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Abstract: The shift towards renewable energy and decreasing battery prices have led to numerous
installations of PV and battery systems in industrial and public buildings. Furthermore, the fluctua-
tion of energy costs is increasing since energy sources based on solar and wind power depend on the
weather situation. In order to reduce energy costs, it is necessary to plan energy-hungry activities
while taking into account private PV production, battery capacity, and energy market prices. This
problem was posed in the 2021 “IEEE-CIS Technical Challenge on Predict + Optimize for Renewable
Energy Scheduling”. The target was to solve the two subtasks of forecasting the base load and of
computing an optimal schedule of a list of energy intensive activities with inter-dependencies. We
describe our approach to this challenge, which resulted in the third place of the leaderboard. For the
prediction of the base load, we use a combination of a statistical and a machine learning approach.
For the optimization of schedules, we employ a tuned mixed integer linear programming approach.
We present a detailed experimental evaluation of the proposed approach on the use case and data
provided in the challenge.

Keywords: mathematical optimization; load prediction; scheduling; peak shaving

1. Introduction

All over the world, efforts are increasingly being made to reduce greenhouse gas
emissions in order to address climate change. For example, the European Union aims
to reduce greenhouse gas emissions to 45% of the level in 1990 by 2030, and to zero by
2050 [1]. Besides the economic aspects, this leads to an increase in the interest of industrial
companies and public institutions to improve their energy efficiency and to reduce their
carbon footprint. A typical way of achieving this is through the installation of rooftop
photovoltaic (PV) systems together with stationary batteries. Additionally, adjusting
flexible energy demands increases the self-consumption of renewable energies, which
leads to reduced peak loads and energy costs [2]. For example, it has been demonstrated
that a company site can benefit from the intelligent control of the company’s electricity
consumption and the charging of their associates’ vehicles as compared to uncontrolled
charging [3]. However, depending on the use case, the coordination of flexible demands
can be a very difficult task. Furthermore, it usually requires a good forecast of future energy
production and inelastic demand (i.e., demand that cannot be controlled).

In 2021, the IEEE Computational Intelligence Society organized a public challenge,
with the goal of improving the solutions for this complex problem—the “IEEE-CIS Technical
Challenge on Predict+Optimize for Renewable Energy Scheduling” [4]. The task of the
challenge was to schedule different energy-demanding activities and the operation of
stationary batteries at the Monash University (Melbourne, Australia) one month in advance,
with the objective of minimizing the electricity cost. This does not only require the solving
of a complex optimization problem, but also the prediction of the real PV production and
electrical power consumption on the university campus for the corresponding month. The

Energies 2022, 15, 3718. https://doi.org/10.3390/en15103718 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15103718
https://doi.org/10.3390/en15103718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2385-7886
https://orcid.org/0000-0002-2460-4955
https://doi.org/10.3390/en15103718
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15103718?type=check_update&version=1


Energies 2022, 15, 3718 2 of 23

challenge was organized into two phases: In the first phase, running from 1 July 2021
to 11 October 2021, participants had to submit predictions for PV power production and
the buildings’ power consumption as well as scheduling solutions for ten different sets
of energy-demanding activities. The predictions and scheduling had to be computed for
the month of October 2020, based on historic PV production and building consumption
data. For each submission, the corresponding prediction error and energy cost for the
undisclosed real October load was computed internally on the organizers’ servers and
was provided through an online leaderboard. After the end of the first phase, the real
production and load data from October 2020 was published, and the second phase, running
from 13 October 2021 to 3 November 2021, was started. In the second phase, the prediction
had to be made for November 2020, and ten new scheduling problem instances had to
be solved. In contrast to the first phase, participants did not get feedback in the form of
prediction errors or energy cost. Only the last submission per participant in the second
phase was used for the final evaluation. More precisely, the final leaderboard was based
on the resulting electricity cost computed using the real November load. The top seven
teams were asked to prepare a report and to give a talk at the IEEE Symposium Series on
Computational Intelligence (SSCI) conference in order to describe their approach. Based
on the final leaderboard and an assessment of the implemented approaches, a scientific
committee decided on the final ranking. After the end of the challenge, the organizers
published the real load/production data from November 2020. According to the organizers,
there were 220 submissions by 36 different teams in the second phase.

Below, we outline our final approach for the challenge, which we developed based
on the feedback from the first phase of the challenge: To predict the electrical power
consumption, we used a simple but robust statistical approach, while the prediction of
PV production was performed with a standard machine learning algorithm from the
scikit-learn library [5]. The scheduling problem was formulated as a mixed-integer linear
programming (MILP) problem, (more precisely, a combination of mixed-integer linear
programming and mixed-integer quadratic programming (MIQP) was used. For the sake
of comprehensibility, we do not differentiate between MILP and MIQP in the present
manuscript) which was then solved with the help of the Gurobi solver [6]. We applied
different measures to accelerate the solution of this hard optimization problem. Taking all
these steps together, we were able to achieve the third place in the final leaderboard (and
in the final ranking). Table 1 shows the top seven entries of the final leaderboard (please
note that in the original leaderboard found on [4], the submissions for rank five and six
belong to participants of the same team. We show only the best (and latest) of these two
submissions in Table 1 and moved all the following original entries one rank up).

Table 1. Top seven entries of the final leaderboard. Our entry is highlighted in bold.

Place Electricity Cost Prediction Error (MASE)

1 328,359.20 0.744052
2 335,107.25 0.646022
3 339,160.43 0.855737
4 340,725.94 0.807299
5 342,810.02 0.774996
6 357,210.66 1.870326
7 363,168.14 0.847391

The ranking is based on the sum of the electricity cost on the real load over all ten
problem instances. For a deeper understanding of the relation between prediction accuracy
and scheduling performance, the error of the load/production forecast as represented by
the mean absolute scaled error (MASE) is also displayed (see [4] for the computation details
of the MASE).

In the present paper, we provide a detailed description of our employed approach,
including the MILP formulation of the scheduling problem, and a thorough evaluation of
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the approach in simulation experiments on data from the second phase of the challenge. In
the literature, several approaches for electrical load forecasting have been proposed [7,8].
Popular approaches are, for example, time series models such as the autoregressive inte-
grated moving average (ARIMA), machine learning models such as neural networks, or
hybrid approaches, which combine two or more models. There is no single best approach,
but but it highly depends on the data, which approach performs best [9]. There are also
several methods in the literature for PV production forecasting [10,11]. Popular approaches
are based on physical models or are data-driven, similar to those used for load forecasting.
In the context of energy management, different methods for solving different scheduling
problems have been proposed, for example, for the control of energy storage, generators,
and loads in a microgrid [12,13], or the control of electric vehicle charging [14,15]. Some
of the most popular techniques for scheduling optimization in energy management are
MILP, dynamic programming, evolutionary algorithms, particle swarm optimization, and
rule-based approaches [16].

