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Abstract: This paper proposes a state-of-charge estimation technique to meet highly dynamic power
requirements in electric vehicles. When the power going in/out the battery is highly dynamic, the
statistics of the measurement noise are expected to deviate and maybe change over time from the
expected laboratory specified values. Therefore, we propose to integrate adaptive noise identification
with the dual-Kalman filter to obtain a robust and computationally-efficient estimation. The proposed
technique is verified at the pack and cell levels using a 3.6 V lithium-ion battery cell and a 12.8 V
lithium-ion battery pack. Standardized electric vehicle tests are conducted and used to validate the
proposed technique, such as dynamic stress test, urban dynamometer driving schedule, and constant-
current discharge tests at different temperatures. Results demonstrate a sustained improvement in
the estimation accuracy and a high robustness due to immunity to changes in the statistics of the
process and measurement noise sequences using the proposed technique.

Keywords: Li-ion battery; electric vehicle (EV); extended Kalman filter (EKF); cubature Kalman filter
(CKF); state of charge (SOC)

1. Introduction

The state of charge (SOC) is an extremely important parameter that must be tracked
accurately in real time to maximize the performance of electric vehicles (EVs). Almost all
available EV SOC estimation methods found in literature fall under the following three
categories: (1) current-integration methods, (2) model-based methods, including variants
of Kalman-filter algorithms, and (3) non-model-based methods, such as neural networks.
Due to the nature of the current-integration method, which tracks the SOC in an open-loop
manner by integrating the current going in/out the battery over time, inaccurate results
are produced with repeated cycles. This is a result of the error accumulation in the current
measurement, and hence it is considered inadequate for EV applications.

With the circular dependence of the battery’s internal parameters and SOC, improving
the estimation accuracy of one will lead to improvement in the other. Most equivalent-
circuit models found in the literature represent the internal parameters mainly by a re-
sistance connected in series with an RC filter [1–4], as shown in Figure 1b. In this figure,
the series resistance, Rk, represents the ohmic losses (I2R) in the form of heat, while the
RC filter accounts for the time constant that emulates the transient behavior of the cell
when exposed to charge/discharge pulses. Since the internal parameters vary with tem-
perature, load current, and SOH [5–7], these parameters, in general, and most importantly
the internal resistance, must be dynamically estimated to ensure accurate SOC estimation.
Other battery cell modeling techniques include physics-informed models that are based
on an electrochemical analysis of a battery cell [8,9]. While these models help explain the
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underlying electrochemistry within the battery cell and understand the dependence of the
battery cell model parameters on factors such as discharge rate and temperature changes,
they are often more complex than the equivalent-circuit-based models with many more
parameters that need to be identified. Further, these models are reportedly more suited
for battery cell life prediction as well as characterization of battery cell decay [10]. In this
paper, we opt to use an equivalent-circuit model for its relatively simple mathematical form
which makes it attractive to run on embedded hardware that a battery management system
would run on.

In [11], an adaptive extended Kalman filter (EKF) method is proposed for battery
SOC estimation in EVs. This method has an improved performance compared to the
traditional EKF since it reduces the filter dependence on the battery model by accounting for
model inaccuracy and system noise. More EKF-based techniques are proposed in [12–18]
for battery SOC estimation. The main limitation of the majority of existing KF-based
SOC estimation methods, besides their several advantages, is that they assume a white
measurement noise with zero mean and known covariance, which is not necessarily true in
EVs. These methods may give inaccurate estimates and may have convergence issues if a
sudden change in the internal resistance or the measurement noise statistics occur.
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Figure 1. Equivalent circuit models used to describe battery cell dynamics. (a) Common Simple
Model. (b) RC Model.

In [19,20], an unscented Kalman filter (UKF) and an adaptive EKF algorithm are pro-
posed for estimating the battery internal resistance and SOC concurrently in real time.
In general, UKFs outperform EKFs as the former has a higher capability in dealing with
nonlinear systems [21]. However, the methods in [19,20] use a battery model with many pa-
rameters that are uneasy to find practically and that assume a pre-existing knowledge of the
measurement noise covariance, which is not necessarily true from a practical perspective.

