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Abstract: Research activity in the field of combined cooling heating power (or trigeneration) systems
with high renewable energy source (RES) contributions has increased rapidly over the last few years,
in line with the European Union legislation about energy communities. However, technical challenges
arise regarding the synergetic, sustainable and optimal integration of RES in local energy systems.
In the present study, the operation of a trigeneration system located in the student residences of
Democritus University of Thrace in Greece is examined. The system involves a combination of
highly promising renewable and storage technologies, including solar thermal energy and biomass
for heat generation, hot water tanks for thermal energy storage, absorption refrigeration for cooling,
along with Organic Rankine Cycle and photovoltaic systems for electricity generation. System
modeling and simulation have been implemented in Dymola environment with the use of Modelica
equation-based modeling language. The accuracy of the model response has been validated against
available measurements. Specific design and control measures have been proposed, simulated in a
transient fashion and evaluated in terms of (i) RES generation, (ii) solar fraction and (iii) temporal
flexibility. The measures examined, including the placement of a Li-ion battery, resulted in an increase
of 24.6% in the heating demand solar contribution and of 7.9% in the renewable energy generated for
the electricity demand, over the examined periods.

Keywords: combined cooling heating power; renewable energy; energy storage; dynamic simulation;
lithium-ion battery; Dymola; Modelica

1. Introduction

Energy transition is expected to be accelerated, driven primarily by an increase in the
share of renewable energy sources (RES) in the global energy mixture. From a technical
aspect, this is strongly related to developments in the fields of energy storage [1] and
distributed energy resources (DERs) [2], including cogeneration and trigeneration technolo-
gies. In this direction, local energy systems designed to utilize various combinations of
novel energy technologies are of great interest. Special focus is given to their evaluation and
the replicability of the most promising among them. A crucial and challenging prerequisite
to come to meaningful conclusions is the accurate and reliable representation of these
systems through dynamic modeling.

Over the last few years, numerous studies have developed dynamic models of RES-
based local energy systems in order to assess the energy performance of their current
design or proposed alternative scenarios [3]. On top of that, energy management strategies
that enable optimal synergies between interacting energy assets have been proposed and
evaluated [4].
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Systems that incorporate solar thermal energy production and biomass combustion
for heating, domestic hot water (DHW) and cooling, through absorption refrigeration, have
been analyzed through dynamic models [5–7]. In [8–10], the authors investigate the the
performance of combined heat power (CHP) production with integrated Organic Rankine
Cycle (ORC) systems for residential or industrial waste heat recovery applications. More
specifically, dynamic models with the use of the equation-based language Modelica have
been proposed in [11,12]. Research in this field also focuses on applications of solar cooling
and combined cooling, heat and power (CCHP or trigeneration) to increase system energy
efficiency [13–16]. Regarding thermal energy storage (TES) systems, authors in [17,18]
investigated their effect on heating and cooling applications covered by RES.

Furthermore, a considerable amount of research activity is associated with the area of
dynamic simulation of grid-connected or islanded microgrids [19,20]. A research subject of
special interest is also the performance of cooperative photovoltaic (PV) and ORC units,
which is presented in [21–23]. The effect of battery energy storage in decentralized RES
power generation is also studied in recent literature [24,25]. Focus is also given to the
development of proper battery component models with sufficient accuracy, capable to
integrate with the broader system models. In solar applications, the widely approved
method of equivalent electric circuit, first proposed in [26], is the most common choice for
battery modeling [27]. Furthermore, although the effect of battery chemistry on system
performance is an issue of special concern, attention is mainly given to the financial
comparison of the different types [28–31].

This study focuses on the investigation of a LES, in which energy is generated by
solar thermal collectors, a biomass boiler, a PV system and an ORC unit serving the
demand of heating, DHW, cooling and electricity of a student residence building complex
in Xanthi, Greece. For that purpose, a multidomain dynamic system model has been
developed, incorporating detailed submodels of each energy asset. Model development
has been implemented in Modelica language within Dymola software. To strengthen the
profitability gained from the system model, a validation process has been performed, in
which simulation results have been compared against measured data. The validated model
is then used for the evaluation of system performance, the definition of technical barriers
and the comparison of alternative design and operation scenarios. The solutions examined
include energy-saving measures and the replacement of the existing lead–acid battery
system with an equivalent, in terms of energy capacity, lithium-ion which is known for its
higher energy density [32].

The main contributions of this research are:

1. Dynamic modeling of energy system components in Modelica language, in com-
parison with most available open-access studies that use commercial or proprietary
software, including the equivalent circuit model of a nickel manganese cobalt oxide
lithium-ion battery cell.

2. The integration of all components into a system-level model following a unified
multidomain approach, and a subsequent validation procedure against measured
field data.

3. The proposal of seven measures in the thermal grid of the system under study, which
increase the contribution of solar thermal field in the heating and DHW energy supply
from 12.64% to 37.26%, as well as two further measures in the electrical grid that lead
to a 4.9% rise in PV generation.

In a nutshell, the followed methodology results in the evaluation of the proposed
measures as capable to lead to an enhanced system energy performance.

This paper is structured as follows: Section 2 imports the methodology followed
throughout this work. Section 3 provides a description of system configuration and energy
management priorities. All stages of the model development are described in Section 4.
The scenarios under examination are defined in Section 5 and the results are presented in
Section 6. Finally, the conclusions of this work are consolidated in Section 7.
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2. Methodology

The followed methodological framework aims to examine in detail a trigeneration
system through extensive and numerous parametrically studied dynamic simulations. The
analysis aims to enhance system operation in terms of energy efficiency and formulate a
report on best practices among interacting energy vectors.

The process stages of the overall methodology are depicted in Figure 1 in a diagram
form. As the validity of the proposed operation strategies relies on the accuracy of the en-
ergy system representation, a comprehensive validation procedure has been incorporated.
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Figure 1. Model development and evaluation methodology that has been followed.

Methodology consists of three stages. The preliminary stage involves the accurate
definition of the system which will be represented, taking into account all relevant energy
assets, their configuration, the overall topology and the necessary control systems. The
implementation stage follows, where the model development takes place. The first step
includes the development of accurate models for the representation of each individual part
of the complete system setup. In this step, the collection of assets’ design and operating
data plays an important role in model accuracy. Moreover, as already mentioned, the
involvement of multiple power transactions occurs and as a result, the coupling of many
different submodels is required. In the final step of this stage, implementation moves
forward with the model validation against available measured data. This stress test of
the system dynamic model is followed by the evaluation stage. Alternative design and
operation scenarios, based on examined possible measures, are proposed and simulations
are conducted. In the final step, the quantities of RES energy production and their share in
the local energy mixture are compared to arrive at conclusions regarding optimal system
performance. As a result of the methodological framework described, a deep and solid
perspective of system operation is achieved.

3. System Description

The system under study is located in Xanthi, Greece and serves energy demands for
heating, cooling, DHW and electricity of the Democritus University of Thrace local student
residencies. The building complex consists of 8 buildings that include 778 student rooms, an
amphitheater and a restaurant. The present section includes a brief description of the system
configuration and the available assets along with the main energy management strategy.
For a detailed description of the system, the reader is referred to relevant works [33,34].

