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Abstract: This paper proposes a new strategy for modeling predictability uncertainty in a stochastic
context for decision making within a Virtual Power Plant (VPP). Modeling variable renewable
energy generation is an essential step for effective VPP planning and operation. However, it is
also a challenging task due to the uncertain nature of its sources. Therefore, developing tools to
effectively predict these uncertainties is essential for the optimal participation of VPPs in the electricity
market. The purpose of this paper is to present a novel method to model the uncertainties associated
with energy dispatching in a VPP using the Unscented Transform (UT) method. The proposed
algorithm minimizes the risks associated with the VPP operation in a computationally efficient and
simple manner, and can be used in real-time on a power system. The proposed framework was
evaluated based on an Electric Power System (EPS) model with historical data. Case studies have
been performed to demonstrate the effectiveness of the proposed framework in minimizing power
demand and renewable-energy-forecasting uncertainty for a VPP.

Keywords: forecast uncertainty; virtual power plant; unscented transform

1. Introduction

There have been concerns throughout many countries and regions about the rational
consumption of electricity, which is increasing every day, along with concern for the
environment. This has sparked a quest for new ways to improve energy efficiency, and has
been a motivation for the development of more efficient and cleaner technologies.

This increasing energy demand, along with higher penetration of variable renewable
energy, is posing many challenges for the electricity sector due to the need to balance gener-
ation and load in real-time and meet energy-efficiency and sustainability goals. In addition,
the number of inverter-based distribution generation (DG) and other distributed-energy
resources (DERs) has been increasing continuously, and has created additional complexities
for power-system operation, thus highlighting the need for innovative methods to model
various uncertainties and reduce overall operational complexity.

Distributed-Energy Resources (DERs) are smaller energy sources that can be aggre-
gated to provide the amount of energy needed to meet demand. However, their small
installed capacities, intermittences, and uncertain generation make it difficult for these
plants to enter and directly participate in the electricity market.

Innovative technologies must be harnessed to make the most of DERs. Because of
this, a paradigm for the operation of modern power-distribution and transmission systems
is being presented through a Virtual Power Plant (VPP) [1]. Important solutions for the
reliable supply of electricity in a power system are coming to light, establishing an efficient
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and effective mechanism [2]. The literature and studies regarding this technology already
indicate the direction of this new tool as a promising solution [3,4].

VPPs demonstrate their relevance as an integral part of predictability research on
power-generation variability and demand. However, various uncertainties are present due
to the intermittent nature of renewable production units, market prices, and power demand.
Therefore, it is necessary to consider and know the degree of uncertainty during the
operation of a VPP, since this information is crucial for efficient operational planning [5]. In
this paper, the Unscented Transform (UT) method is used to improve the daily predictability
of a VPP system with minimal aggregation error [6].

Typically, this problem could be solved by electrical engineering using the Monte
Carlo (MC) model, as it is one of the most widespread techniques for modeling uncertainty
in a short-term forecast. However, the need for real-time usage makes the MC model
impractical [7]; the method uses millions of iterations to obtain a satisfactory result in
terms of confidence intervals. This makes its use computationally impracticable in several
cases [8].

The UT method, however, presents a new approach for solving this problem, which
requires less computational effort when compared to the Monte Carlo method [9]. In the
next chapter, we will present the UT method for individual forecasting of each VPP user in
order for the aggregator to have prior knowledge of the data and be able to make relevant
decisions.

2. Virtual Power Plant (VPP)

VPPs aim to achieve better use of normally spatially dispersed energy resources, and
to coordinate their joint operation to meet energy demand requirements [1]. They present a
set of generation units, controllable loads, and network-dispersed energy storage systems
and aggregates [10] to operate as a single plant [11] for the system operator, as shown in
Figure 1.
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Figure 1. Concept representation of a VPP (adapted fenix-project [12]).