In [22], two methods were proposed to optimize the performance of the EKF for
high-accuracy SOC estimation. The first is based on multiple model EKF and the second
is based on the use of the autocovariance least squares (ALS) technique. It was shown
that while both methods enhance the accuracy of SOC estimation, the ALS technique
produces high-integrity and high-accuracy SOC estimation. In the referenced work, two
assumptions were made on the internal resistance: first, it is known, and second, it is
constant. These assumptions are impractical assumptions for an EV application where the
internal parameters of the battery vary with operating conditions.

In [23], a different approach was used for modeling the internal parameters. In that
method, a neural network was trained and used to track the internal parameters of the
battery at a given input set, and a modified UKF was then used to estimate the SOC.
Although that method resulted in an improved accuracy compared to other existing KF
methods, it has a high implementation cost and requires a huge bank of data to model
the neural network. Another modified EKF method is proposed in [24]. In the referenced
method, a maximum likelihood estimation EKF (MLE-EKF) algorithm is proposed that
addresses the uncertainties in both the process and measurement noises. However, that
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method is based on a static cell model. If the parameters of the model change due to change
in temperature, aging, etc., the accuracy of the method will fall.

Besides model-based SOC estimation algorithms, which consist mainly of EKF/UKF
based methods, artificial neural networks (ANNs) have been also proposed for SOC esti-
mation [25,26]. In the referenced methods, an NARX ANN technique is proposed for SOC
estimation. This technique was tested using different Li-ion battery cells under constant-
current pulses. In these methods, the difference between the actual and predicted SOC
was fed back to the input of the network to adjust the weight functions. Practically, the
actual SOC cannot be measured, and hence, the assumption that the actual SOC is provided
during testing is not practical. In addition, it is unclear how these methods will behave if
a battery pack that consists of series-parallel cell combinations is tested, or if a harsh test
such as the DST that consists of a number of aggressive charge/discharge pulses over the
full SOC range is conducted. Other ANN-based methods have been proposed in [27–31]
for estimating the SOC. These methods have focused mainly on improving the speed of
convergence of the ANN algorithm by replacing the standard backpropagation algorithm
by other algorithms, such as the lighting search algorithm [27], backtracking algorithm [28],
particle swarm optimization algorithm [29,30], and gravitational search algorithm [31].
These methods, however, were validated using a single battery cell only. Moreover, it is
unclear in these works whether the true or the estimate of the SOC was used in the feed-
back loop during testing. In [32], a deep neural network is proposed for SOC estimation.
Although deep neural networks in general are more accurate than conventional neural
networks, deep neural networks have an increased complexity due to the large number of
layers they use between the input and the output layers, which, as a result, increases the
implementation cost, and moreover, could reduce the convergence speed.

This paper proposes a new method for enhancing the SOC estimation accuracy. The
method employs a modified version of the dual KF, called DKF, that estimates the parame-
ters and the SOC. This paper is an extended version of [33] previously submitted to the
2021 International Symposium on Advanced Electrical and Communication Technologies.
The proposed method has several advantages, such as (1) it overcomes the limitations of
traditional KF-based algorithms by accounting for the unknown noise covariance magni-
tudes in real time, which is more practical for an EV application, and (2) it is very accurate;
compared to [23], a 94% MAE reduction was achieved using the proposed method through
a standardized DST procedure, while a 51% MAE reduction was achieved compared to the
recently proposed method in [24] through a standardized UDDS cycle. A significant num-
ber of DKF approaches in the literature are aimed at estimating the capacity of the battery
cell [34,35]. Compared to works estimating the parameters of the battery [36,37], the pro-
posed approach identifies and compensates for varying dynamics and measurements noise
covariance magnitudes, and it utilizes very simple dynamics and measurements models to
realize highly accurate SOC tracking with errors consistently below 1%. The simple model
is advantageous when it comes to significantly reducing the computational complexity
required to run the algorithm, and it could also prove beneficial to the observability of
the parameters of the battery. Concerns about observability arise as the parameters to be
identified are derived from a single voltage measurement at each time epoch [37,38].