There are numerous works considering the optimal control of stationary batteries.
A simple battery control problem with continuous power modulation, linear conversion
losses, and linear objective function can be formulated and efficiently solved as a linear
programming problem [17,18]. The problem often cannot be formulated in a linear form
without integer variables. Hence, in several works, MILP is applied for the optimal control
of stationary batteries [19–21]. Nonlinear constraints or objectives make the application of
MILP difficult. A common example is the consideration of (nonlinear) battery degradation
in the optimization. Multiple works propose to solve this issue by approximating nonlinear
functions via piecewise linear functions [22–25]. Other works propose to use techniques
such as dynamic programming [26–28]. Typically, forecasts (e.g., of future energy prices
or future PV production) are used as inputs for the battery control. There are different
approaches that deal with uncertainties in the forecasts. One approach is to directly consider
the uncertainties in the computation of battery schedules through the use of stochastic
optimization, which seeks to find a schedule that is robust towards multiple possible
scenarios in the future [26,28,29]. Another popular approach, which can be combined
with stochastic optimization, indirectly considers uncertainties in the forecasts by applying
model predictive control, which periodically updates the schedule in a rolling-horizon
fashion [27,30]. In this way, it is possible to react to unpredicted operating conditions.

There are several works that study the planning of activities for energy management
in the sense of planning the operation of appliances or devices. They commonly refer to
appliances whose starting time can be shifted (e.g., a dish washer) and/or whose consump-
tion can be up- and down-regulated (e.g., a ventilation system). Popular approaches for the
planning of the operation of such appliances are metaheuristics [31–35], MILP [36–39], or
a combination of both [40]. While we also consider the planning of activities that can be
shifted in time in the present work, we have to consider more complex constraints (periodic
execution, room requirements, precedence constraints) than those in the stated works.
These constraints arise from the planning of activities that are related to university lectures
(lectures repeat each week, lectures need a room to take place in, experiment A needs to
be conducted before experiment B). Planning lectures is already an NP-hard problem, and
typical approaches to that include genetic algorithms, ant colony optimization, and linear
integer programming [41].

To the best of our knowledge, the given problem of scheduling activities with the
combined constraints from peak-load shaving and lecture planning has not been addressed
in the literature so far. The competitiveness of the proposed approach was demonstrated by
its achievement of third place in the aforementioned challenge. Furthermore, the approach
was developed and evaluated in a realistic setting: Real electricity measurements with
typical issues, such as outliers and missing data, were used in the evaluation. The test data
as well as the extent of our prediction error were completely unknown to us in phase two
of the challenge. Thus, our approach is not biased towards the test data. Furthermore, the
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combination of prediction and optimization is evaluated, while in most existing work on
scheduling optimization for energy management, a perfect forecast is typically assumed.

The rest of the paper is organized as follows: Section 2 provides a description of
the general problem. In Section 3, the use case and data considered in the challenge are
described. Our approach to the problem is explained in Section 4. In Section 5, we describe
and discuss the experimental evaluation of the proposed approach. Finally, Section 6
provides a short summary and conclusion.

2. Problem Description

The general problem to be tackled in the challenge (for more details about the problem,
see the data description document in [4]) is the scheduling of activities and the operation
of stationary batteries on a university campus one month in advance. This involves two
subtasks: (1) Forecasting the electrical base load and PV power production on the campus
during that month, and (2) optimizing the schedule of energy-demanding activities based
on the prediction. We consider T time steps t = 0, . . . , T − 1 with a length of 15 min each,
where time step t = 0 is the first time step of the month, and time step t = T− 1 is the last
time step of the month. There is a set B = {1, . . . , NB} of NB buildings on the campus. Each
building b ∈ B has a certain base load of LB

b,t kW at time step t of the planning horizon.
Furthermore, there is a set P = {1, . . . , NP} of NP photovoltaic systems, where each system
p ∈ P has a certain production of LP

p,t kW at time step t. Thus, the total base load Lbase
t at

time step t can be computed as follows:

Lbase
t = ∑

b∈B
LB

b,t − ∑
p∈P

LP
p,t . (1)

There are NS stationary batteries S = {1, . . . , NS} on the campus. Each battery s ∈ S has a
certain capacity of Cs kWh and a charging/discharging power of Ms kW. Batteries can be
controlled so as to be in one of three states: idle, charging with full power, or discharging
with full power. The load LS

s,t caused by battery s ∈ S at time step t depends on its control
state and is computed as follows:

LS
s,t =


Ms · 1/

√
γs, if charging

0, if idle
−Ms ·

√
γs, if discharging

, (2)

where γs ∈ (0, 1] is the efficiency of battery s.
Each building b ∈ B has a number NS

b of small rooms and a number NL
b of large rooms.

There are NR + NO activities A = {1, . . . , NR + NO}. When an activity a ∈ A is started, it
runs for a duration of Da time steps without interruption, and for each time step when
this activity is running, it causes an electrical load of LA

a kW. Furthermore, each activity
a ∈ A requires a number KS

a of small rooms and a number KL
a of large rooms when it is

running, where either KS
a or KL

a is zero, and the rooms where the activity takes place can be
distributed over multiple buildings. Each room of a building can be occupied by only one
activity at the same time. The activities R = {1, . . . , NR} are so called recurring activities.
These activities take place in the same buildings and at the same times during all weeks
of the planning horizon. For example, if the planning horizon starts with a Friday and
ends with a Sunday, and an activity r ∈ R is scheduled for 10 a.m. on Friday in a building
b ∈ B, the activity will take place on all Fridays of the planning horizon at 10 a.m. in
building b, except on the first Friday of the planning horizon because it does not belong
to a full week. Recurring activities can only take place during office hours on working
days (i.e., from Monday to Friday). For each r ∈ R, a (possibly empty) set Er ⊂ R of
preceding activities is defined. All activities in Er have to be scheduled on earlier weekdays
than the weekday for which r is scheduled. The activities O = {NR + 1, . . . , NR + NO}
are so called once-off activities. In contrast to the recurring activities, these activities are
optional activities, which do not have to take place during the planning horizon. If an
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activity o ∈ O is scheduled, it takes place only once, and it can also be scheduled outside of
office hours and on a weekend. If it takes place during office hours, the university receives
a remuneration of Remo monetary units. If it takes place outside of office hours or on a
weekend, the remuneration is reduced by a penalty of Peno monetary units. Analogous
to the recurring activities, a (possibly empty) set Eo ⊂ O of preceding activities is defined
for each activity o ∈ O. If o takes place, all activities in Eo also have to take place, and they
have to start on a day earlier than o.

