for lean fuel mixtures (for
φ = 0.8) with different percentages of hydrogen (varying from 0% to 100%) is plotted. At
the initial stage of flame development, the flame stretch was big, and the flame stability was
strong. With the growth of the flame, the stretch rate of the flame decreased as the flame
radius increased. Figure 6a shows that, with increasing hydrogen content in the fuel/air
mixture, the slope of the radius evolution increased.

Figure 6b shows the corresponding flame propagation speeds. Here, it is possible to
see that the increment in the hydrogen content in the fuel mixture enhanced the combustion
process. The unstretched flame propagation speed, Sl, was determined as expressed before
the test developed, and the results are presented in Figure 6c.

For hydrogen content less than 50% (dilute hydrogen conditions), the unstretched
flame propagation speed represented in Figure 6c increased linearly with the percentage of
hydrogen. However, for hydrogen content greater than 50% (hydrogen-rich conditions), the
unstretched flame propagation speed increased exponentially with the hydrogen content
in the fuel/air mixture.

It can be considered that flame propagates under constant pressure at the beginning
of the combustion process, and the variations in the stretched laminar burning velocity
can be assigned to stretch rate variations. Figure 6d presents the laminar burning velocity
results versus the equivalence ratio for different percentages of hydrogen in the fuel/air
mixture from 0% to 100%, where it is possible to see the same upward tendency for the
laminar burning velocity. Values of laminar burning velocity for very poor mixtures with
low hydrogen content were difficult to obtain using this methodology (0% and 20% of
hydrogen and 0.5–0.6 fuel/air equivalence ratio).
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3.1.3. Laminar Burning Velocity Obtained from Cantera Kinetic Modeling (LBV)

A kinetic study of the combustion process is important to be able to interpret the
experimental results; in addition, it improves the understanding of the physical and
chemical phenomena that occur during the combustion process. Combustion modeling
involves the resolution of a system of differential equations of great computational cost.
Currently, there are computational codes that, together with the use of reaction mechanisms,
make it possible to find increasingly reliable theoretical solutions to combustion problems.
The tool used in this work was CANTERA [45]. The most widely accepted H2/CH4/air
kinetic reaction mechanisms are GRI-Mech 3.0 [46] and Aramco [12,47–49].

Results of the laminar burning velocity obtained with kinetic modeling using Cantera
(denoted as LBV) of fuel/air mixtures obtained using the kinetic mechanisms of GRI-
Mech 3.0 and Aramco 1.3 are presented in Figure 7 to study the effect of the addition
of H2. These results show the same tendency for the laminar burning velocity values
as that obtained using the other two methodologies. Gri-Mech 3.0 and Aramco results
were quite similar for low and medium percentages of hydrogen in the fuel mixture, but
differed for mixtures with high hydrogen content, as also seen in other studies [48,50].
The results obtained with the two mechanisms differed for mixtures with high hydrogen
contents, due to the complex reactions controlled by the hydrogen sub-model [22]. These
two mechanisms have been widely used in modeling the laminar burning velocity of
methane and methane/hydrogen mixtures [47,51]. Gri-Mech 3.0 consists of 325 elementary
chemical reactions and 53 species, optimized in modeling methane and hydrogen and
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tuned for high temperature, whereas Aramco 1.3 consists of 470 chemical reactions and
53 species. Aramco 1.3 predicted higher values of the LBV than Gri-Mech 3.0 for elevated
hydrogen contents, despite these mechanisms giving similar values for the other fuel
mixtures, with a lower hydrogen fraction. Other authors showed the same differences
between the two mechanisms [52] obtaining an overprediction of the constant-volume data
in lean conditions.
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3.2. Laminar Burning Velocity Comparison

In this section, a comparison between laminar burning velocity results obtained
with the three different methodologies in this study and with the literature is presented
as a function of the fuel/air equivalence ratio, for different percentages of hydrogen in
the fuel mixture. The laminar burning velocity of methane/air mixtures at atmospheric
pressure and an initial temperature of 300 K is plotted versus the fuel/air equivalence ratio
in Figure 8, using some values presented in the review of the laminar burning velocity
published by Konnov et al. [53] and in Reyes et al. [14]. Experimental results and predictions
of detailed kinetic models (lines) are presented in this plot. The present results are shown
in this figure, although the initial temperature is 315 K, obtaining good agreement with
the other results. The spherical flame method has been widely used for burning velocity
measurements. The big discrepancies in the experimental data presented in Figure 8 could
be due to the different measurement techniques. As the spherical flames propagating
outward are correlated with the stretch rate, a correction is needed to obtain more accurate
burning velocity values; as previously explained, the researchers that used pressure–time
data to calculate laminar burning velocity did not take into account the stretching effect.