The organization of this paper is as follows: in Section 2, the proposed method is
derived. In Section 3, experimental results followed by discussion are presented. Finally,
summary and conclusions are given in Section 4.

2. Proposed Enhanced Dual-KF Approach

All KF-based methods require the knowledge of a dynamic battery model. Referring
to the models shown in Figure 1, we aim to utilize the simpler model in Figure 1a in an
adaptive framework that can compensate for model shortcomings, be immune to model
parameter variation, and have low computational implementation cost. The voltage of this
model is given by

zk = OCV(xk) + ikRk (1)
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where zk is the model voltage, ik is the cell terminal current (assumed positive during
charging and negative during discharging), OCV is the open-circuit voltage of the cell, xk
is the SOC, and Rk is the internal charge or discharge resistance.

The state of charge can be modeled as

x(t) = x(0) + η
∫ t

0

i(τ)
Cn

dτ + w̃ (2)

where η is the (dis)charging efficiency and is assumed to be 100% for a Li-ion battery, Cn is
the nominal capacity of the battery in ampere-seconds (A.s), and w̃ is the continuous-time
white process noise. The discretized form of (2) is given by

xk+1 = f (xk, ik) + wk

=xk +
η∆t
Cn

ik + wk
(3)

where wk ∼ N (0, Qw) and Qw is the process noise covariance matrix. Using Equation (1),
the output voltage as a function of the SOC perturbed by white noise is given by

zk =h(xk, ik, θk) + vk

=OCV(xk) + ikRk + vk
(4)

where vk ∼ N (0, Rv) and Rv is the process noise covariance matrix.
In order to estimate the SOC and the model parameters, two variants of the Kalman

filter will be used, namely the dual extended Kalman filter (DEKF) and the dual cubature
Kalman filter (DCKF), which is an extension of the joint KF. In the joint EKF algorithm, the
parameters vector θ to be estimated is augmented to the state vector. Let χ represent the
stacked vector given by

χk =

[
xk
θk

]
(5)

where xk is the SOC and θk is the parameter. Furthermore, the dynamic equation of θ is
given by

θk+1 = θk + rk (6)

where rk ∼ N (0, Qr) and Qr is the process noise covariance matrix associated with the
resistance R. The overall process covariance matrix Q is given by

Q =

[
Qw 0
0 Qr

]
(7)

The measurement covariance matrix Rv is not changed since the same measurement is used
for state and parameter estimation. Algorithm 1 shows the joint extended Kalman filter
(EKF) algorithm [39]. Instead of having the state and parameters stacked in a vector, as
in the case of the joint EKF, the DKF algorithm uses separate Kalman filters for state and
parameter estimation. This reduces the dimensionality of the state vector and hence results
in simpler matrix operations and a reduction in the overall computational complexity.
Therefore, the DKF algorithm will be used for practical estimation of the battery’s internal
resistance and SOC. The dynamic and measurement equations for parameter estimation
are as follows:

θk+1 =θk + rk

zk =OCV(xk) + ikRk + ek
(8)

where ek ∼ N (0, Re) and Re is the estimation error covariance matrix. The state and
parameter filters are first initialized as

x̂k ← x0,P̂x
k ← Px0

θ̂k ← θ0,P̂θ
k ← Pθ0

(9)
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In general, x̄k refers to the a priori estimate of xk given measurements up to time k− 1,
whereas x̂k refers to the a posteriori estimate of xk given measurements up to time k. This
notation similarly applies to θk and Pk. The state filter is then propagated through time
as follows:

P̄x,k+1 =P̂x,k + Qw,k

x̄k+1 =x̂k +
η∆t
Cn

ik

Hx
k =

δh(xk, ik, θ̄k)

δx
|x=x̄k=

zk(x̄k)− zk−1(x̄k−1)

x̄k − x̄k−1

Kx
k =Px,k(Hx

k )
T [Hx

k P̄x,k(Hx
k )

T + Rv,k]
−1

(10)

Similarly, the parameter filter is propagated through time using

P̄θ,k+1 =P̂θ,k + Qr,k

θ̄k+1 =θ̂k

Hx
k =

δh(x̄k, ik, θk)

δθ
|θ=θ̄k

= ik

Kθ
k =Pθ,k(Hθ

k )
T [Hθ

k P̄θ,k(Hθ
k )

T + Re,k]
−1

(11)

Finally, the state and parameter filters are updated as follows:

z̄x
k =h(x̄k, ik, θ̄k)

x̂k =x̄k + Kx
k (zk − z̄x

k )

P̂x,k =(I − Kx
k Hx

k )P̄x,k

z̄θ
k =h(x̄k, ik, θ̄k)

θ̂k =θ̄k + Kθ
k(zk − z̄θ

k)

P̂θ,k =(I − Kθ
k Hθ

k )P̄θ,k

(12)

Algorithm 1: The joint extended Kalman filter.

begin Initialize the filter
χ̂k ← χ0, P̂χ

k ← Pχ0

for k = 1→ end do
Time Propogation:
P̄χ,k+1 = P̂χ,k + Qw,k
χ̄k+1 = χ̂k + F(χk, ik)

Hχ
k = δh(χ̄k ,ik)

δχ |χ=χ̄k

Time Update:
χ̂k = χ̄k + Kχ

k (zk − h(χ̄k, ik))
P̂χ,k = (I − Kχ

k Hχ
k )P̄χ,k

end
end

where:

F(χk, ik) =

[
f (xk, ik)

θk

]
Hχ

k =
δh(χ̄k, ik)

δχ
|χ=χ̄k=

[
zk(x̄k)−zk−1(x̄k−1)

x̄k−x̄k−1

ik

]

The aforementioned approach is to also be tested using the cubature Kalman filter
(CKF). For brevity, the CKF algorithm is shown in Algorithm 2.
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Algorithm 2: The cubature Kalman filter.

begin Initialize the filter
x̂k ← x0, P̂k ← Px0

for k = 1→ end do
Time Propogation:

Sk =
√

P̂k

x(i)k = Skξ(i) + x̂k, i = 1, 2, . . . 2n

χ
(i)
k = f (x(i)k , uk)

x̄k+1 = 1
2n

2n
∑

i=1
χ
(i)
k

P̄k+1 = 1
2n

2n
∑

i=1
(χ

(i)
k − x̄k+1)(χ

(i)
k − x̄k+1)

T

+Qw
Time Update:
Sk+1 =

√
P̄k+1

x̄(i)k+1 = Sk+1ξ(i) + x̄k+1, i = 1, 2, . . . 2n

y(i)k+1 = h(x̄(i)k+1, uk)

ȳk+1 = 1
2n

2n
∑

i=1
y(i)k+1

Py
k+1 = 1

2n

2n
∑

i=1
(y(i)k+1 − ȳk+1)(y

(i)
k+1 − ȳk+1)

T

+Rv

Pxy
k+1 = 1

2n

2n
∑

i=1
(x(i)k+1 − x̄k+1)(y

(i)
k+1 − ȳk+1)

T

Kk+1 = Pxy
k+1(Py

k+1)
−1

x̂k+1 = x̄k+1 + Kk+1(zk+1 − ȳk+1)
P̂k+1 = P̄k+1 − Kk+1Py

k+1KT
k+1

end
end
where:

ξ(i) =

{
+
√

n[1](i) i = 1, 2, . . . n
−
√

n[1](i) i = n + 1, n + 2, . . . 2n
[1](i) is the ith column of the I ∈ Rn×n identity matrix.