Let At ⊆ A denote the set of activities, active at time step t. Then, the total load Lt at
time set t can be computed as follows:

Lt = Lbase
t + ∑

s∈S
LS

s,t + ∑
a∈At

LA
a . (3)

It is assumed that the university purchases energy at time-dependent energy prices, where
αt is the price per kWh at time step t. Furthermore, it is assumed that a peak load charge β
has to be paid per kW2 of the squared monthly peak load. Let O1 ⊆ O denote the set of
once-off activities scheduled inside office hours, and O2 ⊆ O the set of once-off activities
scheduled outside of office hours. The target is to compute a schedule of activities (i.e., start
times and assignment of buildings to activities) and of the operation of stationary batteries,
which satisfies all constraints—such as battery constraints, room occupation constraints,
and precedence constraints—and which minimizes the total cost consisting of electricity
cost minus the remuneration from once-off activities:

Cost =
T−1

∑
t=0

0.25 · αi · Lt + β · ( max
t∈{0,...,T−1}

Lt)
2 − ∑

o∈O1

Remo − ∑
o∈O2

(Remo − Peno). (4)

As already explained, it is assumed that the exact base load Lbase
t is not known. It has to be

predicted based on the historical load/production data of the buildings and PV systems as
well as weather data. More precisely, the challenge expected the participants to predict the
load/production of each individual building and PV system.

3. Use Case

We consider the same use case as that assumed in the second phase of the challenge.
All the corresponding data are available from the challenge’s website [4]. It is assumed that
the cost of the Monash University in Melbourne, Australia should be optimized. There
are six buildings (Building(0,1,3,4,5,6)) and six PV systems (Solar(0–5)) on the university
campus. The planning horizon covers the time range from 1 November 2020 00:00 UTC
to 30 November 2020 23:45 UTC, corresponding to a time range from 1 November 2020
11:00 to 1 December 2020 10:45 at local time (Australian Eastern Daylight Time (AEDT)).
For all buildings and PV systems, real historical measurements of load/production with a
resolution of 15 min up to the end of October 2020 are available. The historical data are
shown in Figure 1.

As can be seen, the data span different time ranges. For Building3, over five years of
data are available, while for Solar0, only about 1.5 years are available. There are a lot of gaps
as well as outliers and apparently erroneous measurements in the data. Missing measure-
ments during the planning horizon (November 2020) are treated as zero load/production.
Beginning with April 2020, the load—especially of buildings 0, 1, and 3—is notably affected
by the restrictions in response to the COVID-19 pandemic. In addition to the historical
load/production data, weather data containing hourly measurements of ambient temper-
ature, wind speed, solar radiation, and other data points from January 2012 to May 2021
are available. A perfect weather forecast is therefore assumed in the use case. As for the
energy cost, half-hourly prices from the Australian energy market, as plotted in Figure 2,
are assumed.
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Figure 1. Historical load and production data.
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Figure 2. Half-hourly energy prices during the planning horizon.

The plot shows that there are times with a negative energy price. A peak load charge
of β = AUD 0.005 per kW2 of the squared monthly peak load is assumed. Office hours are
considered to be from 9:00 to 17:00 of each working day.

As part of the challenge, ten instances of the scheduling problem have to be solved.
In all instances, two stationary batteries are considered. The first battery has a capacity
of C1 = 150 kWh, a charging/discharging power of M1 = 75 kW, and an efficiency of
γ1 = 0.85. The second battery has a capacity of C2 = 420 kWh, a charging/discharging
power of M2 = 60 kW, and an efficiency of γ2 = 0.6. The numbers of small and large rooms
in the six buildings as well as the characteristics of the activities vary over the ten problem
instances. There are five small instances (small(0–4)) with NR = 50 recurring activities and
NO = 20 once-off activities, and five large instances (large(0–4)) with NR = 200 recurring
activities and NO = 100 once-off activities.

4. Approach

There are three tasks involved in solving the stated problem: building load prediction,
PV output prediction, and the scheduling of activities and stationary batteries. As outlined
in the introduction, machine learning models and time series prediction models such as
ARIMA are common approaches for load forecasting. However, for the present problem,
such approaches do not appear promising for two reasons: (1) The forecasting horizon is
comparatively long, while having a fine-grained resolution of 15 min. This means that there
is only a weak temporal link between the inputs and outputs. There is, for example, little to
deduce from the load at 23:45 on the 31 October (the last time step of the input data) for the
forecast of the load at 23:45 on the 20 November. (2) The amount of useful training data is
limited since most of the historical data is pre-COVID, and there is a clear concept drift in
the load data beginning from April 2020. Thus, we decided to use a statistical approach for
the load forecasting. This approach has the advantage that it does not require much training
data since no relation between inputs and outputs have to be learned. Furthermore, the risk
of overfitting is lower than with a machine learning model, which can be assumed to be
especially beneficial in the presence of concept drift. PV prediction based on weather data
is commonly performed via machine learning approaches or physical models. We decided
on the first since it is easier to apply (for example, one does not have to compute the solar
radiation angle) and does not require any additional information such as the orientation
of the PV system. In order to optimize the schedule of activities and batteries, we use a
mixed-integer linear programming (MILP) approach. MILP is the predominant approach
in the literature for energy management. It can efficiently handle constraints (the given
problem has a lot of complex constraints), and it has the additional advantage of being able
to provide guarantees on the optimality gap. However, since the given scheduling problem
is very hard, even for an MILP approach, we applied different measures to accelerate the
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optimization. In the following section, our approaches for the three subtasks are described
in more detail.

4.1. Building Load Prediction

For the building load prediction, a simple statistical approach, as illustrated in Figure 3,
is used.
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Figure 3. Illustration of the load prediction approach.

