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Abstract: Dynamic adaptive streaming over HTTP (DASH) technique, the most popular streaming
method, requires a large number of hard disk drives (HDDs) to store multiple bitrate versions of
many videos, consuming significant energy. A solid-state drive (SSD) can be used to cache popular
videos, thus reducing HDD energy consumption by allowing I/O requests to be handled by an SSD,
but this requires effective HDD power management due to limited SSD bandwidth. We propose a
new SSD cache management scheme to minimize the energy consumption of a video storage system
with heterogeneous HDDs. We first present a technique that caches files with the aim of saving more
HDD energy as a result of I/O processing on an SSD. Based on this, we propose a new HDD power
management algorithm with the goal of increasing the number of HDDs operated in low-power
mode while reflecting the heterogeneous HDD power characteristics. For this purpose, it assigns
a separate parameter value to each I/O task based on the ratio of HDD energy to bandwidth and
greedily selects the I/O tasks handled by the SSD within limits on its bandwidth. Simulation results
show that our scheme consumes between 12% and 25% less power than alternative schemes under
the same HDD configuration.

Keywords: video storage systems; low-power computing; energy efficiency; SSD management

1. Introduction

Demand for video streaming applications such as YouTube, Netflix, and Twitch is
growing rapidly. For example, in 2021, Netflix had 209 million subscribers worldwide [1],
and YouTube viewers are expected to reach 210 million in the United States alone by 2022 [2].
Most of these streaming companies use a dynamic adaptive streaming over HTTP (DASH)
technique, which splits each video into segments, each of which is then transcoded into
multiple bitrate versions so that the most appropriate bitrate version can be streamed to
support each request [3–7]. For example, YouTube recommends storing 11 bitrate versions
between 500 and 35,000 kbps for each video segment [8]. This allows lower bitrate versions
(e.g., 500 kbps) to be transmitted when network conditions are poor, enabling seamless
streaming even under low network bandwidth.

DASH requires a lot of storage space to store multiple bitrate versions of each video [9,10].
In addition, redundancy techniques such as data replication are used to handle disk failures,
significantly increasing storage space for video files. To support a large amount of storage space,
video storage systems generally rely on cost-effective arrays of hard disk drives (HDDs) [9–11].
In addition, to support the increasing demand for video files, HDDs are gradually added,
creating a storage array of heterogeneous HDDs [12,13].

Because of the large amount of storage space for storing video data, video storage
systems inherently consume significant energy [14–17]. For example, recent studies have
shown that the energy consumed by storage systems can account for 40% of the total
data center energy [17]. Moreover, this high energy consumption negatively affects the
reliability of the HDD array [10]. To address this, an HDD provides a standby mode in
which the HDD completely stops spinning to reduce power consumption, and in this mode,
it consumes much less power compared to other modes [11,18]. Therefore, in terms of
energy saving, it is essential to extend the time the HDD stays in standby mode.

Energies 2022, 15, 3633. https://doi.org/10.3390/en15103633 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15103633
https://doi.org/10.3390/en15103633
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15103633
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15103633?type=check_update&version=1


Energies 2022, 15, 3633 2 of 16

Solid-state-drives (SSDs) support lower power consumption, higher endurance, and
lower I/O latency compared to HDDs [19–21]. Although the cost of SSDs is decreasing,
they are still much more expensive than HDDs [10,19–21]. Since access patterns for video
sets tend to be highly skewed, SSDs can be used as a cache of HDD arrays in video storage
systems to store popular videos [22], but effective management of their bandwidth and
storage space is essential.

Several studies have suggested techniques for improving performance and reducing
power using SSDs in video servers. For example, Ryu et al. [22] introduced a caching
method to improve the processing rate of the video server; Xie et al. [23] developed a
technique to dynamically copy popular videos to an SSD; Song [10] presents an SSD
bandwidth management technique to minimize power consumption in video servers using
multi-speed disks. However, to the best of our knowledge, this paper is the first attempt
to develop an SSD cache management scheme to minimize HDD energy consumption in
video storage systems using heterogeneous HDDs while making use of redundant data for
reducing energy consumption.

The major contributions of this paper are summarized as follows:

• We propose a new method of using an SSD cache to minimize overall HDD power
consumption in video storage systems with heterogeneous HDDs by taking account
of different HDD power characteristics.

• We propose an SSD storage management technique that allows files to be cached on
an SSD with the aim of maximizing the sum of HDD energy saving as a result of
I/O processing.

• We propose an SSD bandwidth management technique that allows the SSD to handle
energy-intensive I/O tasks first, thereby saving more energy.

• We extensively evaluate the proposed scheme in terms of SSD size and bandwidth,
popularity model, and number of HDDs.

