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Abstract: Our goal is to examine the efficiency of different intraday electricity markets and if any of
their price prediction models are more accurate than others. This paper includes a comprehensive
review of Germany, France, and Norway’s (NOR1) day-ahead and intraday electricity market prices.
These markets represent different energy mixes which would allow us to analyze the impact of the
energy mix on the efficiencies of these markets. To draw conclusions about extreme market conditions,
(i) we reviewed the market data linked to COVID-19. We expected higher volatility in the lockdowns
than before and therefore decrease in the efficiency of the prediction models. With our analysis, (ii) we
want to draw conclusions as to whether a mix based mainly on renewable energies such as that in
Norway implies lower volatilities even in times of crisis. This would answer (iii) whether a market
with an energy mix like Norway is more efficient in highly volatile phases. For the analysis, we use
data visualization and statistical models as well as sample and out-of-sample data. Our finding was
that while the different price and volatility levels occurred, the direction of the market was similar.
We could find evidence that our expectations (i–iii) were met.

Keywords: energy efficiency; energy mix; energy markets; COVID-19; out-of-sample data

1. Introduction

While digitalization and climate change continue, renewable electricity generation,
such as wind and solar power, will be further expanded [1–3]. At the same time, SARS-CoV-
2 (COVID-19) has a major impact on the entire global economy. Changes are particularly
noticeable in the energy sector, as both supply and demand are affected. These effects were
striking regarding WTI and BRENT oil prices, which in some cases fell into negative values
in April 2020 [4]. Since the focus of this paper will be Europe, here are a few examples of
European energy prices: The BRENT oil price dropped by 59% compared to its last peak
on the 17th of February. Also, gas prices dropped to their lowest since 1995 at the same
time [5]. Since the COVID-19 crisis had a major impact on other commodities, such as oil
and gas, the question now arises as to the situation in the whole-sale electricity markets.
Unlike other commodities, electricity cannot be stored to the same extent, which is why
there are special features regarding price forecasts [6]. In contrast to the markets described,
the electricity markets have a lower market extent of liquidity, leading to a wider bid-ask
spread [7]. The motivation of this paper is to analyze and compare different European
short-term electricity markets by applying statistics to corresponding market data. We want
to draw conclusions about the impact of the energy mix on prices and volatilities during
periods of extreme market conditions caused by the effects of the COVID-19 pandemic
crisis on the short-term electricity markets. The motivation is also to analyze if the extreme
market conditions had an immediate impact on energy efficiency. Three markets were
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selected because each market represents a different main energy source. In other words,
this research aims to point out the impact on a market relying mainly on wind energy and
lignite (Germany), a market relying on nuclear power (France), and a market relying on
hydropower (Norway) [8].

Like what has already been done with other commodities, one aim of this paper is
to divide the period of 01.01.2020 to 01.02.2021 into different phases and highlight the
impacts of the lockdowns. The paper by J. Ali and W. Kahn (2020) serves as a model for this
procedure. They looked at the agricultural commodity prices for various products in India
and examined the influences on prices in the individual phases of the local lockdowns.
They found that the weighted average of prices fell during the lockdown [9]. Some papers
focus on the links between the financial and commodity markets. One example is the
paper of A. Elsayed et al. (2020). They investigate co-movements between the energy
market and the financial markets. Furthermore, they analyze time patterns of volatility
spillovers [10]. The research of Bompard et al. (2020) focuses on the immediate impact of
COVID-19 on European Electricity systems. This paper considers the quantified impact of
strategic decisions on regulation and system operations during the lockdown periods [11].