The load at a certain time step of a week is predicted as the median over the load values
at the corresponding time steps of the historical data, taking into account the data from eight
weeks prior to the month to be predicted. For example, the load on a Monday at 10:00 a.m.
is predicted to be the median over the loads at 10:00 a.m. on Mondays in the historical data.
We consider only eight weeks of historical data since the characteristics of the load data
have been continuously changing since April 2020 due to restrictions in response to the
COVID-19 pandemic. Time steps for which no load data are available are not included in
the computation of the median value. If all eight historical load values are not available, a
load of zero is predicted. Please note that this turned out to be disadvantageous for the
data in the second phase of the challenge since in contrast to the data from the first phase,
there are a lot of time steps without measurements in the previous eight weeks, resulting in
a notable underestimation of the load. An improvement, which would have yielded better
results on the phase-two data and similar results on the phase-one data, would be to use
the median for all weeks of the historical data at the time steps for which no data in the
previous eight weeks were available. However, in the present manuscript, we report the
results of the original approach we used in the challenge.

4.2. Photovoltaics Prediction

For the PV prediction, we use a machine learning approach with mainly weather
data as input features. We cleaned the historical data for each of the six PV systems and
removed days that contain (manually determined) outliers as well as days containing
only zero-production entries. Furthermore, we shifted the weather data by −1 h since
we noticed a certain offset between solar radiation and PV production. between solar
radiation and PV production. In this way, the correlation between solar radiation and PV
production in the training data is increased. For example, for the PV system Solar0, the
Pearson correlation coefficient is 0.89 without the shift in the weather data and 0.92 with
the shift. The preprocessed data were used to train a random forest with scikit-learn [5]
default hyperparameter settings. Since only hourly weather data were available, and the
prediction had to be made with a resolution of 15 min, the random forest predicts the PV
production of a full hour in the form of four values (one per quarter of the hour). Let t
denote a 15 min time step corresponding to the start of a full hour. The random forest
predicts the PV production values at time steps t, . . . , t + 3 based on 14 input features, as
shown in Figure 4.
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Solar radiation in time step t−4
Solar radiation in time step t
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PV in time step t+3

Figure 4. Illustration of the PV prediction approach.

As one can see, not only weather data from the hour to be predicted is used as input,
but also data from the previous and the following hour. We came up with the described
approach by evaluating different approaches for the PV prediction for September 2020
and by choosing the approach that resulted in the smallest mean absolute errors. Besides
random forest, we evaluated other models such as XGBoost, Gradient Boosting, k-nearest
neighbors, and the automated machine learning approach TPOT [42], but all yielded
inferior results. We evaluated different hyperparameter settings for the random forest, and
we also evaluated different input features.

4.3. Optimization

We formulated the optimization problem as a mixed-integer linear programming
problem and solved it with the help of the Gurobi solver [6]. A straightforward MILP
formulation of the problem at hand would contain a large number of binary and integer
variables, which typically has a negative impact on the solving time. Furthermore, the
objective function contains a quadratic term (square of the peak power), which makes the
problem even harder to solve. Thus, in order to accelerate the optimization and to be able
to compute solutions of high quality in an acceptable time, we applied different measures:

(1) Separate building assignment;
(2) Variable reduction;
(3) Solver parameter tuning;
(4) Problem decomposition;
(5) Linearization.

These are described in more detail in the following subsections.

4.3.1. Separate Building Assignment

The assignment of buildings to activities is separated from the actual optimization. In
the optimization, it is only ensured that a feasible assignment exists (meaning there is a
sufficient number of rooms allowing for the computation of a feasible building assignment
for the activity schedule at hand) without computing a concrete assignment. This notably
reduces the number of integer variables and constraints considered in the optimization. In
a post-processing step, the assignment of buildings to activities is computed by solving a
second MILP problem, which only has to find a feasible assignment (the objective function
is fixed to zero). This second problem can be solved within a few seconds. Let tmin and tmax
respectively be the first and last time steps of the working days of the first full week of the
planning horizon (tmin = 96 and tmax = 6× 96− 1 in our use case). Furthermore, let topen

and tclose respectively denote the first and last time steps of the office hours during the day
(topen = 4× 9 and tclose = 4× 17− 1 in our use case). Then, for a recurring activity r ∈ R,
we can define the set Tr of all possible start times in the first full week as follows:

Tr = {t ∈ {tmin, . . . , tmax}|topen ≤ t%96 ≤ t%96 + Dr − 1 ≤ tclose}, (5)
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where % is the modulo operator. As each day has 96 time steps, t%96 is the time step within
a day. Analogously, for each once-off activity, we can define the set To of all possible start
times during the planning horizon as follows:

To = {t ∈ {0, . . . , T − 1}|t + Do − 1 ≤ T − 1}. (6)

Let Wt ∈ {0, . . . , 6} denote the weekday corresponding to time step t, where 0 stands for
Monday, 1 stands for Tuesday, and so on. We use the following MILP formulation for the
first problem (without the direct assignment of buildings to activities):
Problem P1:

min ∑
t∈{0,...,T−1}

0.25 · αt · Lt + β · Lmax_square + ∑
o∈O

∑
t∈To

wo,t · Fo,t (7)

with

wo,t =

{
Remo, if Wt < 5∧ topen ≤ t%96 ≤ t%96 + Do − 1 ≤ tclose

Remo − Peno, else
, (8)

subject to:

∑
t∈Tr

Fr,t = 1 ∀r ∈ R, (9)

∑
o∈To

Fo,t ≤ 1 ∀o ∈ O, (10)

∑
t∈Tr

Fr,t ·Wt > ∑
k∈Tk

Fk,t ·Wt ∀r ∈ R, ∀k ∈ Er, (11)

∑
o∈To

Fo,t ≤ ∑
k∈Tk

Fk,t ∀o ∈ O, ∀k ∈ Eo, (12)

∑
o∈To

Fo,t · bt/96c > ∑
k∈Tk

Fk,t · bt/96c − (T + 1) · (1− ∑
o∈To

Fo,t) ∀o ∈ O, ∀k ∈ Eo, (13)

∑
r∈R

∑
k∈{It−Dr+1,...,It}∩Tr

Fr,k · KL
r +

∑
o∈O

∑
k∈{t−Do+1,...,t}∩To

Fo,k · KL
o ≤ ∑

b∈B
NL

b ∀t ∈ {0, . . . , T − 1}, (14)

∑
r∈R

∑
k∈{It−Dr+1,...,It}∩Tr

Fr,k · KS
r +

∑
o∈O

∑
k∈{t−Do+1,...,t}∩To

Fo,k · KS
o ≤ ∑

b∈B
NS

b ∀t ∈ {0, . . . , T − 1}, (15)

chs,t + dchs,t ≤ 1 ∀s ∈ S, ∀t ∈ {0, . . . , T − 1}, (16)

Cs,0 = Cs − 0.25 · dchs,0 ·Ms + 0.25 · chs,0 ·Ms ∀s ∈ S, (17)