3.1. Energy Assets Overview

The energy system involves several assets from different energy domains coupled
together and is depicted in Figure 2. The system can be considered as of two main integrated
subsystems, namely the thermal grid which covers the heating and DHW demand of the
8 buildings as well as the cooling demand of the amphitheater, and the electrical grid which
covers partially the loads of a single building. Reference to the two grids is made separately
throughout the manuscript, despite their interconnection through an ORC unit.
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Figure 2. Presentation of the local energy system under study.

The thermal grid can be considered as an application of trigeneration or CCHP, ex-
ploiting solar and biomass as primary energy sources. A TES system that includes hot
water tanks of a total volume of 49 m3 offers significant heat storage capacity, and therefore
temporal flexibility. The heat generated by the system covers the annual heating demand
of most of the residences’ buildings. The average annual thermal energy delivered to the
building complex is approximately 1900 MWh. Moreover, an absorption refrigeration
network covers the cooling demand of an amphitheater for approximately one month
during the summer months. For the operation of the absorption chiller, the average thermal
energy consumption is 45 MWhth/y, 94% of which is delivered by the solar field. With the
provided seasonal coefficient of performance (SCOP) value of 0.57, this is equivalent to a
cooling demand of 25.6 MWc/y. An ORC system of 7 kWe capacity is also integrated into
the same system, receiving heat through the connection with the biomass boiler exit point
and providing electricity to the local electrical grid. The key technical parameters of the
aforementioned assets are listed in Table 1.

The local electrical microgrid includes a PV installation, a lead–acid battery system
and an ORC unit, powered by the thermal grid, that supply the electrical loads of the
common spaces of a single student residences building and an electric bicycle charger
through 4 separate power converters. It should be noted that the ORC system is recently
installed and is not yet operational. Technical specifications of the grid assets are presented
in Table 2. In a previous study of the system, the annual electric load of the system has
been estimated at 8 MWh/y, whereas the annual electricity generation at 73 MWh/y, which
is the 3.2% of the total complex electricity demand [35]. The rest of the demand is served
by a connection with the external grid.
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Table 1. Main parameter values of the thermal grid.

Asset Parameter Value

Solar thermal field

Number of collector modules 720
Type of collector Flat plate

Gross area per module 2.58 m2

Total gross area 1857.6 m2

Surface tilt angle 45◦

Biomass boiler

Nominal thermal power capacity 1.15 MWth
Fuel Pellet

Nominal efficiency 0.87
Buffer tank volume 4.2 m3

Total mass 5000 kg

Absorption chiller
Type Single-effect hot water-fired

Cooling power capacity 316 kWc
Nominal COP 0.78

Cooling tower Power capacity 720.5 kW

ORC system Nominal power output 7 kWe
Nominal thermal power input 102 kW

Hot water tanks
Number of tanks 4

Total capacity 49 m3

Insulation thickness 0.05 m

Table 2. Main parameter values of the electrical grid.

Asset Parameter Value

Photovoltaic system
Panel type Polycrystalline

PV nominal power capacity 51.5 kWp
Number of panels 198

Battery system

Battery cell type Lead–acid
Battery system nominal energy capacity 544.3 kWh

Battery system configuration 24s3p
Battery system nominal voltage 48 V
Battery system nominal capacity 11,340 Ah

Maximum daily allowable Depth of
discharge (DoD) 25%

3.2. Energy Management Overview

In this section, the priorities of energy flows during operation are described, according
to the existing control schemes, design operating conditions and technical limitations of
power generation, storage and conversion assets.

In the thermal grid, solar energy is transferred to a 20% propylene glycol solution,
through four independent sets of flat-plate solar collectors (loops). In each loop, a water
flow is then heated through a plate heat exchanger, flowing to the TES system, which
consists of hot water storage tanks. Hot water reaches the biomass boiler and is afterward
supplied to the building complex heating distribution system or the amphitheater cooling
system during the summer months. If necessary, the water temperature is increased by the
boiler up to 90 ◦C. Otherwise, the boiler may remain turned off. Physical quantities, such
as temperature and pressure, are monitored at different system points, enabling complex
control schemes of pump actuators and three-way valves. These real-time measured data,
that lead to the definition of operating strategies of the energy system, are collected in a
smart-decision hub of the system.

The energy management rules applied to the electrical microgrid, in this study, are
simpler due to its lower complexity. PV inverters ensure that maximum available power is
injected into the microgrid through a maximum power point tracker (MPPT) algorithm [36]
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when the battery is not fully charged. If the power generation exceeds the load demand,
the battery charging process is taking place, while in the opposite condition, the battery
system provides the power deficit between PV generation and load consumption. Battery
daily depth of discharge (DoD) is always kept below its safety limit (defined at 25% for
the specific application by the manufacturer). When DoD approaches this value, ORC
generation is used as a backup power source for the microgrid. This way, battery operation
is extended and therefore energy storage of surplus PV power that otherwise would be
curtailed is enabled. However, ORC’s low efficiency results in an electric power generation
of 7 kWe after the extraction of more than 100 kWth from the thermal grid. As a consequence,
for the consideration of ORC synergetic operation with the thermal and electrical grids,
whether its operation is dependent on solar or biomass energy must be taken into account.
The logic rules described above are depicted in a flow diagram in Figure 3.
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4. Model Development

System models are designed in Dymola software using Modelica, an equation-based
modeling language. One of its basic characteristics is being object oriented and, as such,
it supports bottom-up system design. More specifically, the followed approach builds
larger system models based on the interconnection of individual components. That way,
complex non-linear physical systems can be solved precisely in the time domain, through a
set of differential and algebraic equations. The next few paragraphs present the developed
models and provide important insight into the modeling process.

4.1. Meteorological Data

Prior to model development, the provision of accurate meteorological data must be
secured since they are an essential input to proceed with model simulation. The result of
the validation procedure relies as well on the utilization of weather data for the specific
days under examination. Furthermore, the accuracy of the weather data directly affects the
results of the validation process, an inevitable effect that should be kept in mind during the
evaluation of the results. Thus, for the validation procedure and the scenario evaluation
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stage, SARAH-2.1 [37] datasets have been used, where data are made available through
satellite observations.

4.2. Component Modeling
4.2.1. Solar Collector

A case-specific model has been developed for the entire solar field, which consists of
four loops. Each loop consists of two connected configurations. The first configuration
consists of 4 collectors connected in series and 20 in parallel. Additionally, the second of
5 collectors connected in series and 20 in parallel. The solar collector type is flat-plate and
no shadow effects take place in order to be considered. The modeling equations of the
collector are derived from the literature [38].

More specifically, solar collection efficiency, defined as the ratio of the useful gain over
some specified time period to the incident solar energy over the same time period, and
energy balance can be combined in the equations:

ni =

·
Quseful
Ac · GT

= FR(τα)− FRUL · Ti − Ta

GT
=

·
m · cp · (T o − Ti

)
Ac · GT

, (1)

where the term
·

Quseful represents the useful energy gain in W, Ac is the collectors’ clean area
in m2, GT denotes the solar irradiance on a tilted plane in W/m2, FR denotes the dimen-
sionless heat removal factor, (τα) represents the dimensionless transmittance-absorptance
product of the collector, UL is the collector overall loss coefficient in W/(m2 ◦C), Ti is the
collector fluid entering temperature (in ◦C), Ta is the ambient temperature (in ◦C), m is the
collector mass flow rate (in kg/s), cp is the specific heat of the collector fluid (in J/kgK) and
To is the fluid exit temperature (in ◦C)

The incidence angle modifier is calculated from the equation:

Kτα = 1 + b0 ·
(

1
cos θ

− 1
)2

, (2)

where b0 represents the dimensionless incidence angle modifier coefficient and θ represents
the instantaneous incidence angle.

