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Abstract: In this paper, driving strategy optimization for a track is proposed for an energy efficient
battery electric vehicle dedicated to the Shell Eco-marathon. A measurement-based mathematical
vehicle model was developed to simulate the behavior of the vehicle. The model contains complicated
elements such as the vehicle’s cornering resistance and the efficiency field of the entire powertrain.
The validation of the model was presented by using the collected telemetry data from the 2019 Shell
Eco-marathon competition in London (UK). The evaluation of applicable powertrains was carried out
before the driving strategy optimization. The optimal acceleration curve for each investigated power-
train was defined. Using the proper powertrain is a crucial part of energy efficiency, as the drive has
the most significant energy demand among all components. Two tracks with different characteristics
were analyzed to show the efficiency of the proposed optimization method. The optimization results
are compared to the reference method from the literature. The results of this study provide an appli-
cable vehicle modelling methodology with efficient optimization framework, which demonstrates
5.5% improvement in energy consumption compared to the reference optimization theory.

Keywords: energy efficiency; optimization; driving strategy; powertrain; Shell Eco-marathon; electric
vehicles

1. Introduction

Nowadays, the popularity of electric vehicles (EVs) is constantly increasing, even as
improving the energy diversification in transportation and the potential CO2 reduction
of EVs is underestimated [1,2]. It is now technically feasible to convert 72.3 percent of the
transportation demand from fossil fuels to electricity. The total energy demand might be
reduced by 50.6 percent due to this approach and the improved energy efficiency of electri-
cally powered vehicles [3]. Alternative powertrains and the use of lightweight materials
are two more possible options for lowering energy consumption and CO2 emissions [4].
Lightweight electric vehicles (LEVs) are intriguing because they combine the benefits of
both EVs and lightweight vehicles. A reduced weight improves the range of an electric
vehicle, which is still a major concern. This effect can be strengthened even further by
weight loss [5]. The environmental impact of cars makes up the largest share of the total
global impact of passenger transport. EU directives set in 2015–2020 are putting pressure
on the car industry to meet CO2 emission targets, with potentially significant economic and
financial consequences [6].

Intensive research efforts aiming at improving vehicle energy efficiency are linked
to the transition from fossil-fuel-based transportation to electric mobility. The Shell Eco-
marathon is an annual international engineering competition for student teams. The
competition serves as a platform for innovative approaches to creating fuel-efficient au-
tomobiles. The goal of the Mileage Challenge is to complete a valid race in the shortest
length of time while consuming the least amount of electric energy or fuel. Vehicles must
cover roughly 16 km in under 40 min. Vehicles are divided into three categories based
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on their architecture (Prototype and Urban Concept (UC)) and energy consumption (in-
ternal combustion engine vehicles, battery electric vehicles (BEVs), and hydrogen fuel
cell vehicles). The three-wheeled prototype vehicles have extremely low aerodynamic
drag. The urban concept vehicles must make a full stop after each lap, unlike prototype
vehicles. The goal of the UC category is to simulate urban transportation, which includes
slow speeds and frequent stops. The Shell Eco-marathon is the most prestigious energy
efficiency race, which has been held in Europe since 1985, with more than 200 teams from
renowned European technical universities participating in the 2017 edition. Several world
records in fuel efficiency have been set by specifically equipped automobiles during the
SEM series [7].

The current vehicle development mainly focuses on the electric and mechanic energy
loss reduction in the powertrain, rolling elements (suspension and steering system), and sys-
tem electronics. The development of the physical components of the vehicle is inadequate
to reach the desired overall vehicle efficiency without proper vehicle operation because
the driver has general impact on the energy utilization [8]. Eco-driving can be achieved
by applying optimal driving strategy. The optimal driving strategy is determined by the
corresponding velocity profile to the given track. The velocity profile can be obtained by
solving an optimal control problem, where the optimization objective is the minimization
of energy usage [9]. Several SEM-specific model-based approaches of driving strategy
optimization can be found in the literature; research mainly focuses on prototype vehicles.

Model-based optimization was performed on an electric prototype vehicle in Ref. [10],
where the model was built based on experimental results. The powertrain efficiency maps
and coast-down test results were used in the simulation model. The cornering losses were
neglected in the created vehicle model, but the effect of cornering was implemented in
velocity strategies where speed limitations were made in cornering. The track was divided
into segments to consider the optimization. The optimization was carried out with the
Genetic Algorithm (GA) and the result was 30% better (including driving errors) than the
driving strategy of the human driver [10].

The control strategy of an internal combustion engine powered prototype vehicle is
investigated in Ref. [11], where evolutionary optimization methods were compared. The
results have shown that the most promising results are obtained by the Jaya (JA) algo-
rithm; approaches of Particle Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO)
produced significantly faster results than other methods. The optimization outcomes of
Firefly (FA) and Invasive Weed Optimization (IWO) methods were not comparable. The
research also demonstrated the inefficiency of the traditional gradient-based optimization
strategies such as Sequential Quadratic Programming (SQP). The inertia of rotational parts
was neglected [11].