The representation in the known literature of a VPP connected to the system presents
Distributed Generators (DG). These have different generations (G) and different load
profiles (L), and are controlled by a VPP that presents a system operator through an
aggregator [13] with a single operational profile of a parameter composed of the whole
system, which characterizes each DER and each load. These make it possible to act directly
on market scenarios through energy supply and demand, improving reliability and price
fluctuations in daily or real-time markets.

Some key components of a VPP’s topology include the establishment of information
connections and the changing of energy resources along with the energy market. Figure 2
represents the sets of different non-renewable and renewable storage generators and storage
devices that can be integrated. Some perform commercial roles, such as bringing together
the energy production of several local units and marketing them as a single entity. Others
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perform more technical operations, such as being able to adjust the production profile of
their generator components or even providing ancillary services to the system.
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2.1. Technical Virtual Power Plant (TVPP)

The VPP essentially depends on a TVPP for its existence and operation. It works
and communicates mainly at the distribution-and-transmission-network level of the same
geographical placement, as represented in green in Figure 2 [14].

The generation capacity of DERs is aggregated in the distribution network, where
the VPP can participate in a competitive electricity market, and may require detailed
knowledge of the local grid to provide technical services to the system operator, such as
ancillary services and balancing services [15], similar to a system operator, especially in
energy-balance performance [16].

The TVPP is involved in managing and easing grid constraints, as well as in aggregat-
ing DERs with appropriate parameters for distribution [17]. It may dispatch controllable
resources and decide whether to buy from, or sell energy to, the electricity market, while
considering various sources of uncertainty [18,19].

2.2. Commercial Virtual Power Plant (CVPP)

CVPPs allow DERs to gain visibility in energy markets, which would be very difficult,
if not impossible, if the same DERs were operated as single entities. Moreover, aggregation
allows them to participate in wholesale markets as if they were conventional generators [18].
Aggregation can also be facilitated through long-term contracts, potentially lowering
transaction costs and reducing price uncertainties.

CVPPs are considered to be commercial entities in that they report the price and
amount of energy they can provide through production and consumption forecasting,
based on weather forecasting and demand profiles, thereby optimizing the economic use
of the VPP portfolio and schedule. Aggregate units of DERs for the electricity market are
based on anticipated needs and cannot be limited to a defined electrical area, meaning
VPPs are not limited geographically [19]. Trading in the wholesale energy market is one of
the main services provided by CVPPs.
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2.3. Aggregator

The aggregator is responsible for market operations that deal with portfolio aggre-
gations [10]. The VPP aggregator communicates directly in real-time with the CVPP and
TVPP to provide a profile and forecast of energy production from diverse and geographi-
cally distributed sources between distribution and transmission networks [13]. The process
includes many details internally, such as prediction algorithms. Its main feature is error
reduction through the knowledge of uncertainties, since for a trader interested in selling
energy, this experience allows accurate energy forecasts to be traded within the stipulated
trading period. It can group numbers of small or large generators to generate economies of
scale in market access. It is also responsible for balancing a VPP’s entire system as a power
supplier and buyer of locally generated electricity [20].

2.4. Distributed-Energy Resources (DERs)

One of the most significant changes in electricity systems worldwide has been the rapid
expansion of DERs, which provide an energy-generation solution that has great potential
in the global energy sector, and are directly connected to local distribution systems or to
aggregated VPPs within those systems, and have the potential to offer substantial benefits
to a power system.

DERs may include electric vehicles (EVs), wind energy, biomass and biogas, pho-
tovoltaic production, prosumers, energy storage, fuel cell, flexible consumption (con-
trollable/dispatched loads), and small plants (gas turbines, diesel, etc.), among others.
Discussions on how to better integrate and manage these features are under intense de-
velopment and this should contribute to an increase in the potential benefits gained from
adding more DERs.

3. Unscented Transform (UT)

Power-grid uncertainties are gradually increasing, making safe and stable operation a
challenge and constraining accurate estimates of variables during VPP operation. Therefore,
it is necessary to recognize the sources of these uncertainties and to select the appropriate
means of description.