χ
(i)
k are the cubature points.√
X is the matrix square root of X.

The DKF assumes the knowledge of the measurement noise statistics, which could
result in a degradation in the estimator’s performance if the statistics are not sufficiently
accurate. Therefore, covariance matching to adapt the noise covariance magnitudes is
employed to account for the unknown dynamics and measurements covariances. Even if
the noise covariance magnitudes are known a priori, they may change due to aging of the
system and/or its sensors [40].

The approaches proposed in [41,42] are implemented to adapt the EKF and the CKF.
This procedure is suitable for real-time online applications, and the noise statistics used in
the filters are left to adapt continuously during testing. If the accuracy of the system model
changes with time due to environmental conditions or aging of the battery, that could also
be compensated for by an increase in the measurement noise covariance. A demonstration
of this method is shown in Figure 2.
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State Filter

Parameter Filter

Covariance Estimation

θ̂k−1 ik

Q̂θ , R̂θ θ̄k hθ(θk, ik, x̄k) θ̂k

Q̂x, R̂x
νx = zk − z̄x
νθ = zk − z̄θ

zk

x̂k−1 x̄k hx(xk, ik, θ̄k) x̂k

η∆t
Cn

ik

Figure 2. Block diagram of the proposed enhanced dual-Kalman-filter.

The adaptation of the EKF filter noise covariance magnitudes is summarized by the
following set of equations:

Q̂k+1 = Kk+1νk+1νT
k+1KT

k+1

R̂k+1 = νk+1νT
k+1 − Hk+1P̄k+1HT

k+1

(13)

where ν represents the innovation sequence in Figure 2, and the other quantities are as
defined in the EKF equations.

In order to have more stable estimates, a forgetting factor-based approach can be
implemented to weigh the previous noise covariance magnitude estimates as shown below.

Q̂k+1 = αQ̂k+1 + (1− α)Q̂k

R̂k+1 = αR̂k+1 + (1− α)R̂k
(14)

where the forgetting factor 0 < α < 1 can be used to filter sudden spikes in the estimates
and place more weight on more recent measurements. α can be set empirically, or it can be
defined as the momentum constant α = 1−β

1−βk with 0 < β < 1 set as desired.
Similarly, as detailed in [42], the CKF noise covariance magnitude adaptation equations

can be formulated.

3. Experimental Verification and Discussion

The proposed method is evaluated experimentally through different tests, as detailed
in this section. In the described tests, the actual values of the SOC are computed using
coulomb counting and indicated as “truth”, while the estimated SOC is indicated by the
filter used to generate the estimate. The coulomb counting technique is only used to obtain
the ground truth on the assumption of known initial condition. In the presented tests, this
initial state, as well as the dynamic model noise, are unknown, and the KF-based approach
compensates for the coulomb counting shortcomings through the measurement update.
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3.1. Test 1: Pulse Tests

In this section, a few tests are run on a 3.6 V cell that are less dynamic and not
as extreme in nature than the DST or the UDDS tests presented in the next sections;
namely, charging/discharging constant and variable pulse tests. The results for these are in
Figure 3a,b . The performance of the proposed approach is consistently excellent, as shown
in Table 1, where the MAE between the approaches is presented.

(a) (b) (c)

Figure 3. Performance evaluation of the dual Kalman filter variants in different battery cycles.
(a) Constant discharge test. (b) VPT discharge test. (c) DST test.

Table 1. Mean absolute estimation error.