Cs,t = Cs,t−1 − 0.25 · dchs,t ·Ms + 0.25 · chs,t ·Ms ∀s ∈ S, ∀t ∈ {1, . . . , T − 1}, (18)
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Lt = Lbase
t + ∑

r∈R
∑

k∈{It−Dr+1,...,It}∩Tr

Fr,k · LA
r +

∑
o∈O

∑
k∈{t−Do+1,...,t}∩To

Fo,k · LA
o + ∑

s∈S
(chs,t/γs − dchs,t ·

√
γs) ·Ms ∀t ∈ {0, . . . , T − 1}, (19)

Lmax ≥ Lt ∀t ∈ {0, . . . , T − 1}, (20)

Lmax_square = Lmax · Lmax, (21)

Fa,t ∈ {0, 1} ∀a ∈ A, ∀t ∈ Ta, (22)

chs,t, dchs,t ∈ {0, 1} ∀s ∈ S, ∀t ∈ {0, . . . , T − 1}, (23)

0 ≤ Cs,t ≤ Cs ∀s ∈ S, ∀t ∈ {0, . . . , T − 1}. (24)

The objective is to minimize the cost, as specified in Equation (4), where the wo,t in objective
function (7) represents the remuneration received for starting the once-off activity o at
time step t, as defined in Equation (8). The binary variables Fa,t encode the start times of
activities—if Fa,t = 1, activity a starts at time step t. For each recurring activity r ∈ R, we
only consider variables corresponding to possible start times in the first full week of the
planning horizon (i.e., for t in Tr). Analogously, we only consider start times corresponding
to time steps in To for each once-off activity o. Constraints (9) and (10) ensure that exactly
one start time for each recurring activity and at most one start time for each once-off activity
are set. Constraint (11) ensures that recurring activities are started on a later weekday as
compared to the corresponding preceding activities. Analogously, constraints (12) and (13)
ensure for each once-off activity o ∈ O that if o is scheduled, all preceding activities are
also scheduled and take place at an earlier day than o. Please note that for o ∈ O, which is
not scheduled, (12) and (13) are always satisfied. Constraint (14) ensures that there is no
time step in which the running activities require more large rooms than what is available in
the buildings in total. Similarly, constraint (15) ensures that there is a sufficient number of
small rooms. The parameters It used in (14) and (15) represent a mapping from a time step
t to the corresponding time step in the first full week of the planning horizon:

It =

{
−1, if t < tmin ∨ t > tmax_rec

tmin + (t− tmin)%(7 · 96), otherwise
, (25)

where tmax_rec is the last time step of the last full week of the planning horizon
(tmax_rec = 29 × 96 in our use case). Time steps that do not belong to a full week of
the planning horizon are mapped to −1 to take into account that in these time steps, recur-
ring activities cannot be active. The binary variables chs,t and dchs,t encode the charging
and discharging state, respectively, of stationary battery s ∈ S in time step t. Constraint (16)
ensures that a battery does not charge and discharge at the same time. Constraint (17)
sets the battery levels after the first time step, and constraint (18) sets the battery levels
after all other time steps. Constraint (19) sets the total load composed of the base load,
the load resulting from activities, and the load resulting from the charging/discharging
stationary batteries. Constraints (20) and (21) set the peak load and the squared peak load,
respectively, and constraints (22)–(24) set the lower and upper bounds of decision variables.

After scheduling the start times of activities by solving problem P1, the assignment
of buildings to scheduled activities is computed by solving a second MILP problem. For
each recurring activity r ∈ R, let tstart

r ∈ Tr denote the time step within the first full week
of the planning horizon, in which r starts according to the result of the first problem P1.
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Furthermore, let Osched ⊆ O be the set of all once-off activities scheduled in the result of
P1, and let tstart

o be the start time step of activity o ∈ Osched. The assignment of buildings to
activities is computed by solving the following problem:
Problem P2:

min 0 (26)

subject to:

∑
b∈B

Va,b = KS
a + KL

a ∀a ∈ R ∪Osched, (27)

∑
r∈R|KS

r >0∧tstart
r ≤It<tstart

r +Dr

Vr,b+

∑
o∈Osched |KS

o >0∧tstart
o ≤t<tstart

o +Do

Vo,b ≤ NS
b ∀b ∈ B, ∀t ∈ {0, . . . , T − 1}, (28)

∑
r∈R|KL

r >0∧tstart
r ≤It<tstart

r +Dr

Vr,b+

∑
o∈Osched |KL

o >0∧tstart
o ≤t<tstart

o +Do

Vo,b ≤ NL
b ∀b ∈ B, ∀t ∈ {0, . . . , T − 1}, (29)

The objective function is constant zero since we are only interested in finding a feasible
building assignment. The assignment of buildings is encoded in integer variables Va,b,
which denotes the number of rooms of building b ∈ B that is assigned to activity a ∈ A.
Constraint (27) ensures that to each recurring activity and each scheduled once-off activity,
a sufficient number of rooms is assigned. Constraints (28) and (29) ensure that at each time
step t, the respectively small and large rooms used in a building b ∈ B are not more than
what is available in b. Please remember that each activity a ∈ A uses either only small
rooms or only large rooms, and thus either KS

a or KL
a is zero.

4.3.2. Variable Reduction

In problem P1, only variables Fa,t corresponding to possible start times t of activity a
defined by the set Ta (Equations (5) and (6)) are considered. However, taking into account
the precedence constraints, the number of possible start times and thus the number of
variables can be further reduced. For example, if a recurring activity has at least one
preceding activity, then it cannot start on a Monday, and we can exclude from the problem
all variables corresponding to start times of that activity which occur on a Monday. The
first possible start day d f irst

a of the first full week (for recurring activities) or of the full
planning horizon (for once-off activities) can be computed recursively for an activity a, as
outlined in Algorithm 1.