The remainder of this paper is organized as follows: Section 2 reviews related works,
and Section 3 provides a system model. Sections 4 and 5 present SSD caching determination
and bandwidth management algorithms, respectively. Section 6 evaluates the proposed
scheme using simulations, and Section 7 finally concludes the paper.

2. Related Work

Storage energy-saving techniques, many of which use data placement and scheduling
methods, have been extensively studied. For example, Machida et al. [24] formulated the
file placement problem as a combinatorial optimization with capacity and performance
constraints and presented a heuristic algorithm based on a stochastic process of disk state
transitions to reduce HDD energy consumption. Karakoyunlu and Chandy [25] introduced
several methods for energy-efficient storage node allocation by leveraging the metadata
heterogeneity of cloud users and proposed an on-demand load balancing technique that
allows inactive nodes to be transitioned into a low-power mode. Behzadnia et al. [26]
presented a dynamic power management scheme that allows for disk-to-disk fragment
migration to balance power consumption and query response time. Khatib and Bandic [27]
presented a power-capping scheme that resizes I/O queues adaptively to improve through-
put while reducing tail latency. Segu et al. [28] presented a data replication strategy that
takes into account both energy consumption and expenditure of service providers in cloud
storage systems.

Several techniques have been developed to conserve disk energy by turning off cold
storage that stores rarely accessed data. Hu and Deng [29] presented a technique for
aggregating and storing correlated cold data in the same cold node while mitigating the
cost of power mode switching. Park et al. [30] introduced a cold-storage-based power
management technique that can be progressively used for online services and presented the
results of its implementation on a real distributed storage system. Lee et al. [31] introduced
a tool for benchmarking a cold storage system, especially for mobile messenger applications
and presented the results of constructing a cold storage test-bed based on it. However,
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none of these studies take into account the characteristics of the video data, so they cannot
be used for video storage systems.

Some energy-saving techniques have been developed specifically for video storage sys-
tems. Han and Song [11] introduced a hot–cold data classification method, and presented
storage and bandwidth management techniques with the aim of maximizing the quality of
video files streamed to users. Yuan et al. [18] presented a prediction-based algorithm to
formulate and solve optimization problems to determine the optimal choice of disk power
mode for large-scale video sharing services. Chai et al. [32] presented a file migration
scheme to construct energy-efficient data layouts without unnecessary data migrations for
video storage systems. Song et al. [33] proposed a selective prefetching scheme to reduce
power overhead and an interval-based caching method that maximizes the amount of
energy saved. However, all of these schemes were developed for video storage systems
with HDDs only.

SSDs can be effectively utilized to reduce power consumption in HDD-based disk
arrays [15]. Salkhordeh et al. [34] presented a hybrid I/O caching architecture to improve
energy efficiency under the same cost budget. For this purpose, it uses a three-level cache
hierarchy based on DRAM, read-optimized SSD, and write-optimized SSD, addressing the
trade-off between performance and durability and allowing for energy-efficient storage
reconfiguration. Tomes and Altiparmak [35] examined the energy consumption charac-
teristics of storage arrays with HDDs and SSDs and provided guidelines for building
energy-efficient hybrid storage systems. Huang and Chang [36] presented a file system to
manage three types of storage (NVRAM, flash memory, and magnetic disk) to improve
energy efficiency by leveraging the parallelism between flash memory and disk during data
distribution. Hui et al. [37] presented a new storage architecture that utilizes SSDs to get
more opportunities to put underutilized HDDs into a low-power state. All of these studies
were developed for general workloads, making them difficult to use for video servers

Ryu et al. [22] considered the use of SSDs, especially for DASH-based multi-tier video
storage systems. They proposed a scheme that determines write granularity to overcome
the write amplification effect of the SSDs. Manjunath and Xie [23] proposed a hybrid
architecture in which video files are dynamically copied from an HDD to an SSD, reducing
the load on the HDD to save energy consumption. Zhang et al. [38] presented an error
tolerance technique to reduce the cost of an SSD-based video caching by using lower-cost
flash memory chips for video storage systems. Song [10] presented an SSD management
technique that minimizes the rotational speeds of HDDs, reducing their power consump-
tion, specifically for a video storage system with multi-speed disks. However, none of
these schemes take into account the issues of power and data redundancy characteristics of
heterogeneous HDDs.

3. System Model

A video is divided into segments, each of which is transcoded into Nver bitrate
versions, where Vi,j represents the jth bitrate version of segment i, (i = 1, ..., Nseg). Each
bitrate version Vi,j has a bitrate of bi,j where bi,j < bi,j+1. Table 1 summarizes the notations
used in this paper.
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Table 1. Notations.