In order to properly model the complex configuration of the high number of collectors,
in series and parallel, certain modifications have been implemented in the Buildings library
default solar thermal collector model.

4.2.2. Organic Rankine Cycle System

In order to have an increased RES power generation and energy conservation, an ORC
system installation has been deployed. Concerning the operating temperature range of
the available hot water, and in respect of low environmental impact specifications (Low
Ozone Depletion Potential—ODP and Global Warming Potential—GWP), as imposed by
EU legislation [39], R245fa (pentafluoropropane) has been selected as the working fluid.
Technical specifications of the installed ORC system, as provided by the manufacturer, are
described in Table 3.

Table 3. Organic Rankine Cycle: Manufacturer’s specifications.

Technical Specification Value

Working fluid R245fa
Nominal power output 7 kWe

Nominal condenser water inlet/outlet temperature 30/37 ◦C
Nominal evaporator water inlet/outlet temperature 90/75 ◦C

Expander type Single-screw
Displacement volume 47 m3/h

Expansion ratio 2.5
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Thermocycle [40] and ExternalMedia [41], two open-source Modelica libraries focused
on thermodynamic cycles, have been used for the model development. Thermocycle
provides the background to simulate thermodynamic cycles, including ORC. ExternalMedia
includes embedded libraries, such as CoolProp [42] and RefProp [43] with thermodynamic
properties of non-conventional working fluids. The states of the thermodynamic cycle,
used for the simulations, are listed in Table 4.

Table 4. Organic Rankine Cycle: Thermodynamic states used for the model.

Thermodynamic State
Quantity

Pressure [bar] Temperature [◦C] Phase

1 3.05 35 Subcooled liquid
2 7.773 35.6 Subcooled liquid
3 7.7 84 Superheated vapor
4 3.103 62.3 Superheated vapor

The following control mode operation is assumed by the model. ORC generator is
turned on under only certain operating conditions, i.e., whenever battery DoD overcomes
the maximum allowable threshold (25% specification for the specific battery) and when
microgrid net power turns negative, which would otherwise lead to load shedding. The
control block of the model adjusts the variable of the expander filling factor (ff), in order to
control the value of the output variable, which is the generated power, at the desired level.

The model set of equations:

·
mR245fa = ρR245fa · (Tsu) · ff · Vswept, (3)

hex = hsu − (h su − hex,is) · ηis, (4)

Pnet = ηm · ·
mR245fa · (hsu − hex)−Ppump, (5)

where
·

mR245fa is the mass flow rate entering the expander in kg/s, ρR245fa is the fluid
density in kg/m3, Tsu is the superheated vapor temperature in ◦C, Vswept is the swept
volume in m3, hex is the exiting vapor specific enthalpy in J/kg, hsu is the superheated
vapor specific enthalpy in J/kg, hex,is is the isenthalpic exiting vapor specific enthalpy in
J/kg, ηis is the dimensionless isentropic efficiency of the expander, Pnet is the net output
power in W, ηm is the dimensionless electromechanical efficiency and Ppump is the pump
electric consumption in W.

The developed model has been verified against simulation results of ASPEN Plus
Dynamics, specialized software for combustion processes and thermal power plants. A
reference case of an ORC system of 10 kWe has been considered. For the cycle under
examination the refrigerant R134a is the working fluid. The cycle thermodynamic states
are presented in Table 5. To verify the model’s accuracy, the expander output power
value of the two software has been compared and the deviation is below 0.02% (i.e., 2 W).
The simulation results, including all of the system design points compared, are depicted
graphically in Figure 4.

Table 5. Thermodynamic states of the Organic Rankine Cycle (ORC) under examination.

Thermodynamic State
Quantity

Pressure [bar] Temperature [◦C]

1 7 33
2 20 35.6
3 20 77.5
4 10.5 52.2
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4.2.3. Absorption Chiller

Absorption chillers are often utilized for the exploitation of hot water for cooling
purposes. In this application, during the summer months, hot water from the hybrid
system is supplied to the chiller’s generator providing the necessary heat to generate steam
in the absorption cycle. Whenever the TES system water temperature is below the chiller
hot water specification threshold of 65 ◦C, the biomass boiler is turned on. The main
parameters are included in Table 6.

Table 6. Absorption chiller technical specifications.

Parameter Value

Cooling capacity 316 kWc
Nominal COP 0.78

Condenser nominal inlet temperature 29 ◦C
Condenser nominal outlet temperature 36 ◦C
Evaporator nominal inlet temperature 12 ◦C

Evaporator nominal outlet temperature 7 ◦C
Generator nominal inlet temperature 90 ◦C

Generator nominal outlet temperature 80 ◦C
Hot water mass flow rate 10.1 kg/s

Chilled water mass flow rate 15.1 kg/s
Cooling water mass flow rate 25 kg/s

Integration with the upper-level model can be succeeded through three independent
flow networks, i.e., hot water, cooling tower water and chilled water. Based on the chiller
and cooling tower datasheets, a polynomial fit approach has been followed to calculate the
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heat flows of the evaporator, condenser, generator and absorber depending on each flow’s
input temperature and part-load ratio. The second order polynomial functions used are:

Cgen(Tcon,ent) = a1 + a2 · Tcon,ent + a3 · Tcon,ent
2, (6)

Cw.pump(PLR) = b1 + b2 · PLR + b3 · PLR2, (7)

where Tcon,ent is the water entering temperature from the cooling tower in ◦C, Cgen(Tcon,ent)
is the dimensionless generator heat input modifier with dependence on Tcon,ent, PLR is the
dimensionless part-load ratio, Cw.pump(PLR) is the dimensionless pump electric input ratio
with dependence on PLR and a1, a2, a3, b1 b2, b3 are the extracted polynomial coefficients.

The equation set for the calculations of chiller energy transactions is:

·
Qevap,set =

·
mchilled,water· (h (Tset)− h(Tin)), (8)

·
Qevap = min

( ·
Qevap,set,

·
Qevap,nominal

)
, (9)

PLR = min

 ·
Qevap,set

·
Qevap

, 1

, (10)

P = Cw,pump · Pnominal, (11)

HIR = COPnominal · PLR, (12)
·

Qgen = HIR · Cgen(T con,ent) ·
·

Qevap,nominal, (13)

·
Qcon +

·
Qabs =

·
Qgen + P +

·
Qevap,nominal, (14)

where
·

Qevap,set is the necessary heat flow rate to reach the chilled water temperature

setpoint in W,
·

mchilled,water is the mass flow rate of the chilled water in kg/s, h is the specific
enthalpy of the chilled water in J/kg, Tset is the temperature setpoint of the chilled water

in ◦C, Tin is the inlet temperature of the chilled water in ◦C,
·

Qevap is the heat flow rate at

the evaporator in W,
·

Qevap,nominal is the nominal heat flow rate at the evaporator in W, P is
the pump power in W, Pnominal is the nominal pump power in W, HIR is the dimensionless

heat input ratio, COPnominal is the dimensionless nominal coefficient of performance,
·

Qgen

is the heat flow rate at the generator in W,
·

Qcon is the heat flow rate at the condenser in W

and
·

Qabs is the heat flow rate at the absorber in W.
The model uses performance curves equivalent to the reliable EnergyPlus model

(Chiller:Absorption:Indirect). Certain adjustments have been made, only focusing on the
interconnection capability with the hot water stream from the biomass boiler, so that the
amount of heat removal is accurately calculated considering chiller dynamic effects.