Analogously, the last possible start day dlast
a of the first full week or of the full planning

horizon can be computed. We reduce the number of variables in problem P1 by considering,
for each recurring activity r ∈ R, only start times in the set T′r :

T′r = {t ∈ {tmin, . . . , tmax}|topen ≤ t%96 ≤ t%96 + Dr − 1 ≤ tclose ∧ d f irst
r ≤W.t ≤ dlast

r }, (30)

and for each once-off activity o ∈ O, only start times in the set T′o:

T′o = {t ∈ {0, . . . , T − 1}|t + Do − 1 ≤ T − 1∧ d f irst
o ≤ bt/96c ≤ dlast

o }. (31)
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Algorithm 1: Computation of first possible start day.
Input: activity a, preceding activities Ea
Output: first possible start day d

1 Algorithm compute_first_day(a, Ea)
2 if |Ea| == 0 then
3 return 0;
4 else
5 d = 0;
6 for k in Ea do
7 d = max(d, compute_first_day(k, Ek));
8 end
9 return d + 1;

10 end

4.3.3. Solver Parameter Tuning

MILP solvers such as the Gurobi solver have a large number of parameters, whose
settings can have a notable impact on the performance. The default parameter settings
typically yield a good average performance through arbitrary problem instances. How-
ever, when restricted to a certain class or domain of problems, other settings might be
superior [43]. Gurobi has a built-in parameter tuning tool. We used this tool to determine
appropriate parameter settings for some problem instances of phase one of the challenge,
and we employed the resulting settings in all further optimizations. In the parameter
settings, the parameter PreSparsify is set to 0 and the parameter VarBranch is set to 1,
while all other parameters are left at their default values.

4.3.4. Problem Decomposition

Even after separating the building assignment from the actual optimization and
reducing the number of variables, considering all activities and stationary batteries simulta-
neously in the optimization results in a large number of binary variables. Hence, we further
accelerate the optimization by splitting the problem into multiple smaller and easier to
solve sub-problems: First, the schedule of recurring activities is optimized, assuming that
the batteries are not used and that no once-off activities take place. This means that problem
P1 is solved, assuming that no once-off activities and no stationary batteries exist. After
this first sub-problem is solved, the battery charging is optimized by fixing the start times
of recurring activities according to the result of the first sub-problem and assuming that no
once-off activities take place. Then, the schedule of the once-off activities is optimized by
fixing the schedules of stationary batteries and recurring activities according the results of
the second sub-problem. By decomposing the problem into easier sub-problems, a notable
acceleration can be achieved. Furthermore, it can be considered that the described problem
decomposition only has a minor impact on the solution quality. Recurring activities can be
scheduled only within office hours, and it hardly makes sense to schedule additional once-
off activities within office hours since this would increase the peak load. Thus, the fact that
recurring activities and once-off activities are treated separately should have no significant
impact on the solution. In the experiments, the order of the last two sub-problem—first
batteries and then once-off activities—yielded better results than the inverse order.

4.3.5. Linearization

In the optimization of the schedule of recurring activities, we do not use the original
quadratic objective function. Instead, the peak load is linearly included in the objective func-
tion, with a high coefficient of 1000. This means that in the first sub-problem, constraint (21)
is not included and objective function (7) is replaced by the following objective function:
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min ∑
t∈{0,...,T−1}

0.25 · αt · Lt + 1000 · Lmax + ∑
o∈O

∑
t∈To

wo,t · Fo,t. (32)

The scheduling of the recurring activities is the hardest of the three sub-problems (at least
for the considered problem instances), and by linearizing its objective function, it can be
accelerated with only a minor impact on the solution quality.

The complete optimization consists of the execution of the steps illustrated in Figure 5.

Schedule recurring activities 
(linear objective) 

Schedule battery dis-/charging 
(quadratic objective)

Schedule once-off activities 
(quadratic objective)

Assign buildings to the scheduled activities 
(only search for a feasible solution)

Figure 5. Workflow of the optimization.

5. Simulation Experiments
5.1. Predictions

We computed forecasts of the individual loads and productions in November 2020, as
described in Sections 4.1 and 4.2, and derived a prediction of the total base load according
Equation (1). Table 2 shows the resulting mean absolute errors (MAE) and root mean squared
errors (RMSE) for the different sub-loads and the total load. For comparison, the prediction
errors of the submission that won the competition are also shown in Table 2. The winning
team (Rasul Esmaeilbeigi and Mahdi Abolghasemi) made their final submission publicly
available (the winning submission is available under https://github.com/resmaeilbeigi/
IEEE_CIS_3rd_Technical_Challenge_Optimiser (accessed on 15 May 2022)). They used an
ensemble machine learning approach for the prediction of load and PV production.

Table 2. Mean absolute error (MAE) and root mean squared error (RMSE) of predictions of individual
loads/productions and total load, as determined by our approach and the winning submission of the
challenge.

Load/Production
Our Approach Winning Submission

MAE RMSE MAE RMSE

Building0 37.31 52.68 34.46 48.11
Building1 2.14 3.22 1.89 3.15
Building3 68.27 103.78 61.38 95.19
Building4 0.69 0.92 0.56 0.76
Building5 6.25 12.58 8.92 10.53
Building6 2.47 4.45 2.40 4.44

Solar0 3.31 6.06 3.19 5.46
Solar1 0.61 1.20 0.65 1.22
Solar2 0.64 1.23 0.70 1.26
Solar3 0.78 1.40 0.75 1.29
Solar4 0.37 0.72 0.43 0.77
Solar5 1.97 3.77 2.16 3.85

Total Load 102.17 144.83 82.49 120.72

https://github.com/resmaeilbeigi/IEEE_CIS_3rd_Technical_Challenge_Optimiser
https://github.com/resmaeilbeigi/IEEE_CIS_3rd_Technical_Challenge_Optimiser
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As one can see, the PV prediction is very accurate since the PV production is strongly
correlated with the weather, which is used as input for the prediction, and the errors
resulting from our approach are in the same range as the errors of the winning submission.
The building load prediction is more challenging—especially due to the impact of the
COVID-19 measures—and the winning submission notably outperforms our approach
on the building load. Figure 6 shows the real and predicted total load together with the
corresponding absolute prediction errors.
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Figure 6. Real and predicted November load and the corresponding absolute error.

As one can see, there is a notable tendency to underestimate the load. One reason for
this, as already described in Section 4.1, is that predicting a load of zero, if no corresponding
data in the eight historical weeks is available, results in an underestimation of the load (the
improvement described in Section 4.1 would reduce the MAE for the total load to 95.83).
Furthermore, there is an unexpected increase in the load in November, as can be seen in
Figure 7, which is hard to predict. That is why in the winning submission, the total load is
underestimated as well. The outlier in the October load shown in Figure 7 is obviously the
result of an erroneous measurement.