Notation Meaning

Nseg Number of video segments

Nver Number of video versions

Nreq Number of video requests

Vi,j jth bitrate version for segment i

bi,j bitrate of version Vi,j

NHDD Number of HDDs in HDD group

NHG Number of HDD groups

Tseg Segment length (seconds)
Tseek

m Seek time of HDDs in group m

trm Transfer rate of HDDs in group m

Di HDD group index of segment i

Tver
i,j Time needed to read version Vi,j in segment

Uver
i,j I/O utilization for Vi,j

pi,j Access probability for Vi,j

pi Popularity of segment i

Pseek
m , Pactive

m , Pidle
m , Pstandby

m
Seek, active, idle and standby power for HDDs

in group m

Genergy
i,j Energy gain by serving Vi,j from SSD

Sver
i,j Size of Vi,j in MB

Xi,j
Variable indicating whether Vi,j is cached

on SSD

SSSD Size of SSD in MB

Aall
m Array of all request indices to HDD group m

ASSD
m Array of requests for SSD among Aall

m

NSSDreq
m Number of requests in ASSD

m

Iseg
k Video segment index for request k

Iver
k Version index for request k

Yk
Variable indicating whether request k is served

by SSD

ASSD
m,n Nth element in ASSD

m

UHDD
m,n

I/O Utilization of HDD group m when
requests in ASSD

m,n are served by SSD

Eseek
m,n , Eactive

m,n
Seek and active energy when requests from

ASSD
m,1 to ASSD

m,Zm
are served by SSD

Eidle
m,n , Estandby

m,n
Idle and standby energy when requests from

ASSD
m,1 to ASSD

m,Zm
are served by SSD

Tseek
m,n , Tactive

m,n
Seek and active time when requests from ASSD

m,1
to ASSD

m,Zm
are served by SSD

Tidle
m,n , Tstandby

m,n
Idle and standby time when requests from

ASSD
m,1 to ASSD

m,Zm
are served by SSD

Zm
Variable indicating whether requests from

ASSD
m,1 to ASSD

m,Zm
are served by SSD
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Table 1. Cont.

Notation Meaning

Ifirst
m

Lowest value of n that satisfies the condition:
Tidle

m,n ≥ 0

PHDD
m,n

Power for HDD m when requests from ASSD
m,1 to

ASSD
m,Zm

are served by SSD

BSSD SSD bandwidth of SSD in MB/s

Bm,n
SSD bandwidth when requests from ASSD

m,1 to
ASSD

m,Zm
are served by SSD

Figure 1 shows a video server architecture composed of an SSD and an array of
heterogeneous HDDs with different power characteristics. The HDD array is divided into
NHG groups, each group consisting of NHDD HDDs of the same type. For ease of exposition,
NHDD is assumed to be an even number.

SSD caching

HDD group 1 HDD group NHG

Primary region

Objective: Minimizing overall HDD power consumption

If HDD group’s utilization is
below 0.5, then replica

region can be transitioned
into standby mode

HDD type 1 HDD type 2 HDD type NHG

SSD

Array composed of heterogeneous HDD groups

HDD group 2

Replica region

Storage and bandwidth limitation

Figure 1. System architecture.

Whenever the server receives a request, it first checks whether the requested bitrate
version is stored and can be transmitted from the SSD; otherwise, these requests need to be
handled from the HDD array. Although the requested version is stored on the SSD, it may
not be handled from the SSD due to SSD bandwidth limitations.

Redundancy is essential in storage systems for fault tolerance and improved I/O
throughput. In particular, data replication is widely used in video servers to support
high I/O bandwidth requirements for video streaming [39]. Thus, we use RAID 1 for
redundancy in which each HDD group is divided into primary and replica regions as
shown in Figure 1.

All bitrate versions of the segments that make up a video are stored sequentially on
successive HDDs in a single HDD group. Since a single video can be shared over all the
HDDs in each HDD group, the workloads can be effectively balanced because each video
can be handled over all the HDDs in each HDD group. Therefore, it is assumed that the
I/O bandwidth over all HDDs in each HDD group is balanced.

To provide streaming for continuous video playback at clients’ devices, consecutive
segments that make up each video must be read once every Tseg seconds, which is the
length of the segment [33]. Then the server allocates I/O bandwidth to each request based
on its bitrate for Tseg seconds. Thus, the amount of data that needs to be read for each
bitrate version Vi,j during a period of Tseg is bi,j × Tseg to keep up with the playback rate.
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For example, to stream a 15.36 Mbps video clip with a segment length of 2 s, 30.72 Mbits of
data must be read over the segment length.