Results for the laminar burning velocity of different H2/CH4 mixtures (20%, 50%, 80%,
and 100% H2) are presented in Figure 9. The Y-axis scales are different for each percentage
of hydrogen to distinguish curves. In Figure 9, results of the laminar burning velocity
for mixtures with 20% hydrogen (blue color) obtained using the three methodologies are
presented and compared with those obtained by Hu et al. [54] and by Huang et al. [20].
Results obtained in this investigation agree well with the literature results. It is only possible
to see a discrepancy between results obtained with the image method for low equivalence
ratios, since those combustions were very slow, and the pressure constant zone used to
determine the ul differed. Data of the laminar burning velocity from the present work
together with those from other sources are shown in Figure 9 versus the equivalence ratio



Energies 2022, 15, 3722 10 of 20

for 50% H2/50% CH4, 80% H2/20% CH4, and 100% H2 mixtures (brown, purple, and green
colors respectively), obtaining good agreement with the rest of the data.
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3.3. Flame Morphological Study

In real flames, there are several phenomena that may modify, among other properties,
the laminar burning velocity and that can develop instabilities in the flame front, eventually
leading to cellular flames. Instabilities formed in the flame front are due to a variety of
phenomena that need to be characterized and studied. There are different phenomena in
the flame that generate instabilities or perturbations in the flame front, which can cause the
flame front to deform and wrinkle. The main phenomena are volume forces, such as gravity,
thermal expansion of gases due to the flame front development (hydrodynamics), and
phenomena with a thermo-diffusive origin. The effect of the perturbations on the laminar
burning velocity is double: firstly, the increase in flame speed due to an increment in the
flame front surface; secondly, flame and flow geometry deformations, resulting in changes
in velocity magnitude and direction, due to the difference between the mass and thermal
diffusivities of the reactants. The deviation of flame sphericity and flux with respect to the
one-dimensional flame can be quantified through the strain stretch rate and the curvature
of the flame front [42].

In spherical flames, the initial moment of the growth of the perturbations of the
flame front does not necessarily have to coincide with the time for which the instability is
observed experimentally. This explains why disturbances may not be detected until their
amplitude reaches a significant size [55]. The growth rate of the flame front depends on
three main factors: thermal, molecular, and viscous diffusivity. The thermal diffusivity has
a stabilizing effect of the instabilities due to the variation of temperature. The diffusivity
due to the viscosity also has a stabilizing effect, due to the important variation of viscosity
across the entire surface of the flame front. The laminar burning velocity obtained in the
present work was compared with the results obtained in [20,56–58].

In Figures 10 and 11, images of five different fuel/air mixtures are presented in order
to study the effect of hydrogen addition on the instabilities apparition and their effect on the
flame front morphology for 1.0 and 0.7 equivalence ratios. The images were captured every
0.01 m (1 cm). Mixtures of 100% CH4 had a completely laminar flame front. For the mixture
of 50% H2, the flame began to develop small cracks from 3 cm of radius, which led brusquely
to a wrinkly flame front (cellularity) at the end of combustion when the flame front was
near the pump wall. For the mixtures of 80% and 100% H2, the flame front developed cells
at the early stages of combustion, which grew throughout the process. Images presented
in Figures 10 and 11 show the three regimens in the combustion of H2/CH4 mixtures
explained before. The addition of hydrogen to the fuel/air mixture accelerated the rate of
the chemical reactions produced during the combustion and enhanced the instability of the
flame. In Figures 10 and 11, it is also possible to see the increment in the flame instability
with the increment in the flame radius. As the radius and the hydrogen content increased,
the cracks developed in the flame front due to the increment in the hydrodynamic and
thermal–diffusive instabilities, while the cellular structure of the flame front also increased.

In Figures 10 and 11, two kinds of flames can be distinguished: blends with less H2
content and those with more H2 content. The first group, with dominant methane, had a
laminar flame until the end, only affected by a few cracks that did not lead to a cellular
front. On the contrary, the second group, with dominant hydrogen, had an instable flame
appearance from the beginning and the cracks led to a cellular flame front.

The first behavior was observed for mixtures with low hydrogen content. For example,
in the stoichiometric case (Figure 10), the flame was initially stable; only when the hydrogen
in the fuel mixture exceeded 50% did cracks and cellularity develop. For lean mixtures
(Figure 11), the flame developed wrinkles and cracks with a lower hydrogen content, 20%.