It is important to have accurate forecasts of demands and generations with the unpre-
dictability of their uncertainties, so that the forecasting-error impact on system operating
performance is minimized [21,22].

The integration of VPPs in the market occurs with the need to consider uncertainties
without being overlooked. One solution for managing renewable energy uncertainties
and demands is using the Unscented Transform (UT), in which the uncertainties can be
modeled by one or more random variables for multiple sources of uncertainty.

The UT consists of a discrete approximation method of the continuous probability-
density function (PDF), ensuring that the two distributions have statistically the same
properties, being even easier to implement and using the same order of calculations as
linearization [23]. For the realization of the transform, one of the prerequisites is that the
discrete distribution has the same moments as the continuous distribution.

The UT can effectively model uncertainties and decision-making risks. It was devel-
oped with the intuition that it is easier to approximate a probability of distribution than
to approximate a function or transformation of an arbitrary nonlinear function. The basic
principle of the UT is the approximation of the PDF by a set of selected points, called sigma
points, and their associated weights. The statistics of mean, variance, and other moments
of the mapping will be available from a weighting of these sigma points [23,24].

As such, the UT is a powerful tool for obtaining statistics from a distribution that has
undergone a linear or nonlinear process [25]. It can be viewed either as a nonlinear mapping
expansion, a discrete approximation of the continuous probability-density function by a
discrete distribution, or even with Gauss-quadrature integration.
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To use the UT, it is necessary to know the sigma points and the weights of the equiva-
lent discrete distribution. These are obtained by equality between the moments of discrete
distribution and continuous distribution:

m

∑
i=1

wixn
i =

∫
p(x)xndx (1)

Ideally, the two distributions (discrete and continuous) will be equivalent if the equal-
ity described in (1) holds for all moments (i.e., any value of n). However, for practical
reasons, it is considered sufficient to satisfy the system of (1) to a desired value of n. The
higher this value, the greater the number of equal moments, and the more faithful the
approximation. Therefore, sigma points and weights are not chosen randomly, they are
calculated deterministically to have specific properties such as mean, variance or any other
previously known moments [26]. The resolution of (1) can be performed using a mathemat-
ical transformation, where the nonlinear system becomes a nonlinear equation plus a linear
system.

The formulation for the choice of sigma points and weights uses an approximation of
the ideal solution of the quadrature problem, so the choice of sigma points and weights
extrapolates the weights and sigma points from a uniform distribution to the others.

The weight function is a fundamental element for the following calculations. Let w(x)
be a function defined in an interval I = [a, b]. Furthermore, w(x) is a weight function in I
if w(x) ≥ 0, ∀x ∈ I and satisfy the following equation:

∫ b

a
w(x)dx = 1 (2)

As the interval may even be unlimited, Equation (2) is akin to the probability distribu-
tion integral in the whole support if w(x) = f (x), Therefore, given a function f (x) defined
in I, the integral can be calculated.

S =
∫ b

a
w(x) f (x)dx (3)

The integral in (3) has the same properties of the expected value E{ f (x)}. Since the
quadrature consists of determining a finite set of abscissae xi and weights wi such that the
integral S can be approximated by the sum of the areas of the base rectangles wi and height
f (xi). ∫ b

a
w(x) f (x)dx ≈

m

∑
i=1

wi f (xi) (4)

Equation (4) is an approximation, where the quadrature has an associated error,
given by the difference between the integral value and the approximation value. The
quadrature will have an accuracy of at least m if the error is at least zero for f (x) = xn with
n = 0, 1, . . . , m− 1. By defining Mn as the moment of w(x) in I, we have:

Mn =
∫ b

a
xnw(x)dx (5)

Equation (5) is equivalent to calculating the raw statistical moments E{xn} = Mn. We
can determine the weights w1, w2, . . . , wm by the linear system of m equations through
the following equation:

m

∑
i=1

wixr
i = Mr (6)

with n = 0, 1, . . . , m − 1.
This quadrature is said to be generalized Gaussian because there are no quadrature

constraints in either range I or function. The target accuracy depends on at least 2m− 1 in
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an interval I. This gives the weights, which are important for finding the associated sigma
points.