The paper by O. B. Adekoya and J. A. Oliyide (2021) highlights the link between
financial and commodity markets. In addition, it refers to the main price drivers. These
linkages are mainly captured by analyzing price movements and volatilities [12]. Our paper
aims to analyze price and volatility movements as well. Among all financial assets, spot
electricity prices belong to the most volatile asset classes. One of the reasons for the high
volatility is the non-storable nature of volatility. In their study L. Han et al. point out the
risks for the market participants caused by volatilities and extreme price outcomes. For their
analysis, they also looked at the different market regions in Australia individually and then
compared them with each other. We take a similar strategic approach in this paper, as we
examine and compare various European markets based on their volatilities and prices [13].
In our paper, we aim to determine whether there is a link between the type of energy
generation and the price or volatility movement in an extreme economic situation. In doing
so, we will follow the approach of S. Halbrügge et al. (2021) and their comprehensive
analysis of the German electricity market, as well as C. Fezzi and V. Fanghella (2020), who
analyzed the Italian Electricity market [4,14]. In addition, Kuppelwieser and Wozabal (2021)
followed a similar approach as it is done in this kind of research. They also made use of
intraday power data considering out-of-sample data sets. In contrast to our research, they
consider weather forecasting and algorithmic trading. Furthermore, they also took order
data and market liquidity into account [7].

In the course of their research, C. Kath and F. Ziel (2018, 2021) examined the forecast
accuracy by applying modern regression techniques [15] and conformal predictions [16]
in short-term electricity markets [15,16]. The focus and novelty of our paper are not to
create a forecast. Rather, we have applied statistics and visualization techniques to test
the predictive accuracy in the volatile market. B. Finnah et al. used different approaches
to visualizing short-term electricity data in combination with a statistical model. Their
focus was on the German day-ahead and the intraday auction electricity markets [17].
K. Maciejowska et al. (2019) performed a region-based comparison between German and
Polish short-term electricity data. They also made use of visualizations comparing the
different datasets [18]. Kramer and Kiesel (2021) focused on a data visualization regarding
the buy and sell order data for German short-term electricity markets (Figure 1). In their
paper, they also pointed out how the day-ahead and intraday markets are structured.
This graph also supports the understanding of our research [19]. Other factors that can
influence electricity prices are extreme weather and bidding behavior. Ghosh et al. (2021)
investigated the freeze in Texas in February 2021 and analyzed the effects of extreme
weather conditions on electricity prices [20]. Xiao et al. (2021) conducted an analysis of the
bidding behavior using virtual bidding. They focused on wind power producers in the
course of their research [21].
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Figure 1. This figure represents the German electricity spot market. This figure functions to improve
understanding on the market design. This figure has been presented according to Kramer and
Kiesel (2021) [19].

To use (i) out-of-sample data to improve forecasting accuracy, which is defined as the
price difference between intraday and day-ahead markets in a similar way to traditional
asset management, we have examined two types of prices in extreme situations for this
paper [16,22]. We used intraday prices as well as day-ahead prices. One of our goals is to
determine whether the forecasting methods have been improved by using this data. The
periods of March to May 2020 and December to February 2020/21 are crucial. In addition,
countries in Europe reacted with different measures to the pandemic. Considering the
COVID-19 measures and the (ii) different energy mixes, it leads to the question if it had
an impact on the prices [13,23–25]. In other words, did the energy mix influence the
prices during high volatility periods caused by lockdowns? To investigate the question,
we looked at the energy markets in Germany, France, and Norway (NO1). Our overall
research problem is whether (iii) the forecasting accuracy in the German intraday market
has improved in the second lockdown.

1.1. Contributions

Following the guidelines presented in our research design (see Figure 2), we apply
a rigorous, transparent, and reproducible methodology for our models and visualizations.
All four types of figures follow the same coding methodology using different datasets.
We will provide our readers with further details on our scripts when contacting the cor-
responding author. We are transparent about our data sources and codes being used
regarding Bloomberg. We present how different energy mixes react to extreme market
conditions in terms of market efficiency by applying our model to three different short-term
electricity markets.

1.2. Paper Structure

The paper is structured as follows: we first present common methods regarding
volatility and explain our calculation method with regard to confidence intervals. After
that, we looked at the data we used. Our results are structured as follows: A general
introduction to our approach, followed by a structured analysis looking first at intraday
and then at day-ahead prices. In the case of Germany and France, we have also analyzed the
volumes. This is followed by a discussion, conclusion, and outlook. To present our results,
we refer to (i) extreme market conditions, (ii) the energy mix, and (iii) energy efficiency.
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Figure 2. This figure represents the research design including the different stages of research the
data went through in the course of the analysis. The extent at which each kind of data got analyzed
has been linked to the data availability in Bloomberg. DA = day-ahead, I = intraday, p = Price,
v = volume.