The multi-physics model of a hydrogen powered UC vehicle was proposed in Ref. [12],
highlighting the modelling of power converter, fuel cell, and ironless motor. The vehicle
model is not based on measurements and the resistance of cornering is neglected. The
power losses of each subcomponent are presented in detail. A PSO algorithm was used in
the optimization process, where the motor currents, maximum and minimum speeds, and
gearbox ratio was optimized [12]. Fuel cell vehicle was also modelled and optimized in
Ref. [13] with a complete powertrain model, but the cornering resistance was also neglected.

The design process and the vehicle simulation of a battery electric UC vehicle were
described in Ref. [14]. The vehicle model was built combining theoretical calculations and
measurements. The powertrain model is measurement-based, but the resistance forces are
calculated with vehicle and track constants. The resistance of cornering is implemented
in the vehicle model. Sensitivity analysis of energy consumption of an SEM vehicle was
performed on three different tracks in Ref. [15]. The vehicle mass reduction provides the
highest benefits in energy savings; 10% mass reduction leads to 5.5% to 8% energy savings,
depending on the track. The aggressiveness parameter of the track was also considered
in the simulation, and the contribution of cornering losses was stated as a non-negligible
factor with 5% to 12% power loss, depending on track [15].
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The literature includes several mathematical optimization methods to define the
optimal velocity profile for a track. In case of different compatible powertrains, the optimal
velocity profile is different for each track. The cornering radius should not be neglected and
should be properly attached to the track profile. The measurement-based models could
have included the effect of cornering [16] and a new approach of optimization methodology
is proposed.

Hybrid driving strategy optimization was proposed in Ref. [17], where the driving
strategy and the optimization process was supported by cognitive infocommunications.
The genetic algorithm-based optimization is supported by human driving experience,
considering the instincts of the driver. The human driven laps are provide the initial input
for the optimization, which significantly improves the optimization time and results.

2. Vehicle Design

SZEnergy Team is the student team of Széchenyi István University, located in Győr,
Hungary. The team has been participating in the SEM series since 2005. At first, solar
cell powered electric cars were built which brought lots of success to the team, winning
the category several times. Then, an energy category change was made, and since 2013
the team have been developing battery electric vehicles. The first battery electric vehicle
created, called SZElectricity, achieved third place in two consecutive years, 2015 and 2016.
The team’s actual racing vehicle, called SZEmission, was showcased in 2019 and achieved
sixth place in the most recent on-track event of SEM in 2019, London. In the past years, no
physical SEM event took place due to the restrictions of the COVID-19 pandemic.

SZElectricity (Figure 1a) was introduced in 2013, specially designed according to the
race regulations of SEM. The chassis of the one-seated battery electric vehicle was made of
carbon composite, but the vehicle body was a welded aluminum frame. The vehicle was
equipped with purpose-made power electronics and a telemetry system. The body shape
of the chassis was not investigated in simulation environment at that time, therefore the
vehicle had considerable losses from aerodynamic drag.

Energies 2022, 15, x FOR PEER REVIEW 3 of 20 
 

 

formed on three different tracks in Ref. [15]. The vehicle mass reduction provides the high-
est benefits in energy savings; 10% mass reduction leads to 5.5% to 8% energy savings, 
depending on the track. The aggressiveness parameter of the track was also considered in 
the simulation, and the contribution of cornering losses was stated as a non-negligible 
factor with 5% to 12% power loss, depending on track [15]. 

The literature includes several mathematical optimization methods to define the op-
timal velocity profile for a track. In case of different compatible powertrains, the optimal 
velocity profile is different for each track. The cornering radius should not be neglected 
and should be properly attached to the track profile. The measurement-based models 
could have included the effect of cornering [16] and a new approach of optimization meth-
odology is proposed. 

Hybrid driving strategy optimization was proposed in Ref. [17], where the driving 
strategy and the optimization process was supported by cognitive infocommunications. 
The genetic algorithm-based optimization is supported by human driving experience, 
considering the instincts of the driver. The human driven laps are provide the initial input 
for the optimization, which significantly improves the optimization time and results. 

2. Vehicle Design 
SZEnergy Team is the student team of Széchenyi István University, located in Győr, 

Hungary. The team has been participating in the SEM series since 2005. At first, solar cell 
powered electric cars were built which brought lots of success to the team, winning the 
category several times. Then, an energy category change was made, and since 2013 the 
team have been developing battery electric vehicles. The first battery electric vehicle cre-
ated, called SZElectricity, achieved third place in two consecutive years, 2015 and 2016. 
The team’s actual racing vehicle, called SZEmission, was showcased in 2019 and achieved 
sixth place in the most recent on-track event of SEM in 2019, London. In the past years, no 
physical SEM event took place due to the restrictions of the COVID-19 pandemic. 