2020-10-01 2020-10-08 2020-10-15 2020-10-22 2020-11-01 2020-11-08 2020-11-15 2020-11-22 2020-12-01
Time (UTC)

250

500

750

1000

1250

1500

1750

2000

Lo
ad

 [k
W

]

Figure 7. Base load in October 2020 (red) and November 2020 (grey).
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5.2. Optimizations

In order to investigate the effect of different improvements in optimization described
in Section 4.3, we executed optimizations on six problem instances in phase two of the
challenge. The prediction shown in Figure 6 is used as input for the optimizations. We ran
the optimizations with six different settings:

• c_q_f: Combined optimization of all activities and batteries with quadratic objective
and a full number of binary variables;

• c_q_r: Combined optimization of all activities and batteries with quadratic objective
and a reduced number of binary variables (improvement (2));

• c_l_r: Combined optimization of all activities and batteries with linear objective
(improvement (5)) and a reduced number of binary variables (improvement (2));

• s_q_f: Separate optimizations of recurring activities, batteries, and once-off activities
(improvement (4)) with quadratic objective and the full number of binary variables;

• s_q_r: Separate optimizations of recurring activities, batteries, and once-off activities
(improvement (4)) with quadratic objective and a reduced number of binary variables
(improvement (2));

• s_l_r: Separate optimizations of recurring activities, batteries, and once-off activities
(improvement (4)) with linear objective for recurring activities (improvement (5)) and
a reduced number of binary variables (improvement (2)).

Improvements (1) and (3) (separate building assignment and parameter tuning) are
applied in all settings. With the setting c_l_r, the objective function of the complete
optimization, and not only of the scheduling of recurring activities, is linearized since the
problem is not decomposed. We ran the experiments on a 2.1 GHz Intel Xeon Silver 4110
CPU with 8 cores and 93 GB RAM and used version 9.1.0 of Gurobi as solver. For the
combined optimizations, a time limit of 15 min was set, and for the separate optimizations,
time limits of 12 min, 1.5 min, and 1.5 min were respectively set for the optimizations of
recurring activities, once-off activities, and batteries. Table 3 shows the resulting electricity
costs on the predicted load.

Table 3. Optimization results with different settings on six problem instances, with a time limit of
15 min for the total optimization.

Problem c_q_f c_q_r c_l_r s_q_f s_q_r s_l_r

small0 26,299 25,971 25,006 24,489 24,669 24,399
small1 26,092 24,920 24,211 23,414 23,414 23,443
small2 25,696 26,145 23,706 23,485 23,665 23,341
large0 25,184 25,105 23,575 23,859 23,839 23,640
large1 25,364 25,365 24,096 24,314 24,283 23,925
large2 24,209 24,168 23,028 23,021 22,972 22,651

Mean 25,474 25,279 23,937 23,764 23,807 23,567

As one can see, the setting s_l_r (which corresponds to our final setting), yielded the
best mean objective. The linearization of the objective function (c_l_r vs. c_q_r and s_l_r
vs. s_q_r) and the separate optimizations (s_* vs. c_*) yielded notable improvements.
However, the benefit of the variable reduction (c_q_r vs. c_q_f and s_q_r vs. s_q_f)
was small, and for the separate optimization, it even had a negative impact on the mean
objective. The reason for this is that the solver is able to automatically reduce the number
of variables during the pre-solving phase. This can be seen in Table 4, which shows the
number of variables in the first sub-problem with the settings s_q_f and s_q_r before and
after the pre-solving for two problem instances.
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Table 4. Number of variables of different types in the first sub-problem, with the settings s_q_f and
s_q_r before and after pre-solving for two problem instances.

Problem
s_q_f s_q_r

Continuous Integer Binary Continuous Integer Binary

Before Pre-solving

small0 2882 6770 6770 2882 2922 2922
large0 2882 27,320 27,320 2882 13,222 13,222

After Pre-solving

small0 135 2935 2922 143 2935 2922
large0 137 13,235 13,222 137 13,235 13,222

Before the pre-solving, the number of binary variables is significantly lower with
setting s_q_r as compared to setting s_q_f. However, after pre-solving, the number of
binary variables is the same for both settings.

In a further experiment, we observed the impact of the prediction error on the opti-
mization results. Table 5 shows the cost of the predicted and real load for problem instance
small0, when the optimization is performed on the prediction (pred-pred and pred-real,
respectively), and the cost of the real load, when the optimization is performed on the
real load (real-real). The optimizations were completed using the setting s_l_r and the
previously stated time limits.

Table 5. Cost of the predicted and real load in AUD, resulting from optimizations on predicted and
real load for problem instance small0.

Pred-Pred Pred-Real Real-Real

Peak cost 6588 14,549 10,842
Energy cost 17,870 21,262 21,237

Once-off profit 59 59 619
Total cost 24,399 35,752 31,460

Not surprisingly, the cost of the predicted load notably underestimates the real cost
since, as discussed in Section 5.1, the prediction notably underestimates the load. While the
real energy costs are basically identical for the optimizations on the predicted and the real
load, the optimization on the real load yields a notably lower peak cost, resulting in a total
cost that is about 12% lower as compared to the optimization on the predicted load. Thus,
one can conclude that the error in the prediction has a remarkable negative impact on the
optimization results.

We executed optimizations on all ten problem instances with higher time limits, using
settings analogous to those used to compute our final submission to the challenge. Again,
the optimizations were performed on a 2.1 GHz Intel Xeon Silver 4110 CPU with 8 cores
and 93 GB RAM, with version 9.1.0 of Gurobi. The time limits for the optimizations of
recurring activities, batteries, and once-off activities were set to 150 min, 15 min, and 15 min,
respectively. Table 6 shows the resulting optimality gaps for the three sub-problems of the
different problem instances, as reported by the solver.
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Table 6. Percentage optimality gaps of sub-optimization on all ten problem instances.

Problem Recurring Batteries Once-Off

small0 2.5% 0.8% 2.2%
small1 0.0% 0.6% 2.1%
small2 0.0% 0.5% 2.0%
small3 0.0% 0.7% 0.0%
small4 0.0% 0.7% 0.0%
large0 1.4% 0.7% 4.9%
large1 1.5% 1.0% 4.7%
large2 1.6% 0.5% 4.2%
large3 1.6% 0.9% 4.4%
large4 1.6% 1.1% 3.7%

It can be seen that for four of the small problem instances, the sub-problem of schedul-
ing the recurring activities could be solved exactly. Not surprisingly, the optimizations
of large instances yielded higher gaps than the optimizations of small instances. The
optimization of once-off activities is the sub-problem yielding the highest gaps. However,
as one can see, the optimality gaps are generally small, and one has to keep in mind that
these are only worst-case gaps and that the actual gaps might be smaller.