2. Materials and Methods
2.1. Price Analysis

We present the data and the corresponding statistical results using various visual-
ization methods to draw a conclusion about the forecast accuracy in a volatile market,
following an order that starts with a general overview via graphs. These graphs include all
price data for German intraday and day-ahead electricity products. Afterwards, we divided
the data into the observed regions (Germany, France, and Oslo—Norway) and added the
30-day volatility and confidence intervals to the analysis. The confidence intervals present
the uncertainty estimates regarding the analyzed data. In addition, electricity generation
was also taken into consideration. Thereby, we pointed out different energy sources (re-
newables and fossil fuels). The following statistical values are determined: Mean, median,
standard deviation, and a 95% confidence interval. To calculate volatility, the following
formula is used in literature for spot prices observed from historical data. Price returns are
used in this example to obtain the volatility estimates [26].

σ2dt = E
[(

d̃S/S
)2

]
(1)

where:

S = Spot Price
σ = Spot Price Volatility
dt = variance

Regarding the volatility figures, we made use of the 30- and 90-day volatility. Thereby,
we retrieved the corresponding data from Bloomberg using the following codes: VOLATIL-
ITY_30D and VOLATILITY_90D.
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To calculate the 95% confidence interval, which will be used in the visualizations, α is
set to 0.05 using the standard normal approximation [27].

βk = [bk − 1.96se(bk), bk + 1.96se(bk)] (2)

This type of analysis is carried out to draw connections between the lockdown periods,
the price development, and the energy production. The focus is on the German market.
The data for France and Norway (NO1) serves as support, as both countries/regions have
different energy mixes.

z =
x − E(x)
Var(x)

(3)

To perform the standardization according to the z-transformation, Formula (3) was
applied. The standardization was carried out for the energy mixes and partly for German
electricity prices [27].

E
(

PI
t

∣∣∣ PD
t

)
= pD

t f or t = 1, 2 (4)

Formula (4) represents the underlying message of the research. It states that the
expected price of the intraday price is the day-ahead price. Our research incorporates this
statement through the visual comparisons and continues to refer to it in the Results and
Conclusion. In doing so, we want to highlight the extent to which the forecasts made were
accurate in the tense market environment [28].

2.2. Volume Analysis

A volume analysis is included for Germany to prove that the price developments
during the lockdown periods had the COVID-19 pandemic crisis as the main driver. For
France, the volume data are used to support hypotheses. For NO1, this analysis is not
performed as no data are available in Bloomberg. Similar to prices, the following statistical
quantities are determined for German and French intraday and day-ahead volumes: Mean,
Median, and Standard Deviation. For the German intraday and day-ahead volumes, an
additional graph was created that also includes the 95% confidence interval. However, this
type of analysis only serves to support the statements, whereby the focus is on the German
spot market for electricity.

2.3. Programming Language

To run our calculations and create the visualizations, we used the programming
language python. We used the packages pandas and scripy stats for the statistics and
matplotlib and seaborn for our statistical graphics. For the standardization applied to
some of the figures, we employed the standardscaler. This package removes the mean and
scales of each variable to unit variance. The underlying mathematical approach is made
transparent in Formula (3). The style used to set the colors of the graphs is the “darkgrid”
style. We made use of visual studio code to create the graphs and calculate the statistics.

2.4. Data
2.4.1. Electricity Prices

For the price analysis, Bloomberg data for the German, French, and Norway (NO1)
day-ahead and intraday prices have been used. As stated before, the 30-day-volatility and
90-day-volatility were retrieved from Bloomberg. The confidence intervals are based on
their own calculations in Python. In the case of the German and French electricity prices,
EPEX Spot prices were used. In the case of the Norwegian price data, prices from Nord
Pool were used. All calculations are based on hourly data and their mean values. The
prices for Germany, France, and NO1 prices were provided in euros. The analysis is based
on the daily closing prices of the traded hours. In addition to the prices, the 30- and 90-day
volatility was also subtracted for the same data set.
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Table 1 gives an overview of all relevant statistical data regarding the prices used.
More than 5000 data points were used in each case.