4.2.4. Lead–Acid Battery Cell

To proceed with the representation of the battery system, a dynamic model of the
battery cell has been developed. This way, accurate predictions of battery pack terminal
voltage, SoC and temperature are provided by the simulation, enabling operation in
compliance with battery health and safety protocols.

The electrical model is based on the widely used equivalent circuit model (ECM)
method, which has been described thoroughly in [26,44]. Each manufacturer-specific
battery cell type differs in terms of operating conditions as a result of its own chemistry
properties; thus, it has a unique set of parameters and needs special handling in the
modeling process. Because of this, battery cell models need to be specialized for the specific
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battery type. The existing battery system consists of flooded type tubular-plated lead–acid
batteries known as OPzS, whilst the one considered as a possible replacement in the case
under examination consists of lithium-ion battery cells; therefore, two different models
have been developed. First, the model developed for the OPzS battery cell is presented.

As no experimental data were available, the modeling technique that has been followed
is datasheet based and is based on a methodology described in [45], to obtain a valid and
accurate model for the specific application. An ECM of the proposed topology, shown
in Figure 5, is considered to capture the transient response of complex internal chemical
processes. The circuit elements are introduced as parameters with values derived from
mathematical expressions obtained by curve-fitting or one-dimensional look-up tables.
Circuit parameters are considered to only be dependent on SoC and current values over
time. This way, for a known input time series of power (and therefore current) values
the battery SoC and terminal voltage response are given as outputs as time evolves. A
simplification has been made assuming the same values of polarization resistance have
been used for both charging and discharging processes. Since, as described in Section 3.1,
each battery pack consists of three parallel strings of 24 cells in series, proper scaling
transformations are implemented to represent the battery pack configuration.
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Figure 5. Equivalent circuit topology of the model used for lead–acid battery cell.

The extracted equations for the calculation of OPzS parameter values during battery
operation are:

SoC(t) = SoC(t0)−
1

Cbat

∫
I(t)dt, (15)

OCV = 0.125 · SoC + 1.955, (16)

Rbd = 0.0017 · e−5.108·SoC (17)

where Cbat is the cell capacity, I is the cell current, OCV denotes the open circuit voltage
and Rbd is the part of polarization resistance that depends on the SoC.

The extracted one-dimensional look-up tables for the calculation of parameter values
are presented in Figure 6.
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4.2.5. Lithium-Ion Battery Cell

For the Li-ion battery cell modeling, the model topology and the parameter estimation
techniques implemented are described in detail in [46,47]. The model focuses on accurately
calculating the terminal voltage and SoC of each cell of the battery system configuration,
based on the instantaneous power extracted to (discharging) or received by (charging) the
connected electrical grid. Battery voltage response evolves with a nonlinear behavior when
electric charge is transferred through battery terminals, and this is due to complex electro-
chemical phenomena (polarization–diffusion, double layer). These transient phenomena,
related to the nonlinearity of voltage response, are captured by a number nRC of parallel
resistor–capacitor (RC) branches. This number is decided by the specific battery application,
required accuracy and available computational resources. A resistance connected in series
(R0) represents the instantaneous voltage drop, while open-circuit voltage (OCV or Em)
reflects the available internal energy. All of the above model parameters are dependent on
SoC, temperature and current and therefore their values are extracted for varying external
conditions from look-up tables made available from specified test measurements.

The current study focuses on a solar off-grid battery application and, therefore, the
number of parallel RC branches is decided to be 1, since adequate accuracy is secured
for the expected current dynamic response. On top of that, model efficiency in terms of
computational complexity decreases significantly. The topology of the model with a single
RC branch is depicted in Figure 7.
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Figure 7. The equivalent circuit model with a single RC branch used for this study.

The cell model developed originally in Modelica is graphically shown in Figure 8.
The developed battery pack model supports the automated integration of any possible
cell configuration. For nRC = 1, the model uses Equation (15) for SoC estimation and the
following set of equations:

IC1 = C1 ·
dV1

dt
, (18)

I = IC1+I1 = C1 ·
dV1

dt
+

V1

R1
, (19)

Vterminal = OCV − V1−I · R0 (20)
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·
Qlosses = I2 · (R 0+R1) = mcp

dT
dt

(21)

where m and cp are the battery cell mass in kg and specific heat in J/(kg·K), respectively.
Modeling of battery cell capacity dependency on temperature is given in Table 7.
To proceed with the parameter estimation stage, data from pulsed current discharge

test at specific SoC breakpoints are necessary, following a constant current–constant voltage
(CC-CV) full charging process. For this study, data made available in [48] for a 18650 NMC
battery cell have been used. Due to battery cell chemistry variations, each parameter set
is actually the specific battery fingerprint and determines the model accuracy. For the im-
plementation of the parameter estimation stage, MATLAB Simulink Design Optimization
toolbox is utilized. The procedure is repeated in three different temperatures, enabling
model dependency on thermal operating conditions and, thus, leading to accurate adjust-
ments of critical quantities, such as available capacity or maximum allowed current. The
results of the extracted parameters are presented in Figure 9. The percentage values of the
sum squared error (SSE) as a percentage of cell nominal voltage are listed in Table 8.
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Table 7. Battery cell capacity dependency on temperature for discharge and charge processes.

Discharge

Temperature −10 ◦C 0 ◦C 25 ◦C 60 ◦C
Relative capacity 75% 80% 100% 100%

Charge

Temperature 0 ◦C 5 ◦C 25 ◦C 45 ◦C
Relative capacity 80% 90% 100% 95%

Table 8. Li-ion battery parameter estimation results. Sum squared error for measurements conducted
in three different temperatures.

Temperature Sum Squared Error (mV)

0 ◦C 125.2
25 ◦C 359.6
45 ◦C 45.2
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4.2.6. Power Converters

Power converters (inverters) are used for the connection of PV, ORC and battery
systems with the AC side of the local microgrid. Custom exclusive models have been
developed, where the quasi-stationary theory described in [49] has been followed for the
AC side. AC signals are expressed as phasors with the use of Modelica Standard Library
components. Since the grid is in islanded mode, each inverter plays a different role and
this must be taken into account by the model. The battery inverter acts as a voltage-
source control (V-f inverter) and PV and ORC inverters act as a current-source control
(P-Q inverter).