SZElectricity (Figure 1a) was introduced in 2013, specially designed according to the 
race regulations of SEM. The chassis of the one-seated battery electric vehicle was made 
of carbon composite, but the vehicle body was a welded aluminum frame. The vehicle 
was equipped with purpose-made power electronics and a telemetry system. The body 
shape of the chassis was not investigated in simulation environment at that time, therefore 
the vehicle had considerable losses from aerodynamic drag. 

After 5 years, the SZElectricity (Figure 1a) had reached its peak; in addition, a new 
regulation modification in the UC category required two passenger doors from 2019. This 
marked the beginning of the development process of SZEmission in 2018. 

  
(a) (b) 

Figure 1. Investigated Urban Concept SEM vehicles: (a) SZElectricity; (b) SZEmission. 

The main goal was to design and build a competitive vehicle with carbon monocoque 
chassis and low aerodynamic drag, correcting the main drawbacks of the previous struc-
ture. The whole vehicle body was made from carbon fiber reinforced polymer composite 
with paper honeycomb structure. This structure guarantees extreme rigidity at relatively 
low weight. The suspension system was designed to be able to carry different powertrains 

Figure 1. Investigated Urban Concept SEM vehicles: (a) SZElectricity; (b) SZEmission.

After 5 years, the SZElectricity (Figure 1a) had reached its peak; in addition, a new
regulation modification in the UC category required two passenger doors from 2019. This
marked the beginning of the development process of SZEmission in 2018.

The main goal was to design and build a competitive vehicle with carbon monocoque
chassis and low aerodynamic drag, correcting the main drawbacks of the previous structure.
The whole vehicle body was made from carbon fiber reinforced polymer composite with
paper honeycomb structure. This structure guarantees extreme rigidity at relatively low
weight. The suspension system was designed to be able to carry different powertrains
for test reasons. The system electronics were also improved while keeping the sinusoidal
three phase motor controller from the previous vehicle. The vehicle control unit (VCU) is
responsible for the drive and all peripheries of the vehicle. The vehicle is able to participate
in autonomous SEM events too, as the vehicle body and system electrics were designed
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to participate in Autonomous SEM events as well as the Mileage Challenge. The main
differences in the vehicle parameters are shown in Table 1. SZEmission is going to be under
the scope of the current study, using SZElectricity as a reference vehicle.

Table 1. Vehicle parameters.

Parameter SZElectricity SZEmission

Vehicle frame Tubular Aluminum Carbon Monocoque
Powertrain PMSM direct drive PMSM/BLDC with belt drive

Drag coefficient 0.34 0.1
Vehicle mass (without driver) 101 kg 93 kg

3. Mathematical Vehicle Modelling

In the literature of energy efficient lightweight vehicles, two modelling approaches
can be found. The equation-based modelling uses descriptive theoretical equations with
variables that can be conducted from simulations and measurements. The accuracy of the
model can be improved by in depth investigation of subassemblies, similar to Ref. [12],
where the multiphysics modelling approach was expanded to the level of fuel cells. The
disadvantage of this method is that it relies on simplification to some extent. A kinematic
bicycle model was used to determine eco-driving strategy, including the cornering effect for
electric vehicles in urban scenarios in Ref. [18]. The other way to describe the characteristics
of the examined vehicle is the measurement-based vehicle modelling [16], which is a
grey box modelling approach. Systematic measurements were set up to describe the
important subassemblies of the vehicle. The model can be used to solve the optimization
of ecodriving problems for energy efficient lightweight vehicles. The proposed model
describes the complete powertrain, vehicle dynamics, and resistance and contains the
characteristics of the entire track, including the impacts of cornering. The schematics of the
proposed and developed vehicle model can be seen in Figure 2.
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The mathematic background of the vehicle model needs to be set up. The longitudinal
vehicle dynamics are described according to Equation (1).

ma(t) = Ftrac(t) − Fres(t) (1)

where m and a denote the vehicle’s overall mass (including the driver) and acceleration,
respectively. The total traction force Ftrac, generated by the powertrain, accelerates the
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vehicle against the cumulative resistance forces Fres. The traction force is defined in
Equation (2).

Ftrac =
Tdrive igear ηdrive

Rwheel
(2)

where Tdrive is the generated torque by the electric motor, igear is the gear ratio of the
synchronous belt connection, and ηdrive is the measured efficiency of all drive components.
The numerator contains the effective torque of the drive, divided by the wheel radius
Rwheel. The resistance forces can be calculated using Equation (3).