This can be explained as follows: in the initial phase of flame development, flame insta-
bility is influenced mainly by the thermo-diffusive effect. However, as the flame develops
and the flame radius increases, the hydrodynamic effect becomes the dominant contribution
to instability. Hydrodynamic instability depends on the thermal expansion (rate between
densities of the unburned and the burned gases); hydrogen slightly reduces the density
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ratio, but it does not affect the general behavior of the hydrodynamic instabilities, which
always tend to destabilize the flame front.
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 Figure 10. Schlieren images of different H2/CH4 mixtures in initial conditions of 0.1 MPa, 315 K, and
1.0 equivalence ratio.

However, thermal–diffusive instability is greatly affected by the hydrogen proportion
of the blends, since it mainly depends on the Lewis number, among other parameters. The
Lewis number changes according to the chemical and physical properties of the fuel blend,
which decrease with hydrogen addition. The value of the Lewis number mostly defines the
sign and, therefore, the behavior (flame stabilizing or destabilizing) of the thermal–diffusive
instabilities, which ultimately mark the flame morphology.

Hydrogen addition has a greater effect on the thermal–diffusive instability than on the
hydrodynamic instability, although it affects both [41].

When Figures 10 and 11 are compared to investigate the effect of the fuel/air equiva-
lence ratio, it is possible to see that flames with lower equivalence ratios showed earlier
cracks in the flame front morphology and developed an earlier cellular structure. The
structure of the cellular flames under lean conditions was different from that under sto-
ichiometric conditions, due to the different origin of the dominant instabilities. For a
stoichiometric fuel/air equivalence ratio, the cellular flames had a defined spherical shape,
since there were no big wrinkles on the surface, and the cells (arisen from hydrodynamic
instabilities) were homogeneously spread out. However, for lean mixtures (Figure 11),
there were large-scale wrinkles (due to thermal–diffusive instabilities) combined with
smaller-scale cells, giving a clustered structure aspect to the flame.



Energies 2022, 15, 3722 13 of 20
Energies 2022, 15, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 11. Schlieren images of different H2/CH4 mixtures in initial conditions of 0.1 MPa, 300 K, and 

0.7 equivalence ratio. 

Hydrodynamic instability and thermal–diffusive instability are the main contribu-

tions to the cellular structure formation [36,59,60]. The destabilization in hydrogen com-

bustion due to hydrodynamic instability is reflected by the decrement in the flame front 

thickness (δ) [61], as can be seen in Figure 12, where the effect of the hydrogen content in 

the fuel/air mixture on the flame front thickness is presented [17]. Khan et al. [48] obtained 

the same tendency in the variation of calculated laminar flame thickness versus the equiv-

alence ratio, for different hydrogen/methane mixtures. 

%H2/r 1 cm 2 cm 3 cm 4 cm 5 cm 

1
0

0
%

C
H

4
 

 

     
8

0
%

C
H

4
-2

0
%

H
2
 

 

     

5
0

%
C

H
4
-5

0
%

H
2
 

 

     

2
0

%
C

H
4
-8

0
%

H
2
 

 

     

1
0

0
%

H
2
 

 

     

 Figure 11. Schlieren images of different H2/CH4 mixtures in initial conditions of 0.1 MPa, 300 K, and
0.7 equivalence ratio.

Hydrodynamic instability and thermal–diffusive instability are the main contributions
to the cellular structure formation [36,59,60]. The destabilization in hydrogen combustion
due to hydrodynamic instability is reflected by the decrement in the flame front thickness
(δ) [61], as can be seen in Figure 12, where the effect of the hydrogen content in the fuel/air
mixture on the flame front thickness is presented [17]. Khan et al. [48] obtained the same
tendency in the variation of calculated laminar flame thickness versus the equivalence ratio,
for different hydrogen/methane mixtures.
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3.4. Effect of Hydrogen Content on NOx Emissions