HDDs provide four power phases: seek, active, idle, and standby. The head of the
HDD is placed on the track where the data is stored during the seek phase. The HDD reads
or writes data during the active phase, rotates without reading, writing, and seeking opera-
tions during the idle phase, and stops rotating completely during the standby phase [33].
The standby phase consumes much less power than the idle phase, so it is important to
leave the HDD in the standby phase for a long time [33].

Let Tseek
m be the seek time of the HDD in group m. Let trm be the transfer rate of the

HDD in group m. In a video storage system, each video segment can be large enough
to span one or more complete HDD tracks, so the HDD head can start reading as soon
as it reaches the track where the data is stored, allowing the entire track to be read [40].
Therefore, the rotational delay is assumed to be zero.

All bitrate versions for segment i are stored on the HDD group Di. Then the total time
Tver

i,j required to read bitrate version Vi,j for Tseg seconds can be calculated as follows:

Tver
i,j = Tseek

Di
+

bi,jTseg

trDi

. (1)

Since I/O time of Tver
i,j is needed every Tseg seconds, I/O utilization for version Vi,j,

Uver
i,j is calculated as follows:

Uver
i,j =

Tver
i,j

Tseg . (2)

Since it takes a few seconds to spin up the HDD, it is almost impossible to put the
HDDs in standby on a video server that needs continuous reads unless replication is used.
However, if the HDD bandwidth utilization over all the HDDs in each group is below 0.5
in an HDD array with replication in Figure 1, then the energy consumption may be greatly
reduced by putting the HDDs in the replica area into standby phase because the actual
I/O bandwidth provided by the HDDs in the primary group is sufficient to support all
the requests.

4. SSD Caching Determination
4.1. Algorithm Concept

When I/O requests are handled by the SSD cache, the I/O bandwidth of each HDD is
effectively reduced, which can reduce HDD energy consumption. However, due to SSD
capacity limitations, effective SSD storage space management is essential. In particular,
each HDD has different characteristics in terms of power consumption, so this should be
taken into account when making SSD caching decisions.

For caching decisions, we introduce the concept of a popularity-weighted energy gain
for each file that represents the amount of HDD energy saved when serving this file request
from the SSD. Then the caching decision aims at maximizing popularity-weighted overall
energy gain. Unlike other caching schemes that typically cache popular files first, our
scheme considers different power characteristics of each HDD to minimize overall HDD
power consumption.

Popular video files are cached on the SSD, so it is essential to effectively manage the
limited SSD bandwidth to minimize HDD energy consumption. In particular, each group’s
HDD bandwidth utilization is an important factor in determining the group’s energy con-
sumption. Therefore, energy consumption can be effectively reduced by adjusting the HDD
bandwidth utilization of each group, but this requires effective SSD bandwidth allocation.
For this purpose, our scheme allocates SSD bandwidth with the aim of minimizing overall
HDD energy consumption.
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4.2. SSD Caching Determination

Let pi,j be the access probability of bitrate version j of video segment i, Vi,j, (i =

1, ..., Nseg and j = 1, ..., Nver). The popularity of segment i, pi is then calculated as: ∑Nver

j=1 pi,j,

and ∑Nseg

i=1 ∑Nver

j=1 pi,j = 1.
Let Pseek

m , Pactive
m and Pidle

m be the power required during the seek, active, and idle
phases for HDD group m, respectively. Let Genergy

i,j be a parameter that indicates the
popularity-weighted energy gain by serving Vi,j from SSD, which can be expressed as:

Genergy
i,j = pi,j(Pseek

m Tseek
Di

+ Pactive
m

bi,jTseg

trDi

). (3)

A binary variable Xi,j indicates whether version Vi,j is cached or not. If Xi,j = 1, then
version Vi,j is cached on SSD. By contrast, if Xi,j = 0, Vi,j is not cached. We aim to cache
version files to maximize overall popularity-weighted energy gain, ∑Nseg

i=1 ∑Nver

j=1 Xi,jG
energy
i,j .

The total SSD storage requirement must not exceed Sssd; thus, ∑Nseg

i=1 ∑Nver

j=1 Xi,jSver
i,j ≤

Sssd where Sver
i,j is the size of version Vi,j in MB. We can then formulate the SSD cache

determination problem that finds the values of Xi,j as follows:

Maximize ∑Nseg

i=1 ∑Nver

j=1 Xi,jG
energy
i,j

subject to ∑Nseg

i=1 ∑Nver

j=1 Xi,jSver
i,j ≤ Sssd,

Xi,j = 0, 1.

This problem is the 0/1 knapsack problem [41], where each object has a weight and
profit, and the problem involves selecting objects such that the total profit is maximized
while satisfying the knapsack capacity constraint [41]. The problem above can correspond
to the 0/1 knapsack problem by regarding the SSD as a knapsack and each video segment
as an object.