The lockdown periods (Table 2) may differ. On the one hand, the time series of data
extends to 1 February 2021. On the other hand, various measures or news items have
ushered in a period of higher volatility in the markets. Table 2 represents the data periods
that have been used for the statistical calculations.

Table 1. General Statistics across all Price Categories in MWh/EUR.

Statistics German
Intraday

German
Day-Ahead

France
Intraday

France
Day-Ahead

NO1
Intraday

NO1
Day-Ahead

count 6356 6532 5367 6532 6532 6248

mean 38.23 34.67 37.49 36.16 14.17 12.72

std 35.93 17.02 18.54 16.97 17.65 14.82

median 35.00 33.58 36.50 35.40 8.84 8.08

min −150.00 −83.94 −25.20 −8.65 −1.73 0.02

max 1000.00 189.25 328.20 189.25 205.68 152.25

Table 2. Data for the statistical evaluation on electricity prices.

Observation
Period

German
Intraday

German Day
-Ahead

France
Intraday

France
Day-Ahead

NO1
Intraday

NO1
Day-Ahead

January
2020

1 January
2020–31
January

2020

1 January
2020–31

January 2020

1 January
2020–31
January

2020

1 January
2020–31
January

2020

1 January
2020–31
January

2020

1 January
2020–31
January

2020

January
2021

1 January
2021–31
January

2021

1 January
2021–31

January 2021

1 January
2021–31
January

2021

1 January
2021–31
January

2021

1 January
2021–31
January

2021

1 January
2021–31
January

2021

First
Lockdown

3 March
2020-4 May

2020

3 March
2020-4 May

2020

3 March
2020-4 May

2020

3 March
2020-4 May

2020

2 March
2020-1 April

2020

2 March
2020-1 April

2020

Second
Lockdown

2 November
2020-1

February
2021

2 November
2020-1

February 2021

15 October
2020-15

December
2020

15 October
2020-15

December
2020

2 November
2020-1

February
2021

2 November
2020-1

February
2021

Summer
Months

4 May
2020-30

September
2020

4 May 2020-30
September

2020

1 July
2020-30

September
2020

1 July
2020-30

September
2020

4 May
2020-30

September
2020

4 May
2020-30

September
2020

2.4.2. Electricity Volumes

For the volume analysis, the daily closing volume of the individual hours was used
for further analysis. The same data set was also used regarding German and French
volumes (Table 3).

Table 3. General Statistics across German and French Volumes in MWh/EUR.

Statistics German
Intraday

German
Day-Ahead France Intraday France

Day-Ahead

count 5689 6816 6392 6486

mean 5689.82 24,379.26 169.43 14,082.17

std 2844.92 4164.75 288.43 2814.81

median 5805.00 23,881.50 40.00 13,963.10

min 0.00 14,441.00 0.00 6892.00

max 61,234.00 43,600.00 2917.00 25,013.00
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The entire record refers to five business days in a week and does not include weekends
and national bank holidays. If there was no data for a specific product in the record due to
a bank holiday or if the product was not traded on that day due to low liquidity, the record
will have a blank field.

2.4.3. Electricity Generation

The electricity generation data was gathered from the ENTSO-E Transparency Platform.
The observation period starts on 1 January 2020 and ends on 31 December 2020. To get
a quick overview of the main electricity sources, we have plotted the main electricity
generation sources per country. Figures 3–5 show the standardized values on the left side
and the non-standardized values in MWh on the right side [8].

Figure 3. This figure represents the German electricity generation. (a) Shows an approach using data
standardization which has been defined in Formula (3); (b) Shows the electricity generation sources
in MWh. Figures 3–5 got generated using the same code in Python.