The addition of hydrogen and increment in the fuel/air ratio increased the combustion
temperature, as plotted in Figure 13; consequently, NOx emissions increased simultane-
ously, as presented in a previous study [3] by our research team for percentages of hydrogen
in the mixture up to 15%. Law et al. [16] studied hydrogen flames by adding small fractions
of hydrocarbon fuels, and they showed a decrease in the laminar burning velocity and
flame temperature as the hydrocarbons were added.
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Many researchers obtained the same tendency of NOx emissions with the increment
in the hydrogen content in the fuel mixture [62–65]. Figure 14 shows the NOx mole
fraction in combustions of hydrogen/methane mixtures for different hydrogen content and
fuel/air equivalence ratios. These figures were obtained using the kinetic mechanism for
hydrogen/methane combustion developed by Conaire et al. [66] in the Cantera software.
The NO values remained nearly constant until the hydrogen content exceeded 60%, at
which point the values increased moderately. The same behavior can be observed in
Figure 14b with NO2 emissions, but the increment when hydrogen content exceeded
60% was lower than in the case of NO. The formation mechanisms of NO and NO2 were
detailed in Shudo et al. [67]. This trend differed from that obtained directly in the engine
test due to the difference in operating conditions between the combustion bomb and
the internal combustion engine. Wang et al. [68] observed that the chemical kinetics of
hydrogen addition had little influence on the NO emissions during methane combustion.
Naha et al. [69] conducted a numerical investigation of hydrocarbons/hydrogen flames
by analyzing NO and CO, among other components. Emissions of C2H2 (considered as
a soot precursor and important in the formation of prompt NO) were reduced with the
addition of hydrogen to methane mixtures, while CO emissions remained unaffected, and
NO emissions increased slightly.

CO and CO2 emissions are presented in Figure 15, where it is possible to see that the
increment in the methane content in the fuel/air mixture increased both values, as expected,
obtaining a maximum value for the CO2 emissions near the stoichiometric mixture, while
CO increased with the equivalence ratio. This behavior can be attributed to two factors:
first, the addition of hydrogen, for the same strain rate, decreased carbon content in the
fuel, which reduced the amount of CO; second, hydrogen addition increased the OH
radical (in CO oxidation, OH is a dominant radical) and decreased the CO emissions.
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The increment in the OH radicals increased the oxidation rates of CO, and then reduced
its concentration. Hydrogen addition also decreased the CO2 emissions by decreasing
the net content of carbon in the fuel mixture, as can be seen in Figure 15. In Figure 16,
OH radical concentration is presented versus the fuel/air equivalence ratio for different
fuel/air mixtures, where it is possible to see an increase in OH radicals with the addition
of hydrogen on the fuel mixture. Many other studies [54,70] also obtained an increment
in OH radicals as the percentage of hydrogen increased in the fuel mixture. A correlation
was observed between laminar burning velocity and maximum OH radical concentrations,
with high laminar burning velocity corresponding with high OH concentration.
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4. Conclusions

Hydrogen content in H2/CH4/air mixtures enhances the combustion process and
increases the burning velocity. Depending on the fraction of hydrogen added to the fuel
mixture, three regimens can be identified: the combustion regime dominated by methane
where the hydrogen fraction is less than 40%, the transitional regime with a hydrogen
fraction between 50% and 80%, and the hydrogen dominated combustion regime in which
the hydrogen fraction is greater than 80%. The increase in flame speed is more affected by
the hydrogen content.

The present work showed that the addition of moderate percentages of hydrogen to
methane increased its burning velocity and modified the flame morphology, changing the
flame front structure from a totally laminar combustion (for methane, with a spherical
morphology) to a cellular combustion, with cellularity of the flame front from the start of
combustion for lower equivalence ratios (hydrogen), accounting for relevant variables such
as the mass and thermal diffusivities of hydrogen and methane.

The hydrogen content in the fuel mixture accelerated the cellularity development, with
a greater effect on the thermal–diffusive instability than on the hydrodynamic instability,
which produced an increment in the cracks developed in the flame. This transition to
cellularity was characterized through the study of the flame instabilities and flame front
thickness. Flame instability increased with the increment in the flame radius and with lower
fuel/air equivalence ratios in the fuel/air mixture, because the structure of the cellular
flames under lean conditions was different from that under stoichiometric conditions due
to the different origin of the dominant instabilities.

NOx, CO, and CO2 emissions were investigated using kinetic modeling, obtaining an
increment in NOx emissions with the increment in hydrogen content in the fuel mixture,
due to the increment in the flame temperature. However, CO and CO2 decreased with
hydrogen addition to the fuel mixture. The results agree with those obtained in the literature.
The addition of hydrogen to the fuel mixture modified the combustion chemistry due to
the higher reactivity of H2 and the higher content of H and OH radicals. The increment in
the OH radicals increased the oxidation rate of CO, and then reduced its concentration. The
increment in hydrogen content also decreased the CO2 emissions by reducing the carbon
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content in the fuel mixture. However, hydrogen content had a minor effect on NO and
NO2 emissions for percentages of hydrogen lower than 80%. On the other hand, when
the percentage of hydrogen in the fuel mixture exceeded 80%, the NO and NO2 emissions
increased significantly.
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