Details of the results for the ten problem instances can be found in Table 7. It shows
the number of scheduled once-off activities (OS), the peak cost (PC), the energy cost (EC),
the once-off profit (OP), and the total cost (TC) of the real load for all problem instances.
The sum of the total cost for all instances is AUD 338,470. Please note that this is a little
bit smaller than the total cost resulting from our last submission to the challenge (AUD
339,160) since we repeated the optimizations for the present manuscript. For comparison,
Table 8 shows the detailed results of the submission that won the competition, and for
each problem instance, the percentage gap of the total cost as compared to the result of
our approach in Table 7. The winning team used for the optimization a stochastic MILP
approach based on predictions with errors shown in Table 2. The winning submission
yields lower total cost (TC) than our approach on all problem instances, except for the first
instance, although the peak cost (PC) and energy cost (EC) are higher on many instances.
As one can see, the profit from once-off activities (OP) is also notably higher than in our
results. Thus, it seems like the main advantage of the winning approach compared to our
approach is that it is better in handling the once-off activities.

Table 7. Detailed results of our approach on all ten problem instances.

Problem OS PC (AUD) EC (AUD) OP (AUD) TC (AUD)

small0 7 13,195 21,283 29 34,449
small1 19 13,130 20,865 251 33,744
small2 2 13,081 20,833 60 33,855
small3 20 12,533 20,994 267 33,259
small4 20 13,825 20,924 869 33,880
large0 6 13,025 21,225 78 34,173
large1 7 13,374 21,290 43 34,622
large2 11 12,075 20,919 29 32,964
large3 8 12,467 21,029 42 33,454
large4 30 13,074 21,233 236 34,071
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Table 8. Detailed results of the winning approach on all ten problem instances and percentage gaps
of total costs as compared to our approach.

Problem OS PC (AUD) EC (AUD) OP (AUD) TC (AUD) Gap (%)

small0 20 14,425 21,575 1491 34,509 +0.17
small1 19 13,726 21,131 1593 33,265 −1.42
small2 20 12,696 21,232 1500 32,428 −4.22
small3 20 13,289 21,181 1333 33,136 −0.37
small4 20 12,490 21,057 1056 32,490 −4.10
large0 99 12,912 21,619 1889 32,643 −4.48
large1 100 13,244 21,658 1847 33,055 −4.53
large2 97 12,160 21,238 1686 31,712 −3.80
large3 100 12,502 21,443 1725 32,219 −3.69
large4 94 12,927 21,602 1626 32,903 −3.43

Figure 8 shows the predicted base load and total load resulting from our schedule for
problem instance small1.

20
20

-11
-01

20
20

-11
-05

20
20

-11
-09

20
20

-11
-13

20
20

-11
-17

20
20

-11
-21

20
20

-11
-25

20
20

-11
-29

20
20

-12
-01

Time (AEDT)

200

400

600

800

1000

Lo
ad

 [k
W

]

Base load
Total load

Figure 8. Predicted base load and total load resulting from the schedule for problem instance small1.

Once-off activities are scheduled on weekends and at the end of the planning horizon
(on a Monday and part of a Tuesday) since no recurring activities take place at these times,
and thus the peak load is not increased by the once-off activities. The load of the recurring
activities on the working days of the full weeks of the planning horizon is well-distributed,
resulting in similar peak loads on all days of the full weeks. Figure 9 shows the real base
load and the total load resulting from the same schedule. As one can see, the peaks are no
longer similar on the different working days of the full weeks, and the total peak occurs on
the 11th of November (which is also the case for all other problem instances).
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Figure 9. Real base load and total load resulting from the schedule for problem instance small1.

6. Summary and Conclusions

In the present paper, we provided a detailed description and evaluation of our ap-
proach to the prediction and optimization problem formulated in the 2021 “IEEE-CIS
Technical Challenge on Predict + Optimize for Renewable Energy Scheduling”. In order
to deal with the influence of the COVID-19 measures on the load data and the resulting
limited amount of useful training data, we opted for a simple but robust statistical approach
for the load forecasting. The forecast of photovoltaic production was executed with the help
of a machine learning model based on weather data. The complex optimization problem
was tackled by formulating it as a mixed-integer linear programming problem and solving
it with the help of the Gurobi solver. Different measures to accelerate the optimization
were taken, and their benefits were demonstrated in experiments. An analysis of the
forecasts revealed that while the forecast of the photovoltaic production is very accurate,
the load forecast notably underestimates the load. In addition to an unpredictable increase
in the load, an internal issue of the used approach, which would be easy to correct, was
identified as a reason for this. The experiments showed that the prediction errors have a
notable impact on the optimization results. Nevertheless, the used approach proved to be
competitive and yielded the third rank in the final leaderboard of the challenge. Hence, it
is fair to assume that the other teams had similar issues with the load forecast.
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Nomenclature

Parameters
αt Energy price at time step t
β Peak load charge
γs Efficiency of stationary battery s
Cs Capacity of stationary battery s
d f irst

a First possible start day of activity a
dlast

a Last possible start day of activity a
Da Duration of activity a in number of time steps
It Mapping of time step t to time step in first full week
KL

a Number of large rooms required by activity a
KS

a Number of small rooms required by activity a
LA

a Load of activity a
LB

b,t Base load of building b at time step t
LP

p,t Production of PV system p at time step t
Lbase

t Base load at time step t
Ms Charging/discharging power of stationary battery s
NL

b Number of large rooms of building b
NS

b Number of small rooms of building b
NB Number of buildings
NO Number of once-off activities
NP Number of PV systems
NR Number of recurring activities
NS Number of stationary batteries
Peno Penalty of once-off activity o
Remo Remuneration of once-off activity o
T Length of planning horizon
tclose Last time step of office hours during a day
topen First time step of office hours during a day
tmax_rec Last time step of last full week of planning horizon
tmax Last time step of working days of first full week of planning horizon
tmin First time step of working days of first full week of planning horizon
Wt Weekday corresponding to time step t
Sets
A Set of all activities
B Set of buildings
Ea Set of activities preceding activity a
O Set of once-off activities
Osched Set of scheduled once-off activities
P Set of PV systems
R Set of recurring activities
S Set of stationary batteries
Ta,T′a Set of possible start times of activity a
Variables
Cs,t Battery level of battery s at time step t
chs,t Binary flag indicating charging of battery s at time step t
dchs,t Binary flag indicating discharging of battery s at time step t
Fa,t Binary flag indicating start of activity a at time step t
LS

s,t Load of stationary battery s at time step t
Lmax_square Square of the peak load
Lmax Peak load
Lt Total load at time step t
tstart
a Time step of (first) start of activity a

Va,b Number of rooms of building b assigned to activity a
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