The sigma points Si are determined by calculating the roots of the polynomial πm(x),
with the values of wi found by determining the roots x1, x2, . . . xm, of the polynomial by the
following equation:

πm(x) =
m

∑
i=0

wixm−1 (7)

With this nonlinear transformation defined by the UT, it is possible to obtain an
approximation of the moments of w(û) from the moments of wi. The UT makes the
discrete distribution have the same moments as the continuous distribution after nonlinear
transformation or mapping, according to the following equation [25]:

Ed{ûk} =
∫ +∞

−∞
ûkw(û)dû = ∑

i
wiSk

i (8)

where:
Ed—expected value of the discrete distribution;
û—the set of random variables with known probability distribution;∫ +∞
−∞ ûkw(û)dû—the expected value of the continuous distribution;

Si—UT sigma points;
k—desired approach;
wi—defined as UT weights, besides being the discrete probability density function.
The use of the simple moving average method where the forecast is the average of the

most recent N observations of the X series, as can be observed in Equation (9), is necessary.

Xt =
1
N

N

∑
i=1

Xt−1 (9)

4. Problem Definition

The proposed case study considers a VPP aggregator that aims to make profit and
avoid losses in the electricity market by properly forecasting short-term generation and
demand. Two days of historical data are considered, and the UT method is applied so that
the third day is predicted by the proposed methodology and compared with the Persistence
Method [24].

Figure 3 illustrates the VPP considered. It comprises three solar photovoltaic (PV)
generators, three load sets (i.e., EV charging stations, a residential condominium, and a
shopping mall, respectively) connected to a 13.8 kV bus, and three load sets (i.e., four
households without EV, one household with EV, and one street light) connected to a
0.22 kV bus.
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The main challenge for this VPP is to obtain, for the next day, a forecast interval
mapped with the smallest possible generation error, and individual demand, minute-by-
minute. By accurately predicting generation and load, the VPP aggregator can reduce its
risks when purchasing and selling power in the electricity market.

Figure 4 shows the energy production of the three photovoltaic generators, connected
to the 13.8 kV bar during three consecutive days. Data from the first two days are used to
train the model. Two days are used in the model to buy, with the last day containing the
error of the proposed model.
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Finally, in Figure 6, the demands connected to the low voltage are shown.
Figure 7 shows the total aggregated generation and load data for the VPP considered

in this study.
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5. Methodology

In this paper, the UT is used to manage the uncertainties related to variable renewable
energy production and intermittent power demands. The UT is applied to create a forecast-
ing method for power generation and demand minute-by-minute, allowing both current
and forecasted energy to be treated as random variables in a 1-day future.

In order to verify the effectiveness of the model, the very simple and effective persis-
tence method is used. Equation (9) defines the persistence forecast in which the index is
assumed to remain constant, relative to the previous step. This technique tends to perform
better on small time scales (e.g., minutes) than larger time scales (e.g., hourly and daily).
Persistence assumes that conditions will remain constant, relative to the previous stage of
the forecast.

P(t + ∆t) = kt(t) Po(t + ∆t) (10)

The UT method and the persistence of two days of input data are used. The methodol-
ogy is applied to all VPP users, after which, the result with the errors is compared with the
third day of reference data for the model. The third day is for comparison and analysis of
the model between the two methodologies.

To further illustrate the methodology, we randomly choose a load to present, and then
all are similarly solved. The findings are presented in Table 1, below, with their proper
comparisons. In Figure 8, the proposed methodology uses the UT. It applies to the minute
historical data over the 2 days. The answer is a forecast that contains an interval range of
UT+ and UT−, which is the predictability gap where the demand will be inserted.



Energies 2022, 15, 3716 9 of 13

Table 1. Daily Forecast Errors.