Fres= Fair+Frolling+Fcornering +Fgrade+Finertia (3)

The decreasing of air resistance Fair and rolling resistance Frolling are the main devel-
opment directions of an energy efficient vehicle, besides decreasing the mass of the vehicle
which correlates to the Finertia. The cornering resistance Fcornering is a surplus rolling re-
sistance arising during cornering, which should not be neglected. The resistance coming
from the elevation of the track is called grade resistance Fgrade and, with Fcornering , these
are track related components.

The main advantage of a measurement-based modelling approach is to include all the
described equations in dedicated model subassemblies. The suggested vehicle model has
three major subassemblies that can be identified using laboratory tests and field measure-
ments. The model was elaborated in a MATLAB and Simulink environment.

3.1. Powertrain Model

The vehicle can be driven by several types of permanent magnet synchronous ma-
chines (PMSM) and brushless DC (BLDC) motors with a purpose-made motor controller.
In all powertrain designs, the electric motor drives the rear left wheel, either through
synchronous belt connection or directly. The belt connection provides a further opportunity
to refine the drive configuration, as gear ratios can be applied up to 4. The proposed
powertrain model is suitable to include the effect of all drive elements (PMSM/BLDC-
controller-transmission). In this study, four different types of drive were investigated
(Table 2), which are all feasible in SEM vehicles.

Table 2. The properties of the applicable powertrains.

Powertrain QB3403 SZEVOL Volcano Emoteq

Type PMSM BLDC BLDC PMSM
Sensor Encoder + Hall Hall Hall Encoder + Hall
Voltage 48 V 48 V 48 V 48 V

Mass 4 kg 7 kg 12 kg 14 kg
Max Torque 26 Nm 38 Nm 38 Nm 20 Nm
Max Speed 510 rpm 340 rpm 340 rpm 310 rpm

Applied Gear 4 3.6 3.6 direct

QB3403 (Figure 3a) is an NEMA 34 housed servo motor, and Emoteq (Figure 3d) is
a frameless motor with custom machined housing. Volcano (Figure 3c) is also an NEMA
34 housed commercially available motor, while SZEVOL (Figure 3b) is a custom-built motor
based on the structure of Volcano with mass optimized housing. An important goal is to
reduce the vehicle idle electric consumption to below 1W; therefore, BLDC application is
more suitable, because PMSMs are controlled by a higher energy demand encoder. All
the drives are equipped with a synchronous belt connection; only the Emoteq is directly
connected to the wheel, due to its physical size.
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The measurements were made in an electric motor test bed laboratory dedicated for
drives with a maximum power of 5 kW. This environment provides reliable accuracy. The
maximum efficiency of powertrains is from 85% to 90%, but the shape of the curves is
different. It is interesting to note that the maximum efficiency of Hall controlled motors is
not under Encoder controlled ones; their application is also appropriate in energy efficient
drives. The combined efficiency map of the powertrain was created by measuring the
used electric power and the produced mechanic power according to Equation (4). The
measurement is carried out automatically by the test bench environment.

ηdrive =

∫ t
0 M(t)ω(t)dt∫ t
0 U(t)I(t)dt

(4)

3.2. Resistance Model

The resistance model includes all factors and forces, which affects the motion of the
vehicle. The classical resistance force models neglect the cornering resistance and only
include the resistance factors of straight moving. The cornering resistance should not be
neglected in urban vehicles, although it is complex task to determine the accurate losses.
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The active frontal area and the air drag coefficient of the vehicle are changing during
cornering, which affects the actual drag Fair. The rolling resistance is also changing during
cornering due to the losses of steering elements and tires. The combined effect of these
changes cannot be modelled with reasonable accuracy.

The proposed measurement-based resistance model is created by combining the
resistance force in straight moving and in cornering. Two main measurement scenarios
were made to determine the losses:

• Coast down test;
• Speed-controlled cornering test.

The coast down test is suitable for evaluating the acting resistance forces on the vehicle
in straight motion. In the presented case, the vehicle was accelerated to the maximum
speed, which depends on the gear ratio of the powertrain (40 km/h in this study), and
the velocity profile of the deceleration was recorded. Coast down tests were performed
two times in a row in both directions and averaged to eliminate the slope of the track and
uncertain environmental conditions.

The speed-controlled cornering test was specially designed to measure the cornering
losses and to complete the results of the coast down test. The cornering measurement
needs a properly asphalted flat track; in the presented case, the Dynamic Platform of
ZalaZone Proving Ground was used. During the test, the driver manually followed the
predetermined path, while the vehicle speed was controlled by a real-time linear speed
controller (PI). The motor torque and the traction force were calculated from the logged
telemetry data using the previously presented powertrain model. The cornering resistance
force is balanced by the traction force when the system is steady. The measured resistance
force can be assigned to discrete cornering radius–vehicle speed data pairs. Turn direction
sensitivity was assumed based on the unique vehicle structure and unsymmetrically placed
drive, therefore all cornering measurements were made both clockwise and anti-clockwise.
The inspected test scenarios are summarized in Table 3.