Traditional Proposed

DEKF DCKF EDEKF EDCKF

Constant Pulse (Discharging) 6.81 3.67 1.00 0.97
Variable Pulse (Discharging) 9.81 7.70 1.32 0.65
Dynamic Stress Test 15.90 7.55 0.99 0.04
UDDS 18.61 5.32 0.15 0.05

It is necessary to comment on the discrepancy between using EKF and CKF in the
proposed approach. As evident in all the testing, the DEKF generally lags behind, and
we reason that to be due to the codependency between SOC estimation and parameter
estimation. Unlike the EDEKF, the EDCKF is quick enough and effective at producing
accurate estimates. That is, the model parameters are quickly identified and the SOC
is consequently correctly identified. In terms of MAE, the proposed approach with the
EDCKF achieves 0.81% on average in the two pulse tests.

3.2. Test 2: Pack DST Test

This test comprises extremely aggressive 115 DST cycles performed using a 12.8 V Li-
ion battery pack covering the entire SOC range from 100% down to 0%. The purpose of this
test is to evaluate the proposed techniques when exposed to highly dynamic and stressful
charge or discharge power pulses using a battery pack that consists of series/parallel
connected cells. The first five cycles of this test are demonstrated in Figure 4c.
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(a) (b)

(c) (d)

Figure 4. Test profiles showing current, voltage, and SOC sequences for the battery cell from a fully
charged state to fully drained (a) Constant Pulse Discharge Test. (b) Variable Pulse Discharge Test.
(c) DST test (cycles 1 through 5). (d) UDDS test.

The results of this test are shown in Figure 3c. According to the results obtained,
the proposed algorithm has achieved a significant improvement in terms of robustness
and accuracy when compared to the traditional DKF algorithm. This improvement is
the result of applying the proposed technique to the estimation algorithms for both the
model parameters and battery SOC, simultaneously. Nonetheless, the error bound for the
proposed method was always within ±1%, which is quite acceptable for an EV application.
Table 1 presents the MAE of filters for this test.
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Interestingly, the proposed algorithm has significantly outperformed the traditional
DKF algorithm. In terms of accuracy, the proposed method achieved an MAE of 0.4% with
the EDCKF, while the traditional DCKF was many folds more. In terms of convergence
speed, the proposed algorithm converged to the true SOC in a few minutes, while it took
the DKF algorithm almost 550 min to converge to the true SOC ±1%. This improvement
is due to the enhancement in the accuracy of the proposed algorithm by identifying the
correct model of the battery. This relates to estimating both the internal parameters of the
model and the SOC of the battery. At the same time, the accuracy is achieved through
incorporating the correct noise covariance by virtue of the online estimation of the statistics
of the dynamics and measurement noise. The proposed method accounts for estimating
the correct noise statistics and at the same time monitoring for possible change in these
statistics due to change in the battery’s operating conditions.

Practically, the EDKF algorithm is very sensitive to model inaccuracy and can easily
become inaccurate or even diverge if a little mismatch between the model voltage and the
actual/measured voltage occurs. Hence, integrating the noise identification scheme with
the parameter and SOC estimation algorithms in the EDCKF case has reduced the MAE
substantially from 7.55% down to 0.04%. This promising result can be utilized to enhance
the accuracy and robustness of DKF algorithms in other applications.

3.3. Test 3: Cell UDDS Test

In this test, a UDDS cycle is performed using a 3.6 V cell initially charged at 80%
SOC. The purpose of this test is to perform further validation of the proposed technique.
Figure 4d shows the UDDS test performed on the tested cell, and Table 1 shows the MAE
for the filters.

The results of this test are shown in Figure 5. Similar to with the DST, the proposed
approach is superior to the traditional one. Comparing the proposed algorithm to the
recently proposed method in [24], the MAE has been reduced by 51% using the proposed
algorithm under the same experimental conditions. That is, in [24], the MAE was 0.11%,
while in the proposed algorithm it is 0.05% when the EDCKF is used. The results obtained
add another evidence of the high estimation accuracy the proposed technique can achieve.

Figure 5. Performance evaluation of the dual Kalman filter variants in the UDDS test.