4.3. System Modeling
4.3.1. Thermal Grid

The developed system model of the thermal grid is presented in Figure 10. As can be
seen, each solar loop has its own pump actuator block. This block ensures that the mass
flow rate becomes zero in the case of negligible useful solar energy or collector temperature
below 25 ◦C, in order to minimize heat losses to the environment. The collected energy is
transferred in each solar field loop from the heated water-glycol solution to the water circuit,
through a heat exchanger. Moreover, control blocks are used to decide the tank charge
and discharge strategy, based on system temperatures and load conditions. The biomass
boiler is used as a backup heating unit, to provide a high enough temperature for the
distribution system, when needed. The terminal units, as well as the absorption chiller and
the ORC system, remove an amount of thermal energy from the circulating water, which is
calculated from each subsystem load demand. Additionally, the weather data are used to
compute all the necessary external conditions that are used as inputs for each component
model. The heating system covers the demand of eight buildings for the entire winter
period (October to April) while cooling demand refers only to approximately one month
of operation of the amphitheater during summer. Electricity generation through the ORC
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system covers a relatively low load (common loads of a single building) supplementarily
to the existing PV system.
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4.3.2. Electrical Grid

The dynamic model developed for the Kimmeria islanded power supply system is
presented in Figure 11. The increased complexity of such a group of equations increases
the simulation run time significantly. System response yields from a phasor analysis that
was implemented in the 3-phase AC branch between power generation and load. On top
of that, a simple operation control algorithm has been developed focusing on the proper
charging and discharging process of the battery. The algorithm ensures operation within
the specified safety limits of voltage (between 1.9 V and 2.1 V per cell) and maximum daily
DoD (below 25%) as described by the manufacturer. The energy management priorities
are explained in more detail in Section 3.2. For the PV control system, a necessary MPPT
algorithm has been utilized. ORC operates as a backup generator to ensure the safe
operation of the battery system.
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4.4. Model Validation
4.4.1. Thermal Grid

To validate the thermal grid model, simulation results have been compared against
available measurements of the energy generated by the hybrid system of the solar field
and the biomass boiler. The time period selected for the validation process is the first
30 days of October 2019, where measured data are available. Since weather data from
the period under examination are not available, data from SARAH-2.1 have been used
as input, which is a key aspect of the validation process. Hence, deviation from actual
temperature and irradiation values can arise as an obstacle on certain days, affecting the
accuracy of the simulation results. To overcome the effect of daily value deviations on the
result, the amounts of energy produced over the entire month are compared. Measured
heating load demand time series from the period under examination is also used as input
for the developed model.

In Figure 12, simulation results of energy produced by the solar field are compared
against the measured values. The maximum daily error reaches 1.3 MWh on day 7. The total
energy produced by the solar field over the 30 days of October is estimated at 47.8 MWh.
The absolute estimation error is 2.2 MWh (or 4.4%). This deviation could be explained by
the weather input data used, since data extracted from the satellite observations might
deviate from the actual conditions and lead to an underestimation of the available solar
irradiance, mainly between days 5 and 12.
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Figure 12. Thermal grid validation against solar energy generation measurements.

In Figure 13, simulation results of the energy produced by the entire hybrid (so-
lar/biomass) system are compared against the measured values. Again, the curves repre-
sent the evolution of aggregated daily energy values. The total energy production from
1 October until 30 October is estimated at 63 MWh and the estimation error is 3.3 MWh
(or 5.0%), whereas the maximum daily error reaches 2.4 MWh on day 27. Deviations,
in this case, can also be explained by a possible inconsistency between actual and used
weather data.
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Figure 13. Thermal grid validation. Simulation results against total energy generation measurements.

It should be highlighted that the available measurements have been received by heat
meters installed in specific system points, resulting in the necessity of certain clarifications
about the conducted comparisons. More specifically, heat meters measuring the generated
solar thermal energy are installed in the solar field entry and exit points. This means that
heat losses due to the heat distribution grid (piping length is 150 m) are neglected. On
the other hand, regarding hybrid system measurements, since heat meters are installed
in the entry and exit point of the system as well, heat losses to the environment are taken
into account.

4.4.2. Electrical Grid

The validation process of the electrical grid draws on the same approach as in
Section 4.4.1, leading to a comparison between measured data and simulation results
of the energy generated by the PV installation. In this case, the period examined is June
2020, whereas the weather data are also obtained by SARAH-2.1 and the load demand time
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series is received from measurement equipment. It should be highlighted that the ORC
system has been recently installed and no measured data are available. Therefore, it could
not be included in the validation. As can be seen in Figure 14, the results show a good
match with the corresponding measurements on certain days. However, a deviation for
the rest of the days is imported by the inconsistency between the used weather data and
the actual conditions, as can be observed. The maximum deviation is 52.7 kWh on day 30,
whereas the total estimation error in energy generation is 387 kWh (9.67%).
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5. Scenarios Definition
5.1. Thermal Grid

Certain measures have been examined for the enhancement of system energy per-
formance and are listed in Table 9. The model has been simulated iteratively, changing
certain design parameters and the solar fraction (f) value has been calculated and used
as an evaluation index. A common simulation period has been selected to conduct the
iterations, namely from 1 October until 8 October.

Table 9. Comparison of proposed measures based on simulation results.

Measure System Point Action

Reference case Default design condition None
#1 Secondary pump control system Change actuation condition
#2 Primary and secondary pumps Change mass flow rates
#3 Biomass boiler Change limits in hysteresis control (Ton/Toff)
#4 Load demand Decrease peak value (smoother load)
#5 Load demand Decrease total load by 10% (passive measures)
#6 Piping system Decrease heat losses (insulation)
#7 Hot water tanks Increase storage volume
#8 Overall system Combination of all

To evaluate solar contribution in terms of energy performance, the widely used in-
dex of solar fraction f is introduced, which is equivalent to the cumulative solar energy
contribution to the total load demand over an entire period. Solar fraction f is defined as:

f =
Esolar
Eload

= 1 − Ebiomass
Eload

, (22)

where Esolar is the total generated solar energy over the entire period, Eload is the total
energy demand over the entire period and Ebiomass is the total biomass energy consumption
over the entire period.
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Measure #1 deals with the optimal temperature difference between collectors and
TES for actuating circulating pumps. The current control system actuates the pumps of
the secondary circuit when the temperature difference between the solar collector and
the second tank exceeds the value of 7 ◦C (∆Ton). Additionally, the pumps are turned off
whenever this value becomes below 4 ◦C (∆Toff). As stated by [38], for optimal solar energy
exploitation this value must be set in order to meet the constraint of the equation below.

∆Toff ≤ Ac × FR × UL

ε× m × Cp
× ∆Ton, (23)

where ε is the effectiveness of the solar field heat exchanger.
For the system under study, this leads to:

∆Ton

∆Toff
≥ 3.42, (24)

Thus, after solving the model iteratively, the optimal f value is found to be maximum
for ∆Ton equal to 1.7 ◦C and ∆Toff equal to 0.5 ◦C. It is assumed that the controller is
sensitive to temperature differences of 0.5 ◦C and, thus, oscillations are avoided.

Measure #2 deals with the mass flow rates of the primary and secondary circuit pumps.
These pumps are controlled with ON/OFF logic, so adjusting their amplitude is critical to
system energy transactions. After an iterative process, the values obtained are 15,000 kg/h
for the primary circuit pump and 6000 kg/h for the secondary circuit pump.