Table 3. Measured points of speed-controlled cornering test.

Cornering Radius Speed

8 m 5–10 km/h
20 m 5–10–15–20–25 km/h
40 m 5–10–15–20–25–30 km/h
50 m 5–10–15–20–25–30 km/h
100 m 5–10–15–20–25–30 km/h

The evaluation of cornering tests is completed manually by matching the appropriate
data pairs. The recorded traction force is sinusoidal, caused by the combined effect of
the slope of the track and the low energy demand of the vehicle. The baseline of the sine
needs to be found and the corresponding speed and traction force values are used for the
evaluation. All test scenarios were made with the tire pressure of 5 bar, which is the usual
value for SEM vehicles. An example of the speed-controlled cornering test evaluation is
visualized in Figure 4.

In the coast down test, all resistance force values can be determined for every speed
value, while in the cornering test, only the resistance of measured points can be assigned.
A three-dimensional resistance force model can be set up, containing the following dimen-
sions: cornering radius–speed–resistance force. The surface is created by linear interpola-
tion between the measured data, and this interpolated surface is used in the vehicle model.
The fifth grade polynomial is acquired from the coast down test and limits the surface in
the cornering radius value of −200 m to 200 m. The vehicle motion is considered to be
straight from the cornering radius value of −/+200 m. The physically reachable cornering
radius value is 6 m, according to the SEM regulations [7].
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The resistance model for SZElectricity (Figure 5a) and SZEmission (Figure 5b) was
created from the measured data. The most significant difference can be noticed in the
form the polynomial, which corresponds to the straight moving resistance. The largest
improvement was achieved in the chassis, therefore the air drag is significantly lower;
based on the measurement, the drag coefficient CX value is approximately 0.1.
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3.3. Track Model

The proposed resistance model is interacting with the track model, which describes
the actual parameters of the track. The track model provides input for the resistance model
to calculate the track related losses, such as cornering resistance and grade resistance. The
track model can be determined using the geographical coordinates of the planned route.
The elevation of the track is directly determined by the z coordinates, while the cornering
radius should be calculated by fitting curves to the corresponding x–y coordinates. In this
study, two tracks were analyzed: the track of SEM 2019 in London (Figure 6a,c), and the Uni
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Track in ZalaZone Proving Ground (Figure 6b,d). The elevation–distance and cornering
radius distance data pairs describes the track characteristics.
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The creation of the London Track model was made in 2019 using publicly available
geographical data, while the Uni Track was measured during the field tests. High precision
GNSS (Swift Navigation-Piksi Multi GNSS) system was installed to the vehicle while it was
on the track. This method gives the highest degree of precision with configurable resolution.
The onboard GNSS measurement system can be also used during SEM event, determining
the track model on-site. A MATLAB script was created to generate the track model based on
the recorded GPS coordinates. The created model stores the track data (distance, elevation,
and cornering radius) in look-up table form in the Simulink environment. The track related
resistance force components (Fgrade and Fcornering) are calculated from the track data and
the actual position and vehicle speed.
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4. Vehicle Model Validation and Preliminary Powertrain Evaluation

The vehicle model needs to be validated before using it for optimization purposes.
The validation of the developed vehicle model was performed based on the telemetry
data collected in the 2019 SEM event in London. Vehicle data are transferred with CAN
communication to the vehicle control unit (VCU) measuring 96 parameters at a frequency
of 20 Hz. For the validation, the measured powertrain energy usage is compared to the
simulation energy usage, the minimization of which is the goal of the optimization. The
velocity profile of the vehicle is determined by the motor rotational speed. The vehicle
telemetry system recorded the applied load signal of the motor controller. The torque
reference value can be calculated based on the applied load signal and the motor speed.
The torque reference was used in the vehicle model to replay the investigated race laps.
The comparison of the velocity profiles of the simulation and telemetry system data can be
seen in Figure 7.
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Solid consistency is shown by the acquired simulation velocity profile and the recorded
data. The simulation is not considering the external environmental effects (wind) and the
regenerative braking progress, the timing of which is highlighted by the red line. The effect
of wind is clearly visible in Figure 7; the simulation vehicle speed is overshoot in the first
stage of the lap (until 65 s) due to headwind. After the hairpin turn, the wind direction
changed to tailwind (until 120 s) and the simulation speed is lower than the measured
speed. Based on these results, the dynamic behavior of the vehicle is well described by
the model. The energy consumption of the model compared to the telemetry is shown in
Figure 8. The recuperated energy from regenerative braking is not calculated by the model;
the braking is realized to be accomplished by constant deceleration. The result shows a
1.56% difference between the simulated and recorded energy consumption, which makes
the model eligible for optimization purposes.