The 0/1 knapsack problem is NP-hard [41]. The dynamic programming technique can
be used to derive a solution, but this involves significant computational overhead to deal
with very large numbers of segments [41]. We thus develop a greedy algorithm where the

video segments with higher
Genergy

i,j
Sver

i,j
values are cached first while meeting SSD storage limit.

5. SSD Bandwidth Management
5.1. Problem Formulation

Among HDD power phases, the seek phase is known to consume the most energy,
so it is important to reduce the number of seek operations [33]. To minimize the number
of seek operations on the HDD, it is advantageous to serve the low bitrate requests from
the SSD first [10]. For example, suppose three video segments at 2 Mbps, 4 Mbps, and
6 Mbps are cached on a SSD with a bandwidth limit of 6 Mbps, and each segment is stored
contiguously on an HDD. Then, two segments (2 Mbps and 4 Mbps) or one 6 Mbps segment
can be handled by the SSD at the same SSD bandwidth limit of 6 Mbps. In the former case,
two seek operations, but in the latter case, one seek operation can be removed from the
HDD. Therefore, requests for lower bitrate versions are given higher priority.

Let Aall
m be the array of the indices for all requests that are directed to an HDD group

m. Let ASSD
m be the array of request indices of which bitrate versions are cached on an SSD,

sorted in non-descending order of bitrate of the requested version, where Nssd_req
m is the

number of requests in ASSD
m . Obviously, ASSD

m is a subset of Aall
m .

Let Iseg
k and Iver

k be the video segment and version indices for request k, (k = 1, ..., Nreq),
where Nreq is the number of total requests. Among requests in ASSD

m , some requests may
not be served by the SSD. To express this, we introduce a binary variable Yk to indicate
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whether request k, (k = 1, ..., Nreq) can be served from the SSD. If XIseg
k ,Iver

k
= 0 so that

request k is not cached, then Yk = 0.
ASSD

m is sorted in non-descending order of bitrate of the requested version, where ASSD
m,n

represents the request index of the nth element in ASSD
m . Thus, ASSD

m = {ASSD
m,1 , ..., ASSD

m,Nssd_req
m

}.

We derive the energy consumption for four power phases of seek (Eseek
m,n ), active (Eactive

m,n ),

idle (Eidle
m,n ), and standby (Estandby

m,n ) when requests from the first to nth elements of ASSD
m are

served from the SSD for Tseg seconds as follows:

1. Seek phase: The total seek time of the HDD group m, Tseek
m,n is calculated as follows:

Tseek
m,n = (Nssd_req

m − n)Tseek
m . (4)

As a result, the energy required in the seek phase, Eseek
m,n , is calculated as:

Eseek
m,n = Tseek

m,n Pseek
m . (5)

2. Active phase: The total time taken to read data for Tseg, Tactive
m,n is expressed as:

Tactive
m,n = ∑

k∈Aall
m

bIseg
k ,Iver

k
Tseg

trm
−

k=ASSD
m,n

∑
k=1

bIseg
k ,Iver

k
Tseg

trm
. (6)

Therefore, the active energy, Eactive
m,n , is calculated as:

Eactive
m,n = Tactive

m,n Pactive
m . (7)

3. Idle phase: If no HDD activity is occurring, the HDD is rotating without reading or
seeking, which requires the power of Pidle

m . We calculate the total idle time for Tseg

seconds by subtracting the seek and read times from Tseg. However, if I/O utilization
over all HDDs in the HDD group is less than or equal to 0.5, then half of HDDs can be
put into standby mode, halving the idle time. Let UHDD

m,n be the I/O utilization for an
HDD group m when requests from the first to nth elements of ASSD

m are served from
the SSD. UHDD

m,n is then calculated as follows:

UHDD
m,n =

∑k∈Aall
m −{ASSD

m,1 ,...,ASSD
m,n }Uver

Iseg
k ,Iver

k

NHDD . (8)

Therefore, idle time, Tidle
m,n can be calculated as follows:

Tidle
m,n =

{ 1
2 (NHDDTseg − Tactive

m,n − Tseek
m,n ) UHDD

m,n ≤ 0.5,
NHDDTseg − Tactive

m,n − Tseek
m,n otherwise.