0.22 kV UT Persistence

Home 1 2.3% 7.3%
Home 2 0.4% 4.5%
Home 3 0.5% 7.5%
Home 4 1.9% 4.1%

Home 5 + EV 0.23% 3.3%

PV 1 2.8% 3.5%
PV 2 5.9% 11.3%
PV 3 0.7% 8.8%

Condominium 0% 1.8%
Shopping Mall 0.6% 2.1%
Electric Vehicle 25.2% 39.3%
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The available historical data are data from loads and generations that were chosen
arbitrarily, from an observational point of view. The three midweek days are considered for
use in the simulation. All data are separated into independent days, day 1 has data from 1
to 1440, day 2 has data from 1441 to 2880 and day 3 has data from 2881 to 4320, in such a
way that to simulate the chunk UT and persistence uses only 2 days, the first and second,
respectively, which, after running their algorithms, will generate the third day as results
that will be compared with the real data.

After applying the UT methodology, the historical reference data of the three days are
used to compare and verify the prediction error in the UT interval, as shown in Figure 9.

Figure 10 shows the persistence of the third day using 2 days of historical data.
After persistence is applied, the three-day historical data are compared and verified

for the error, as shown in Figure 11.
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Finally, Figure 12 shows the comparison of prediction errors in the UT and persistence.
In Figure 12, one can visibly verify the low proportion of error of the UT method in

relation to persistence. The errors presented in this specific case for house 1 connected to
the 220 V system were 2.3% for the UT and 7.3% for persistence.
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6. Results and Analysis

This section presents the results of the applicability of the UT method in a VPP.
Comparisons were made with the persistence method, using all system users.

The simulations were sufficient to obtain statistically significant results. The actual
data from the third day were compared with the UT and the persistence to verify the error
of each VPP user.

Table 1 below shows the sum of the third-day forecast errors for each user logged into
the VPP system, compared to actual observed data. The UT data and persistence of the
entire connected VPP system are presented to the VPP aggregator from minute to minute.

The values in Table 1 present a clear comparison of the errors. The predictability gain
that the UT implies in a VPP system is noticeable.

The software performed the prediction using the UT in 3 s for the 24 h horizon.
Therefore, when the UT is executed within the VPP at a one-minute step ahead, the
computational time is much smaller than the desired step, and there is a solution before the
next event, which is considered real forecast time.

A highly variable and unpredictable example that injects a high degree of error into
the VPP is the entry of electric vehicles into the system. With the UT, the error was 25.2%,
and with persistence, the error was 39.3%. Furthermore, for PV2, the UT resulted in a
prediction error of 5.9%, whereas persistence resulted in a prediction error of 11.3%. These
results show that predicting uncertainties using the UT can be beneficial to VPPs with
uncertainties in variable renewable generation and intermittent power demand.

7. Conclusions

This paper presents an innovative methodology for reducing the risks associated with
operation and decision-making in a VPP. The UT method accurately predicts the generation
and demand uncertainties of a VPP.

The UT is an alternative application for this forecasting, presenting a response very
close to the desired response, while presenting a higher computational efficiency compared
to other existing techniques. It has adequate performance for real-time operations and error
reduction compared to the traditional forecasting method. The UT was used to estimate
predictions from the stochastic model of generations and demands of a VPP. The results of
the UT confirmed the expected benefits in terms of performance, the possibility of real-time
applications, and risk-reduction for new business models.

The validation of the method was performed by simulations and comparisons of its
results with actual measurements from a real-world VPP. Compared with the persistence
method, the UT method presented similar accuracy to the actual data, and the smallest
errors for all generators and loads. This proves the applicability and quality of the proposed
methodology. Furthermore, this paper shows the fundamental importance of considering
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and knowing the variability of future generation and demand for a VPP aggregator from
an economic point of view.

An important fact that can be verified is that all simulation models introduce some
kind of intrinsic prediction error. Such error cannot yet be adequately modeled using the
UT. However, future works can be conducted to address this issue. Another direction for
future work includes the integration of energy storage systems.
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