Measure #3 is related to the biomass boiler actuation condition. The boiler controller
is based on ON/OFF logic and may lead to undesired oscillations, which result in increased
biomass fuel consumption. The nominal setpoint values are 80 ◦C for turning on (low
value) and 90 ◦C for turning off (high value). High values of these temperatures along with
low increment between them, result in more frequent actuation of the boiler and therefore
increase consumption. Based on the allowed operating conditions by the specifications
of the installed radiators, supply and return temperatures can be set to 70 ◦C and 55 ◦C,
respectively. This set of temperature values has been examined in this case. However,
this measure cannot be considered reproducible, since radiator design temperatures are
rarely adjustable.

Measure #4 includes the consideration of a smoother load profile over the day by
decreasing the peak value and increasing load values over the rest of the day.

Measure #5 proposes the use of the existing load time series multiplied by a 90% factor,
assuming that energy saving is achieved in the building complex. This measure implies the
exploitation of passive building design interventions.

Measure #6 focuses on reducing the heat losses by increasing the insulation of the sec-
ondary circuit piping system. Existing piping system insulation material heat conductivity
is 0.04 W/m·K, while the solution of a material with a value of 0.035 W/m·K is evaluated.

Measure #7 accounts for an increase in the TES system volume by 5 m3, reaching a
total value of 54 m3.

Finally, a combination of all proposed measures is considered (Measure #8).

5.2. Electrical Grid

For the electrical grid, two measures have been selected and evaluated in comparison
with the existing system (reference case). All of the cases under examination refer to the
same time period of 15 days with a power load curve based on the data measured in June
2020 and already used for the validation in Section 4.4.2 and the same initial condition of
SoC (95%).

In the reference case, the PV installation of 51.5 kWp covers the power demand of the
common spaces of a single building and an electric bicycle charging station. Since there
is no backup power generator, if the battery DoD exceeds the maximum DoD (25%), a
load-shedding option is actuated and the load is covered at 50% of the demand.
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Measure #1 refers to the integration of the ORC system into the local energy system
operation. As already mentioned, the 7 kWe of the ORC system is expected to be added to
the power generation capacity of the PV system. The proposed control strategy for ORC is
to inject power when battery daily DoD exceeds 25% and remains on until SoC exceeds the
value of 80%.

Measure #2 deals with the possible benefits’ replacement of the current battery system
with a Li-ion battery energy storage system of equivalent capacity. Since the battery cell
model developed is specifically oriented for the Panasonic NMC 18650 cell, a battery pack
with equivalent nominal capacity and voltage, and therefore energy capacity, needs to be
considered, as reported in Table 10. To satisfy this constraint, a 13s5670p configuration has
been selected for the Li-ion battery pack examined for replacement. Additionally, based on
the literature, the value of maximum DoD is set to 80% [50], making this battery technology
more appropriate for applications where deep cycling is performed. The voltage upper and
lower thresholds of each cell are 4.2 V and 3.5 V, respectively.

Table 10. Current and proposed battery system specifications.

Battery System Current Proposed

Cell chemistry/technology OPzS lead–acid NMC lithium-ion
Cell nominal capacity 3780 Ah 2 Ah
Cell nominal voltage 2 V 3.6 V

Battery pack configuration 24s3p 13s5670p
Battery pack nominal capacity 11,340 Ah 11,340 Ah
Battery pack nominal voltage 48 V 46.8 V

Battery pack nominal energy capacity 544.3 kWh 530.7 kWh
Maximum daily DoD 25% (manufacturer) 80%

Maximum cut-off voltage per cell 3.85 V 3.5 V
Minimum cut-off voltage per cell 4.1 V 4.2 V

6. Results and Discussion
6.1. Thermal Grid

The calculated values of f for each case under examination are listed in Table 11, along
with the total biomass energy consumption. Therefore, they represent two cumulative
positive values over the entire period under examination.

Table 11. Solar fraction (f) and biomass energy consumption values for each case under examination.

Case Examined Solar
Fraction

Solar Fraction
Increase

Biomass Energy
Consumption

(MWh)

Reduction in
Biomass Energy

Consumption (%)

Existing system 12.64% - 70.1 -
Measure #1 14.32% 1.68% 68.8 1.85%
Measure #2 12.93% 0.29% 69.9 0.29%
Measure #3 28.70% 16.06% 57.2 18.40%
Measure #4 13.62% 0.98% 68.9 1.71%
Measure #5 14.80% 2.16% 51.3 26.82%
Measure #6 12.81% 0.17% 69.9 0.29%
Measure #7 14.21% 1.57% 68.8 1.85%
Measure #8 37.26% 24.62% 43.8 37.52%

Combining all of the proposed measures (Measure #8) leads to an increase in the
f value from 12.64% to 37.26%. The largest effect is noticed by applying measure #3
(+28.70%), which is related to boiler temperature control. This is reasonable since keeping
the water temperature at lower levels results in a lower enthalpy increase and therefore fuel
consumption. Additionally, through Measure #5, where a smoother load profile is applied,
a significant increase of 2.16% is achieved due to the load reduction and the consequent
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biomass consumption. Furthermore, as expected, increasing TES storage volume imports
temporal flexibility to the system and leads to reduced energy consumption by the boiler.
Lastly, Measure #1 has a positive effect on the f value, applying a control rule that ensures
the minimization of heat losses.

6.2. Electrical Grid

The corresponding results for each of the electrical grid measures under examination
are presented in Figure 15. Figure 15a depicts that in the reference case, the power demand
is reduced in comparison with Measures #1 and #2 whenever the battery reaches its lower
SoC limit, leading to load shedding. Lithium-ion battery, according to Measure #2, operates
within a larger SoC window as can be seen in Figure 15d, which is also translated to higher
values of battery income and outcome power in Figure 15b. This results in a reduction
in PV curtailment as well. Figure 15e,f demonstrate that the PV power generation in the
reference case and Measure #1, is interrupted earlier than in #2. This is due to control
actions that secure that the condition of lead–acid battery maximum DoD is not violated.
Figure 15c shows the ORC power injected for Measure #1 case, which explains the more
narrow SoC operating range. It can also be observed that ORC is not delivering power
to the load demand, since the Li-ion battery DoD does not exceed the maximum allowed
value of 80%.
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demand, (b) injected battery power, (c) ORC power, (d) battery SoC, (e) PV power and (f) PV power
between days 9 and 11 in detail.

Figure 16 shows the daily evolution of the energy injected into the grid by (a) the ORC
and (b) the PV systems. Regarding battery discharge energy, depicted in Figure 17, a higher
value is observed for Measure #2 on almost all the days. This is strongly related to the fact
that Li-ion batteries are preferred for deep-cycling applications. Additionally, as already
mentioned above, since no PV curtailment takes place, the amount of energy generated by
the PV is larger. ORC is only turned on in Measure #1, since, as already mentioned, the
Li-ion battery is able to cover the demand in the absence of PV generation. An interesting
result is that on days 4, 8 and 10, more PV energy is produced in the reference case than
in Measure #1. This is strongly related to the energy provided by the ORC system in
Measure #1 these days.
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Figure 17. Daily energy amount injected for each proposed measure by the battery system.