(9)

Thus, the energy required in the idle phase, Eidle
m,n , can be calculated as:

Eidle
m,n = Tidle

m,n Pidle
m . (10)

4. Standby phase: If UHDD
m,n ≤ 0.5, then half of HDDs can be put into standby mode. If

Pstandby
m is the standby power for an HDD group m, then Estandby

m,n can be calculated
as follows:

Estandby
m,n =

{
1
2 NHDDPstandby

m UHDD
m,n ≤ 0.5

0 otherwise.
(11)

Let Zm be the selection parameter where requests between ASSD
m,1 to ASSD

m,Zm
are selected

to be served by the SSD. It is noteworthy that Tidle
m,n ≥ 0; otherwise, the I/O bandwidth

will be exceeded, so some requests cannot be processed. To prevent this, we introduce a
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variable Ifirst
m for each HDD group m that indicates the lowest value of n that satisfies the

condition: Tidle
m,n ≥ 0. Thus, Ifirst

m is calculated as follows:

Ifirst
m = arg min

n
{Tidle

m,n ≥ 0}. (12)

Then the following inequality should hold: Zm ≥ Ifirst
m .

We determine the power consumed by an HDD k when requests between the first and
nth elements of Areq

m are processed , PHDD
m,n as:

PHDD
m,n =

Eseek
m,n + Eactive

m,n + Eidle
m,n + Estandby

m,n

Tseg . (13)

If Bssd is the total bandwidth supported by the SSD in MB/s and Bm,n is the SSD
bandwidth in MB/s required to serve all of the requests from ASSD

m,1 to ASSD
m,n , then Bm,n is

calculated as follows:

Bm,n =
k=n

∑
k=1

bIseg
k ,Iver

k
. (14)

We can then formulate the SSD request selection (SRS) problem, which minimizes
overall HDD power consumption, ∑NHG

m=1 PHDD
m,Zm

for determining Zm, (Zm = Ifirst
m , ..., Nreq

m )
as follows:

Minimize ∑NHG

m=1 PHDD
m,Zm

subject to ∑NHG

m=1 Bm,Zm ≤ Bssd,
Zm = Ifirst

m , ..., Nreq
m .

5.2. SSD Request Selection (SRS) Algorithm

The SRS problem is a variant of the multiple-choice knapsack problem (MCKP),
which is NP-hard [41]. In the MCKP, each object consists of a set of items, with each
item having a weight and profit. Exactly one item from each object is then selected and
put into the knapsack to maximize total profit without exceeding the knapsack weight
limit [41]. Likewise, the SRS problem treats the SSD as a knapsack, and the Zm value must
be selected from each array ASSD

m to maximize the amount of power saved within the SSD
bandwidth limits.

Because the SRS problem is NP-hard, we propose a heuristic solution called SSD
request selection (SRS) algorithm that runs in polynomial time as shown in Algorithm 1.
We use a greedy approach, which shows good performance with multiple-choice knap-
sack problems [41]. We thus define a series of parameters Rm,n for each HDD group m,
(n = Ifirst

m + 1, ..., Nreq
m ) as follows:

Rm,n =
PHDD

m,Ifirst
m
− PHDD

m,n

Bm,n − Bm,Ifirst
m

, (15)

where Rm,n represents the ratio of increase in SSD bandwidth to decrease in total power
consumption when Zm is n compared to when Zm = Ifirst

m .
The value of Zm is initialized to Ifirst

m (line 11). Then, without exceeding the SSD
bandwidth limit, the value of Zm is increased to reduce the increase in the amount of
SSD bandwidth (denominator of Rm,n) while maximizing the decrease in the total power
consumption (the numerator of Rm,n). Thus, the highest value of Rm,n is selected from a set
of Rm,n values, for which m = H and n = W, and then the value of Zm is increased to w.
This step is repeated until ∑NHG

m=1 Bm,Zm ≤ Bssd, (lines 21–30). Based on the final results of
Zm, the Yk values can be easily obtained, (lines 31–39).

Power consumption can vary depending on the fault-tolerance techniques used. There-
fore, as long as the power values such as PHDD

m,n are modified according to various fault-
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tolerance methods, the SRS algorithm can be used without modification because it uses
parameters based only on bandwidth and power consumption.

Algorithm 1: SSD request selection(SRS) algorithm.