The energy difference was shown by the validation between the simulated and
recorded data, which was mainly caused by the wind. The vehicle model includes the
cornering resistance and all energy losses of the powertrain; the measurement scenarios
enable us to model these complex relations more accurately without making simplifications.
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The validated vehicle model was used for various optimization cases. A classical
genetic algorithm from the Matlab Optimization Toolbox was used for the optimization.
The vehicle model was implemented in Simulink, the genetic algorithm (GA) uses the
model in every iteration, and the fitness function evaluates the outputs of the model. To
solve optimization problems, nondeterministic processes such as selection, mutation, and
crossover are applied to generate a population of candidate solutions. The solution of
GA is majorly dependent on optimization settings and the characteristics of the initial
population; the optimization result should not be considered a global optimum. More
attempts with different randomized initial populations were made to overcome the issue of
getting trapped in local minima. The application of GA in driving strategy related tasks is
favorable due to its ability to solve hard, nonlinear, grey-box type problems [19,20].

The first optimization problem was formed to evaluate the applicable powertrains for
the investigated vehicle. The minimization of consumed electric energy (E) is the objective
function. The consumed energy is calculated according to Equation (5). The traction force
Ftrac(t) is used for energy calculation and can be defined as in Equation (6).

Minimize : E =
∫ T

0
Ftrac(t) v(t) ηdrive(t) dt (5)

Ftrac(t) =
M(t)
rwheel

(6)

There was no optimization constraint formed in relation with the track, which was
assumed flat, and the vehicle path was straight. In the optimization process, Nvar = 13
variables were created for discrete speed values in the v vector in Equation (7), defined
with the rule of Equation (8). The M optimization vector (Equation (9)) to the correspond-
ing speed values needed to be calculated. The genetic algorithm was applied with the
constraints described in Equations (10) and (11). Mmax is the maximal applicable torque for
the powertrains according to Table 2.

v =(v0, v1. . . vn−1) (7)

vi= i · 2.5(i = 0, 1 . . . n− 1) (8)

M =(M0, M1, . . . Mn−1) (9)
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Mi ∈ R+(i = 0, 1 . . . n) (10)

0 ≤ M i ≤ Mmax (11)

There were three sets of optimization attempts made for each investigated powertrain
for the reference vehicle (SZElectricity) and the current vehicle (SZEmission). Third order
polynomial fitting was applied to create speed continuous torque relation. The covered dis-
tance and the time of acceleration were not considered in the results. The optimized torque
reference curves of the powertrains of the investigated vehicles are shown in Figure 9.
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From the results and the shape of the curves, the difference between the vehicles
and the powertrains is clearly visible. The reference vehicle has higher power demand in
every case due to its greater driving resistance, and the optimization modifies the curves
respecting that. The powertrain QB3403 (Figure 9a) has low efficiency in a low speed range,
making the curve flat in that area. The Emoteq powertrain (Figure 9d) is clearly undersized,
as it reaches its maximum torque at low speeds. There is no apparent difference between
the curves of the vehicles, which means the powertrain is the limiting factor. The torque
reference curve characteristics of SZEVOL (Figure 9b) and Volcano (Figure 9c) are similar,
despite the Volcano operating at higher torque values for almost the whole speed range.
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The Volcano drive has less energy loss in a higher torque and speed range, therefore the
optimized acceleration curve is near to the maximum available load curve. The application
of the optimized acceleration curve saves a considerable amount of energy compared to
the full load acceleration, but the time demand also increases. Interestingly, the form of the
optimized curves does not depend on vehicle mass; they are defined by the properties of
powertrain and driving resistance.

Figure 10 summarizes the consumed electric energy of each powertrain until the
vehicle reaches the speed of 30 km/h, which illustrates classic SEM lap starts. Based on
the results of the acceleration simulation, the Volcano powertrain was chosen for further
driving strategy investigation.
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Powertrain evaluation can be preliminary performed before starting the track opti-
mization. The advantage of choosing the powertrain first is to save significant optimization
time. The usage of the optimized acceleration curve of powertrains saves significant en-
ergy during the acceleration of the vehicle, although the time loss is not beneficial in race
conditions. This result can be useful in urban vehicles in real transportation conditions,
where the constrains are more relaxed and robust solution is needed, due to the disturbance
of traffic.

5. Driving Strategy Optimization

The driving strategy optimization of the SZEmission vehicle was carried out to the
two investigated tracks with the previously chosen Volcano powertrain. Genetic algorithm
remained the optimization tool, where the fitness function was changed according to
Equation (12). The goal to minimize of consumed electric energy (E) remained, even as
further optimization constraints were formed.