The amount of the total energy generated and the discharge energy injected by the
battery are presented in Figure 18a,b, respectively, for each measure examined. As men-
tioned in the results of daily energy production, even though in Measure #1 PV energy is
slightly less than in the reference case, the energy generated by the ORC increases the total
renewable energy generation by 9.04%. Moreover, even though the total energy generated
in Measure #2 is increased by 4.53% in comparison with the reference case, it is lower
than in Measure #1. This can be explained by the microgrid energy management strategy
considered, where ORC is only turned on when the battery SoC reaches its lower limit,
acting as a backup generator. Therefore, the strategy does not focus on the maximization of
ORC energy. Furthermore, the added ORC energy amount is not necessarily an advantage
of Measure #1 against Measure #2, since biomass fuel consumption increases and must be
taken into account.
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7. Conclusions

A local energy system that incorporates solar thermal, biomass, PV, ORC and absorption
refrigeration subsystems is examined in this study with the utilization of dynamic simulations.
System representation is grounded on the mathematical modeling of each component.

State-of-the-art models have been exploited. Special focus has been given to the
development of a single RC branch equivalent circuit model of an NMC Li-ion battery cell.
The maximum sum squared error in the parameter estimation stage is limited to 359.6 mV.
The model has been developed in Modelica language.

Validation of the thermal grid model has led to relative estimation errors of 4.4% for
the solar generation and 5% for the total generation. Regarding the electrical grid, the
relative estimation error of the PV generation is 9.67%.

The solar fraction f over a week in October has been studied under different scenarios
defined by a proposed design and operating measures. Alternative measures showed
great potential in f increase. Alteration in the biomass boiler operating temperature has
led to a 16.06% rise in the value of f, whilst increasing thermal storage capacity and load
smoothening led to a 1.57% and 2.16% rise, respectively. Applying a proposed control
measure led to a 1.68% increase as well. Results showed that the combination of all
measures led to a value of 37.26%.

The electrical grid operation over 15 days in June was also examined for different
applied measures to study the effect of the installation of an ORC system (Measure #1)
and a possible battery replacement (Measure #2). According to Measure #1, renewable
energy generation was increased by 9.04% and for Measure #2 by 4.53%. However, ORC
operation is not without constraints, since low solar fraction values lead to raised biomass
fuel consumption. The Li-ion battery system examined as Measure #2 was found to be able
to inject to the grid energy amounts of 4.11 times its energy capacity over the period under
examination, while the corresponding value for the existing lead–acid battery system was
lower (3.61). The larger contribution of the Li-ion battery system is mainly due to its larger
value of maximum DoD.
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These results are beneficial in multiple aspects. Practically, the application of the
evaluated measures can lead to system performance enhancement with increased energy
savings, energy efficiency and RES contribution. Additionally, economic benefits arise
from the decrease in biomass fuel consumption. Furthermore, the efficient operation of the
local electrical grid is a prerequisite for enabling financial schemes such as local energy
communities (LECs). From a social perspective, results have shown that RES-based energy
systems can support the supply of heating, cooling and electricity demand in public non-
profit buildings, such as the student residences examined. From a technological point
of view, the accurate computer-aided representation of an energy system with multiple
cooperating energy vectors powered by RES enables two capabilities. First, to further
examine alternative design and operation conditions for the current system. Moreover, to
explore the utilization of the developed component models for the dynamic modeling of
other energy systems.

Future work could draw on the developed models in order to enhance overall accuracy
in system representation. The exploitation of measurements at different system points
for the segmental validation of system components could lead to the retuning of model
parameters in order to achieve enhanced accuracy. Moreover, the input of accurate weather
data can strengthen the validation process. On top of that, the option of energy management
strategies based on sophisticated control techniques for real-time simulations will be
enabled, which will further lead to optimized system performance.
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Nomenclature

COP Coefficient of Performance
CCHP Combined Cooling, Heat and Power
CHP Combined Heat and Power
DERs Distributed Energy Resources
DHW Domestic Hot Water
DoD Depth of Discharge
ECM Equivalent Circuit Model
GWP Global Warming Potential
LECs Local Energy Communities
MPPT Maximum Power Point Tracker
OCV Open-circuit Voltage
ODP Ozone Depletion Potential
OPzS Ortsfest (stationary) PanZerplatte (tubular plate) Flüssig (flooded)
ORC Organic Rankine Cycle
PLR Part-load Ratio
RES Renewable Energy Sources
SoC State of Charge
TES Thermal Energy Storage
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22. Ungureşan, P.; Petreuş, D.; Pocola, A.; Bălan, M. Potential of Solar ORC and PV Systems to Provide Electricity under Romanian
Climatic Conditions. Energy Procedia 2016, 85, 584–593. [CrossRef]

23. Tourkov, K.; Schaefer, L. Performance Evaluation of a PVT/ORC (Photovoltaic Thermal/Organic Rankine Cycle) System with
Optimization of the ORC and Evaluation of Several PV (Photovoltaic) Materials. Energy 2015, 82, 839–849. [CrossRef]

24. Sarita, K.; Devarapalli, R.; Rai, P. Modeling and Control of Dynamic Battery Storage System Used in Hybrid Grid. Energy Storage
2020, 2, e146. [CrossRef]

25. Jufri, F.H.; Aryani, D.R.; Garniwa, I.; Sudiarto, B. Optimal Battery Energy Storage Dispatch Strategy for Small-Scale Isolated
Hybrid Renewable Energy System with Different Load Profile Patterns. Energies 2021, 14, 3139. [CrossRef]

26. Chen, M.; Rincon-Mora, G.A. Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance. IEEE Trans.
Energy Convers. 2006, 21, 504–511. [CrossRef]

27. Tamilselvi, S.; Gunasundari, S.; Karuppiah, N.; Razak RK, A.; Madhusudan, S.; Nagarajan, V.M.; Sathish, T.; Shamim, M.Z.M.;
Saleel, C.A.; Afzal, A. A Review on Battery Modelling Techniques. Sustainability 2021, 13, 10042. [CrossRef]

http://doi.org/10.1002/est2.135
http://doi.org/10.1016/j.rser.2021.112018
http://doi.org/10.3390/pr6120238
http://doi.org/10.3390/en14175459
http://doi.org/10.1016/j.renene.2020.11.126
http://doi.org/10.1016/j.est.2021.102870
http://doi.org/10.3390/en13215846
http://doi.org/10.12962/j25481479.v4i3.5714
http://doi.org/10.1115/1.4023120
http://doi.org/10.1016/j.renene.2020.01.088
http://doi.org/10.1016/j.jobe.2021.102482
http://doi.org/10.1016/j.energy.2012.10.008
http://doi.org/10.3390/en9121013
http://doi.org/10.2298/TSCI200409286D
http://doi.org/10.1016/j.apenergy.2018.04.029
http://doi.org/10.3384/ecp2016918
http://doi.org/10.1002/er.4615
http://doi.org/10.1016/j.egypro.2015.12.248
http://doi.org/10.1016/j.energy.2015.01.094
http://doi.org/10.1002/est2.146
http://doi.org/10.3390/en14113139
http://doi.org/10.1109/TEC.2006.874229
http://doi.org/10.3390/su131810042


Energies 2022, 15, 3688 27 of 27

28. Kebede, A.A.; Coosemans, T.; Messagie, M.; Jemal, T.; Behabtu, H.A.; Van Mierlo, J.; Berecibar, M. Techno-Economic Analysis of
Lithium-Ion and Lead-Acid Batteries in Stationary Energy Storage Application. J. Energy Storage 2021, 40, 102748. [CrossRef]

29. Paul Ayeng’o, S.; Schirmer, T.; Kairies, K.-P.; Axelsen, H.; Uwe Sauer, D. Comparison of Off-Grid Power Supply Systems Using
Lead-Acid and Lithium-Ion Batteries. Sol. Energy 2018, 162, 140–152. [CrossRef]

30. Ayuso, P.; Beltran, H.; Segarra-Tamarit, J.; Pérez, E. Optimized Profitability of LFP and NMC Li-Ion Batteries in Residential PV
Applications. Math. Comput. Simul. 2021, 183, 97–115. [CrossRef]

31. Marshall, P.G.; Wongpanyo, W.; Sittisun, P.; Rakwichian, W.; Thanarak, P.; Vichanpol, B. Comparison of Energy Storage
Technologies for a Notional, Isolated Community Microgrid. J. Renew. Energy Smart Grid Technol. 2020, 15, 14.