Input: Iseg
k , Iver

k (k = 1, ..., Nreq), Di, (i = 1, ..., Nseg), Aall
m , ASSD

m (m = 1, ..., NHG) PHDD
m,n ,

Bm,n, (m = 1, ..., NHG) and (n = 0, ..., NSSD
m ) ;

Output: Yk, (k = 1, ..., Nreq), Zm, (m = Ifirst
m , ..., Nreq

m ) ;

1 Temporary variables: Ifirst
m , Itmp

m ;
2 Temporary variable: Btmp ← 0;
3 Set of parameters: Spara ← φ;
4 ∀k Yk ← 0;
5 for m = 1 to NHG do
6 Sort request indices k, k ∈ ASSD

m in non-descending order of bIseg
k ,Iver

k
;

7 Find the value of Ifirst
m , (Equation (12));

8 Calculate PHDD
m,n , (n = 0, ..., Nreq

m ), (Equation (13));
9 Calculate Bm,n, (n = 0, ..., Nreq

m ), (Equation (14));
10 end
11 for m = 1 to NHDD do
12 Itmp

m ← Ifirst
m ;

13 for n = 1 to Ifirst
m do

14 Btmp ← Btmp + Bm,n;
15 end
16 for n = Ifirst

m + 1 to Nreq
m do

17 Rm,n ←
PHDD

m,Ifirst
m
−PHDD

m,n

Bm,n−Bm,Ifirst
m

;

18 Spara ← Spara ⊔{Rm,n};
19 end
20 end
21 while Spara 6= φ do
22 Find the highest value of Rm,n ∈ Spara for which m = H and n = W ;

23 if Btmp + BH,W ≤ BSSD and Itmp
m < W then

24 Btmp ← Btmp + BH,W ;

25 Itmp
m ←W;

26 else
27 Break;
28 end
29 Spara ← Spara − {Rm,n};
30 end
31 for m = 1 to NHG do
32 Zm ← Itmp

m ;

33 for n = 1 to Itmp
m do

34 YASSD
m,n
← 1;

35 end
36 for n = Itmp

m + 1 to Nreq
m do

37 YASSD
m,n
← 0;

38 end
39 end

6. Experimental Results
6.1. Experimental Setup

We evaluate the effectiveness of our scheme through simulations. To configure the
HDD array, the active power is set between 3.5 W and 9.2 W, and the idle power is set
between 2.5 W and 8.0 W [42–44]. Standby power, seek time, and data transfer rate are set
to 0.9 W, 9 ms, and 150 MB/s, respectively.
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We compare our scheme with three other benchmark methods as follows:

1. Lowest bitrate first selection (LS): To reduce the number of seek operations on the
HDD, it is required to handle requests for the lowest bitrate possible on the SSD [10].
The LS scheme first selects the request with the lowest bitrate as long as it satisfies the
SSD bandwidth limit.

2. Random allocation (RA): This method randomly selects requests handled by the SSD
subject to the SSD bandwidth limitation.

3. Uniform allocation (UA): This method alternately selects the requests for the lowest bi-
trate version from each HDD group one by one subject to the SSD bandwidth limitation.

Video popularity follows a Zipf distribution with the measured parameter θ set to
0.271 for real VoD applications [45]. The length of each video is selected randomly between
1 and 2 h. A server stores 2000 video content, each with 7 bitrate versions. Table 2 tabulates
resolution and bitrate for each version, and the popularity of each version is modeled based
on three types as follows:

• HVP: High-bitrate versions are popular, (∀ i, pi,1 = 0.2pi, pi,2 = 0.2pi, pi,3 = 0.15pi,
pi,4 = 0.15pi, pi,5 = 0.1pi, pi,6 = 0.1pi, pi,7 = 0.1pi).

• LVP: Low-bitrate versions are popular, (∀ i, pi,1 = 0.1pi, pi,2 = 0.1pi, pi,3 = 0.1pi,
pi,4 = 0.15pi, pi,5 = 0.15pi, pi,4 = 0.2pi, pi,4 = 0.2pi).

• MVP: Medium-bitrate versions are popular, (∀ i, pi,1 = 0.1pi, pi,2 = 0.15pi, pi,3 = 0.2pi,
pi,4 = 0.2pi, pi,5 = 0.15pi, pi,4 = 0.1pi, pi,4 = 0.1pi).

Table 2. Resolution and bitrate for each version [11].

Resolution 1920 ×
1080

1600 ×
900

1280 ×
720

1024 ×
600

854 ×
480

640 ×
360

426 ×
240

Bitrate
(Mbps) 15.36 10.64 9.60 4.55 3.04 1.70 0.76

The arrival of client requests is modeled as a Poisson process [46,47] with an average
arrival rate for requests of 1/s. Table 3 summarizes the parameters used for simulation,
where default values are used unless otherwise stated. Power consumption is profiled over
all the HDDs for 24 h.

Table 3. Parameter settings for simulations.