Only one race lap is investigated with the optimization, considering the characteristics
of the track and the vehicle starts from standing position. The vehicle needs to complete
at least the track distance smax – 2 m, leaving space for the driver to maneuver correctly
to the finish line, where there is usually traffic at SEM races. Due to this buffer distance,
the vehicle not forced to stop; it just needs to decrease the speed below 8 km/h. The
vehicle needs to finish the lap below the time limit Tmax. The optimization constraints are
summarized in Equation (12). The actual vehicle speed is described in Equation (13).



Energies 2022, 15, 3631 14 of 20

The driving strategy optimization problem for discrete tracks can be formulated
as such:

Minimize E subject to :


smax − 2 ≤

∫ T
0 v(t) dt ≤ smax

T ≤ Tmax

v(0) = 0 and v(T) ≤ 8

(12)

v(t) =
T∫

0

M(t)
rwheel
−Fres(t)

mvehicle
dt (13)

Description of Optimization Cases for Track Optimization

The state machine of the vehicle model was modified to adapt the proposed driving
strategy in Ref. [12], which is going to be the reference optimization, as the basic principle
of systematic acceleration–coast down phases is a very popular strategy in SEM events.
The coasting method is also used in urban railways as a train control method to reduce
energy consumption [21]. The parameter vector of that optimization method is shown in
Equation (14). The gear of the powertrain remains unchanged, formulated on the results
of the powertrain evaluation. The fitness function is described in Equation (12) and the
parameter vector of optimization variables in Equation (14).

opt = { v max, vmin, Mstart, Mmin} (14)

The main advantage of this method is the small optimization vector with only four
parameters, which also means a low optimization time. The parameter constraints are
described in Equation (15).

Limits :


10 ≤ vmax ≤ 40
1 ≤ vmin ≤ 25

25 ≤ Mstart ≤ 40
1 ≤ Mmin ≤ 30

(15)

The Max Torque optimization method is also based on the acceleration–coast down
technique, but it has been modified to be dependent on the track, not vehicle speed. The fitness
function and the optimization constraints are described according to Equations (12) and (13).
Number of variable n is dependent on the track length according to Equation (16). The
track distance s is divided into parts described in Equation (17), with the rule defined in
Equation (18). For practical reasons, the interval of 10 m was chosen. In this optimization
method, a parameter vector of z needs to be found for the corresponding s vector. The value
z is defined with Equation (20). This vector provides input for the state machine which
implies the torque is, in this case, maximum or zero for the determined track distances.

n =
smax

10
+1 (16)

s =(s0, s1. . . sn−1) (17)

si= i · 10 (i = 0, 1 . . . n− 1) (18)

z =(z0, z1, . . . zn−1) (19)

zi =

{
0, if Mi= 0
1, if Mi= Mmax

(20)

The Max Torque optimization method is suitable for finding the right track coordinates
where torque should be applied by the drivetrain. The amount of applied torque is
maximized to decrease possible solutions and therefore the optimization time. Previous
attempts showed that if the rule in Equation (20) is not used, the genetic algorithm is not
working efficiently without further assistance. The efficiency of the genetic algorithm could
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be increased by adding human driven laps into the initial population
(
Npop

)
such as in

Ref. [17]. This method is also appropriate for choosing the right gear ratio for the actual
powertrain, as the maximum torque differs of each option. The described Max Torque
optimization method is mainly applied for analyzing the track and providing input for a
more detailed investigation of the applied torque.

In the TRQ (Torque) optimization, the parameter vector of M is matched by the
algorithm to the corresponding s vector, as described in Equation (21). TRQ optimization
is carried out by using the results of the Max Torque optimization according to the rules
defined in Equations (22) and (23). The rules were created to allow slight modification in
timing of the torque and ensure that the parameter vector of M meets the criteria of the
fitness function.

M =(M0, M1, . . . Mn−1) (21)

Mi ∈ Z+(i = 0, 1 . . . n − 1) (22)

0 ≤ Mi ± 1 ≤ Mmax if zi= 1
otherwise Mi= 0

(23)

It is essential to highlight that the Max Torque optimization must be solved first to
provide input for TRQ optimization, therefore the optimization time is added. The initial
population of pure TRQ optimization contains a huge number of individuals with low
score of fitness when the constraint of Equation (23) is not applied. The genetic algorithm
is forced to search for an appropriate value of torque for the defined track coordinates. The
applicable torque values are limited to integer numbers to decrease possible solutions and
the running time of optimization. In the following section, the investigated two tracks are
analyzed, and driving strategy optimization methods are compared.