3.4. Test 4: Cell Constant-Current Discharge Test

To evaluate the impact of temperature variation, a simple discharge test was performed
using a 3.6 V Li-ion battery cell at two test temperatures: 0 ◦C and 20 ◦C. The cell was fully
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charged, allowed to rest for a few minutes, and then discharged using a constant current
until its voltage dropped to its cutoff. Before starting the test, the cell was soaked at the
test temperature for several hours. The model parameters for the proposed method were
originally derived at 20 ◦C.

For comparison, this test was also used to evaluate the sensitivity of a traditional DKF
against the proposed approach. These models were also derived at 20 ◦C. The sensitivity to
temperature variation, S∆T , is defined as

S∆T =
MAE0 −MAE20

MAE20
× 100% (15)

where MAE0 and MAE20 are the MAE values at temperatures 0 ◦C and 20 ◦C, respectively.
A summary of the sensitivity values calculated using (28) are listed in Figure 6.

From Figure 6, it is shown that the traditional DKF is highly sensitive to temperature
variation. The reason for this is that the DKF does not account for the statistics of the
measurement noise as the proposed method does, which impacts the estimation accuracy
when the operating conditions change (in this case, the ambient temperature changed from
20 ◦C to 0 ◦C). The proposed method, however, has significantly reduced the sensitivity
to temperature variation, which is an important feature when it comes to practical imple-
mentation of the proposed algorithm where the ambient temperature is likely to vary on
different time scales.

Figure 6. The results of sensitivity to temperature variation.

3.5. Note on the Confidence of KF Estimates

The KF approach provides a measure of the confidence of the estimates it computes.
This measure is the state covariance, P, from which one could compute the confidence
intervals represented by the 3σ confidence level. In Figure 7, the DKF estimates are
provided along with the 3σ confidence bounds in both the SOC estimate and the model
parameter estimate. It is noticed that the DCKF results are accompanied by less certain
state estimates while the DEKF results show an opposite trend. It is argued that the EKF-
based approach suffers from errors arising from linearization, which the CKF estimates
generally avoid through the process associated with propagating the predictions using the
cubature points better handling nonlinearities in the dynamics and measurements models.
As shown in Table 1, however, the DCKF consistently outperforms its counterpart in both
the traditional and enhanced testing scenarios, even though its estimates are associated
with higher uncertainty.
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Figure 7. DST test confidence intervals for the DCKF in SOC estimation (top left) and internal resis-
tance estimation (top right) as well as confidence intervals the DEKF in SOC estimation (bottom left)
and internal resistance estimation (bottom right).

4. Summary and Conclusions

This paper proposed a modified DKF for battery SOC estimation. Among many advan-
tages, the proposed technique has high estimation accuracy, low error bounds, and robust
performance. The performance of the proposed technique is validated experimentally
using standardized DST and UDDS procedures as well as other less dynamic tests. Results
show that the proposed technique has a superior performance over existing algorithms.
The technique has also provided accurate and robust results when the temperature was
varied from 20 ◦C to 0 ◦C, as verified experimentally.

From a practical point of view, improving the stability of the SOC estimation algorithm
and enhancing its immunity to temperature variation are vital for improving the overall
energy management of the battery. Reducing the error bounds is another key for enhancing
the EV’s battery performance. Particularly, in battery EVs (BEVs), reducing the error bounds
reduces the range anxiety and increases the runtime of the battery. In hybrid EVs (HEVs),
reducing the error bounds improves the energy management and hence the fuel-efficiency
of the vehicle. By improving the accuracy, stability, and immunity to temperature variation,
the battery runtime and service-life can be extended. It shall be noted, however, that the
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accuracy of the proposed algorithm, as in other KF-based algorithms, is dictated mainly by
the dynamic model used with the algorithm.

With the steady high demand on Li-ion batteries in the EV industry, such battery
monitoring techniques are expected to replace traditional techniques for different EV
types. Future related research must focus on analyzing the aging of the battery and the
temperature impact on the SOC estimation accuracy and robustness.
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