Parameters Description Default Values Ranges Used in the
Experiments

SSD size Sssd 2 TB 500 GB ∼ 4 TB

SSD bandwidth Bssd 1 GB/s 0.5 GB/s ∼ 1.5 GB/s

Version popularity N/A MVP HVP, MVP, LVP

Zipf parameter θ 0.271 0.0 ∼ 0.5

Number of the HDD
groups NHG 8 4 ∼ 12

6.2. HDD Power Consumption Comparison for Different SSD Sizes

Figure 2 shows the effect of SSD size on HDD power consumption for each algorithm
when Bssd = 1 GB/s. The SRS algorithm shows the best performance, consuming between
7.9% and 20.9% and on average 16.7% less power than other methods. This power difference
is smallest when SSSD = 500 GB, but largest when SSSD = 2 TB. Among other benchmarks,
the UA scheme consumes the smallest power. The power consumption decreases with the
SSD size, but it gradually tails off.
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Figure 2. HDD power consumption for different SSD sizes.

6.3. HDD Power Consumption Comparison for SSD Bandwidth

Figure 3 shows the effect of SSD bandwidth on HDD power consumption. Again, the
SRS algorithm always exhibits the best performance, consuming 12% and 25.1% less power
than other methods. The amount of power saved increases with SSD bandwidth for all
methods, and these savings are more pronounced with the SRS algorithm, making a greater
difference compared with other benchmarks when the SSD bandwidth is high.

0

50

100

150

200

250

300

350

512 768 1024 1280 1536

Po
w

er
 (W

)

SSD bandwidth (MB/s)

SRS LS UA RA

Figure 3. HDD power consumption against SSD bandwidth.

6.4. Effect of the Number of HDD Groups

Figure 4 shows how HDD power consumption varies with the number of HDD
groups. The SRS algorithm uses the smallest power, consuming between 1% and 29% less
power than other schemes. When the number of HDD groups is at the median value (e.g.,
NHG = 8), the power gap is the largest, but this gap decreases as the value of NHG increases
or decreases.
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Figure 4. HDD power consumption against the number of HDD groups.

6.5. Effect of Version Popularity

Figure 5 shows HDD power consumption against version popularity types. Again,
the SRS algorithm consumes the least power, using 11.7% to 20.9% less than other methods.
The power difference is greatest when the medium bitrate versions are popular, but smallest
when the low bitrate versions are popular.
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Figure 5. HDD power consumption against version popularity types.

6.6. Effect of Zipf Parameters

Figure 6 shows HDD power consumption for different values of θ. The SRS algorithm
consumes between 16% and 22% less power than other methods. In the Zipf distribution,
the popularity skewness decreases with the value of θ. In all schemes, the power savings
decrease as the value of θ increases, because the caching effect becomes more pronounced
when popularity is skewed. The power gap between SRS and other schemes is more
pronounced when θ = 0, indicating that the proposed technique is most effective when
video popularity is highly skewed.
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Figure 6. HDD power consumption against Zipf parameters.

6.7. Comparison of Power Consumption in Gamma Popularity Distribution

We also examine power consumption when video popularity follows a gamma dis-
tribution. Two parameters (α and β) are used to express the shape of the gamma distribu-
tion [48], so Figure 7 shows HDD power consumption for different pairs of α and β [48].
Again, the SRS algorithm always shows the best performance, consuming between 8% and
15% less power than other methods. This difference is greatest when the β is the smallest
(e.g., β = 0.5).

0

50

100

150

200

250

300

(1,2) (2,2) (3,2) (5,1) (9,0.5)

Po
w
er

(W
)

(alpha,beta)

SRS LS UA RA

Figure 7. HDD power consumption against α and β parameters of gamma distribution.

7. Conclusions

We presented a new power management technique for video storage servers consisting
of an SSD cache and heterogeneous HDD arrays. We introduced the concept of popularity-
weighted energy gain to express the amount of HDD power saved as a result of SSD caching
and then proposed a new SSD caching decision algorithm that caches video files with high
ratios of energy gain to their sizes. Based on a model for an array with heterogeneous HDDs,
we proposed an algorithm that determines the I/O tasks handled by the SSD to allow more
HDDs to enter low-power mode, thereby minimizing overall HDD power consumption.
For this purpose, the I/O tasks with high ratios of HDD energy to bandwidth are greedily
processed the first subject to the SSD bandwidth limit.
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Experimental results show that our scheme reduces HDD power consumption between
12% and 25% compared with benchmark schemes. They also demonstrate that the proposed
technique is more effective when the SSD capacity is moderate, the SSD bandwidth is high,
the number of HDD groups is medium, the medium bitrate versions are popular, and the
video popularity is highly skewed. These results provide useful guidelines for improving
energy efficiency in video storage systems based on heterogeneous HDDs. With the advent
of new SSDs such as a quad-level cell (QLC), the video storage cache tends to consist
of heterogeneous SSDs. In future work, we plan to explore file caching and allocation
techniques that minimize HDD power consumption in a video cache server composed of
heterogeneous SSDs.
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