6. Results and Discussion

The London Track, where the last SEM event was held in 2019, was the first location to
be analyzed. The track data were collected from a publicly available database. The length of
the track is 1353 m, and it has slight elevation as described earlier in Figure 6. The reference
optimization operates with long acceleration phases between 19 km/h and 29 km/h. The
maximal vehicle speed is lower than the other two cases, which makes the third acceleration
necessary. The result clearly shows the drawbacks of the few optimization variables, which
cannot take the characteristics of the track into consideration. The Max Torque Optimization
assigns the acceleration to the actual position to the track, not to the speed, therefore it
takes advantage of the track. Regarding this method, more smaller acceleration phases can
be noticed in Figure 11a. The speed peaks at almost 34 km/h, and after the last acceleration
a long coast down phase starts until the end of the lap. The TRQ optimization refines the
result of the previous method, mainly modifying the velocity profile between from 60 s
to 100 s. The conclusion can be drawn from Figure 11b that the energy cost of the third
acceleration is significant. The modification of the second acceleration phase results in the
main difference between the reference and the other proposed methods.

The main parameters of the optimization for London Track are summarized in Table 4.
The generation is the number of the iteration made by the genetic algorithm. The function
count is the cumulative number of fitness function evaluation, and it correlates to the
relation of iterations and population size [22].

The force components of the best optimization attempt for London Track is shown in
Figure 12.
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TRQ optimization.

The vertical force component of the track is the most crucial local resistance, which
influences the timing of the accelerations. The driving resistance is vehicle speed dependent,
but it can be considered a continuous load due to the small aerodynamic drag even at
higher speeds.

The Uni Track functions as a proving ground in ZalaZone for an autonomous and
urban vehicle for university research. The track length is 576 m, which is much shorter
than the London Track, and has a higher elevation difference. The reference optimization
manages the speed between 15 km/h and 30 km/h with just one intermediate acceleration.
The Max Torque optimization operates with three intermediate accelerations, but these
prove to be too intensive, which is found by TRQ optimization according to Figure 13a.
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The moderate acceleration applied by this method resulted in more accurate speed control
and less energy consumption, which is visualized in Figure 13b.
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The optimization parameters and results are illustrated in Table 5. The best result of
the Max Torque method is just slightly more favorable than the reference, while the TRQ
optimization results in a 5.5% improvement compared to the reference optimization.

Table 5. Optimization parameters and results for Uni Track.

Optimization Case Reference Max Torque TRQ

Npop 200 580 580
Nvar 4 58 58

Best result 12,485 J 12,285 J 11,798 J
Generation 67 88 83

Function count 6470 51,186 48,311
Energy Saving - 1.6% 5.5%

The trend of the force components in Figure 14 is comparable to the previous graph
in Figure 12. The track vertical force component can almost double the total other vehicle
driving resistance, marking the importance of track related optimization.
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The resultant velocity profile and torque reference can be displayed on the main screen
of the vehicle as a driving pattern for the driver. The driving profile can be replicated
by following the displayed pattern. Based on the acceleration demand of the vehicle,
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LED lights are blinking, which also supports the driver. Naturally, the human driver is
going to differ from the described optimal pattern to some extent. During the autonomous
operation of the vehicle, the control system could exactly follow the predetermined torque
reference according to the GPS coordinates and vehicle speed. Test field measurements
are needed to define the exact driving error of the human driver and autonomous op-
eration. This measurement is going to be considered in the validation of the presented
optimization results.

7. Conclusions

Altogether, three optimization methods were elaborated using the described vehicle
model for the two investigated tracks. The reference optimization was defined in the
literature, which sets vehicle speed and torque limits for the vehicle operation during the
lap. The result does not consider the track characteristics, because the extent and timing
of acceleration is fixed. The proposed Max Torque method evaluates the traction force
demand throughout the whole track and determines the places of acceleration. The extent of
acceleration is not discussed, and the available maximal torque is used. To further improve
the result of this method, the TRQ optimization was applied, where the previously defined
places of acceleration were monitored. The TRQ optimization builds on the Max Torque
method by using its result to assign proper torque values to the places of acceleration. The
TRQ optimization was unable to locate the correct timing and extent of acceleration at first,
therefore the Max Torque method serves as an intermediate step. The application of the
described optimization framework resulted in 5.61% and 5.5% energy savings compared
to the reference method in the respective analyzed tracks. The results of the optimization
methods are summarized in Figure 15.
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Energy recuperation is not included in the proposed vehicle model and optimization.
The process of regenerative braking can be similarly optimized, such as the acceleration if
the powertrain model is extended to the regenerative operation. It is important to note that
the theoretical optimization of the energy recuperation process does not mean the efficient
recharging of the battery. The SOC state of the battery is not measured by the regulations
of SEM, therefore the DC current is not limited. The effect of the wind is not considered in
the vehicle model, while it is the most remarkable external factor of the driving strategy
optimization. The external factors cause a problem for every investigated optimization
method, therefore the application of neural networks could provide improvement in that
field in the future. The application of driving strategy optimization will be essential to
further reduce the CO2 emission in the transportation and could have an even higher
impact on the autonomous vehicles.
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