32. Beltran, H.; Ayuso, P.; Pérez, E. Lifetime Expectancy of Li-Ion Batteries Used for Residential Solar Storage. Energies 2020, 13, 568.
[CrossRef]

33. Botsaris, P.N.; Lymperopoulos, K.; Pechtelidis, A. Preliminary Evaluation of Operational Results of RES Systems Integrated in
Students’ Residences in Xanthi, Greece. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012048. [CrossRef]

34. Papatsounis, A.G.; Botsaris, P.N.; Lymperopoulos, K.A.; Rotas, R.; Kanellia, Z.; Iliadis, P.; Nikolopoulos, N. Operation Assessment
of a Hybrid Solar-Biomass Energy System with Absorption Refrigeration Scenarios. Energy Sources Part A Recovery Util. Environ.
Eff. 2022, 44, 700–717. [CrossRef]

35. Botsaris, P.N.; Lymperopoulos, K.A.; Giourka, P.; Bekakos, P.; Pistofidis, P.; Pecthelidis, A. Integration of Renewable Energy
Technologies in Student Residences of Xanthi and Results of Project REUNI; Solar Energy Institute: Thessaloniki, Greece, 2018.

36. Brkic, J.; Ceran, M.; Elmoghazy, M.; Kavlak, R.; Haumer, A.; Kral, C. Open Source PhotoVoltaics Library for Systemic Investigations.
In Proceedings of the 13th International Modelica Conference, Regensburg, Germany, 4–6 March 2019; pp. 41–50.

37. Pfeifroth, U.; Kothe, S.; Trentmann, J.; Hollmann, R.; Fuchs, P.; Kaiser, J.; Werscheck, M. Surface Radiation Data Set—Heliosat
(SARAH)—Edition 2.1, Satellite Application Facility on Climate Monitoring. 2019. Available online: https://wui.cmsaf.eu/
safira/action/viewDoiDetails?acronym=SARAH_V002_01 (accessed on 15 May 2022).

38. Duffie (Deceased), J.A.; Beckman, W.A.; Blair, N. Solar Engineering of Thermal Processes, Photovoltaics and Wind, 1st ed.; Wiley:
Hoboken, NJ, USA, 2020; ISBN 978-1-119-54028-1.

39. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse
Gases and Repealing Regulation (EC) No 842/2006Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32014R0517&from=EN (accessed on 1 January 2022).

40. Quoilin, S.; Desideri, A.; Wronski, J.; Bell, I.; Lemort, V. ThermoCycle: A Modelica Library for the Simulation of Thermodynamic
Systems. In Proceedings of the 10th International Modelica Conference, Lund, Sweden, 10–12 March 2014; Linköping University
Electronic Press: Lund, Sweden, 2014; pp. 683–692.

41. Casella, F.; Richter, C. ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica. In Proceedings of
the 6th International Modelica Conference, Bielefeld, Germany, 3 March 2008; pp. 157–161.

42. Bell, I.H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-
Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. [CrossRef] [PubMed]

43. Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and
Transport Properties-REFPROP, Version 10.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018.

44. Plett, G.L. Battery Management Systems, Volume 2: Equivalent-Circuit Methods; Artech House Power Engineering and Power
Electronics; Artech House: Boston, MA, USA, 2016; ISBN 978-1-63081-027-6.

45. Jantharamin, N.; Zhang, L. A New Dynamic Model for Lead-Acid Batteries. In Proceedings of the 4th IET International Conference
on Power Electronics, Machines and Drives (PEMD 2008), York, UK, 2–4 April 2008; IEE: York, UK, 2008; pp. 86–90.

46. Ceraolo, M. New Dynamical Models of Lead-Acid Batteries. IEEE Trans. Power Syst. 2000, 15, 1184–1190. [CrossRef]
47. Huria, T.; Ceraolo, M.; Gazzarri, J.; Jackey, R. High Fidelity Electrical Model with Thermal Dependence for Characterization

and Simulation of High Power Lithium Battery Cells. In Proceedings of the 2012 IEEE International Electric Vehicle Conference,
Greenville, SC, USA, 4–8 March 2012; IEEE: Greenville, SC, USA, 2012; pp. 1–8.

48. Zheng, F.; Xing, Y.; Jiang, J.; Sun, B.; Kim, J.; Pecht, M. Influence of Different Open Circuit Voltage Tests on State of Charge Online
Estimation for Lithium-Ion Batteries. Appl. Energy 2016, 183, 513–525. [CrossRef]

49. Dorf, E.R.C. Electrical Engineering Handbook; CRC Press LLC: Boca Raton, FL, USA, 2000; ISBN 978-0-8493-1586-2.
50. Podder, S.; Khan, M.Z.R. Comparison of Lead Acid and Li-Ion Battery in Solar Home System of Bangladesh. In Proceedings

of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Piscataway, NJ, USA, 13–14 May 2016;
pp. 434–438.

http://doi.org/10.1016/j.est.2021.102748
http://doi.org/10.1016/j.solener.2017.12.049
http://doi.org/10.1016/j.matcom.2020.02.011
http://doi.org/10.3390/en13030568
http://doi.org/10.1088/1755-1315/410/1/012048
http://doi.org/10.1080/15567036.2022.2049929
https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002_01
https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V002_01
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0517&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014R0517&from=EN
http://doi.org/10.1021/ie4033999
http://www.ncbi.nlm.nih.gov/pubmed/24623957
http://doi.org/10.1109/59.898088
http://doi.org/10.1016/j.apenergy.2016.09.010

	Introduction 
	Methodology 
	System Description 
	Energy Assets Overview 
	Energy Management Overview 

	Model Development 
	Meteorological Data 
	Component Modeling 
	Solar Collector 
	Organic Rankine Cycle System 
	Absorption Chiller 
	Lead–Acid Battery Cell 
	Lithium-Ion Battery Cell 
	Power Converters 

	System Modeling 
	Thermal Grid 
	Electrical Grid 

	Model Validation 
	Thermal Grid 
	Electrical Grid 


	Scenarios Definition 
	Thermal Grid 
	Electrical Grid 

	Results and Discussion 
	Thermal Grid 
	Electrical Grid 

	Conclusions 
	References