Figure 4. This figure represents the French electricity generation. (a) Shows an approach using data
standardization which has been defined in Formula (3); (b) Shows the electricity generation sources
in MWh. Figures 3–5 got generated using the same code in Python.
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Figure 5. This figure represents the Norway (NO1) electricity generation. (a) Shows an approach
using data standardization which has been defined in Formula (3); (b) Shows the electricity generation
sources in MWh. Figures 3–5 got generated using the same code in Python.

3. Results
3.1. Results on the Overall Investigation

We translated our statistical results into graphs which enabled us to draw conclusions
about the energy price and volatility situation during and between the two lockdowns in
the three countries. Our summary statistics are presented in Table 1. We looked at intraday
prices and day-ahead prices. The data is divided into a country/region-based analysis
and two different lockdown periods. In addition, the 30-day volatility and the confidence
intervals are considered as well. The following data is not standardized. The focus of the
analysis will also be on the influence and crisis-proofing of renewable energies. Therefore,
the electricity price development in France and the NO1 region in Oslo, Norway, will also
be considered. For all three countries/regions, the following periods were considered:
Price and volatility level in January 2020 as the pre-COVID-19 phase compared to the price
level in January 2021. The respective first and second lockdown periods. The periods differ
due to national regulations. In addition, the summer months are considered because the
scope of the measures was small in all three countries.

The observation period from January 2019 to February 2021 was considered. The
graph also takes into consideration the 90-day-volatility. One weakness of these graphs is
that the overview is not always given (see Figure 6).

Figure 6. These figures show an example of the German day-ahead prices (a) and intraday prices (b).
The visualization applies standardized data (see Formula (3)). Figure 6 got generated using the same
code in Python.
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3.2. German Electricity Prices

In this part of the analysis, the German market is considered first. The graphs for
French and Norwegian short-term power follow the same structure. On the left, there is
always a presentation of the price level. The right sight displays the volatility development.
The last two graphs include the mean as well as a 95% confidence level. A wide confidence
level indicates more dispersion and, thus an uncertainty around the actual mean value.
Germany had two lockdown periods during the observation period. The first lockdown
period started in March 2020 and ended in May 2020. The second lockdown period started
as a so-called soft lockdown in November and was then tightened in December. At the
time of the data withdrawal in February 2021, the second lockdown in Germany had not
yet ended [29]. In terms of the energy mix, Germany drew most of its energy from onshore
wind power when it comes to the mean value analysis. Following the same mean value,
approach lignite came in second place. It is striking with regard to the energy mix that none
of the electricity generation sources make up the majority, i.e., have a share of over 50% [8].

3.2.1. German Intraday Prices

Figure 7 shows a clear increase in volatility in April 2020. The confidence level also
shows greater volatility between April and May. In the second lockdown, volatility does
not increase as much again. The reasons for the volatility increase in April 2020 could
be many and varied. On the one hand, it could be related to the drop in oil prices, as
there are correlations, or to weather data. This is particularly evident regarding the 30-day
volatility, where a rise is visible after approximately fourteen days. However, this paper
considers only the analysis of price, volatility, and production data. Correlations with other
commodities are omitted [4,13]. Before April 2020, both prices and volatilities were at a
stable level. After showing high outliers in April 2020, the price level recovered again.
Therefore, in May, it was back at the level before April. The sample regarding the second
lockdown starts on the first of November 2020 and ends on the first of February 2020 and
indicates any similarities to the first lockdown. In contrast to the first lockdown, the price
level remained at a higher level. Volatility, on the other hand, was lower. It recovered in
May 2020, after the first lockdown, and remained at a constantly low level. Except for
the numerous outliers highlighted in the price range based on confidence levels, the price
movement shows an upward trend. For example, the price in January 2020 at 37.81 EUR
is below the price in January 2021 at 54.51 EUR. The lowest price in the data set here is
−150.00 EUR, and the highest price is 1000.00 EUR.

Figure 7. This figure represents the intraday price levels for German power including its’ confidence
levels on the left side and the 30 day volatility including its’ confidence levels on the right side.
Figures 7 and 8 got generated using the same code in Python.
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Figure 8. This figure represents the day-ahead price levels for German power including its’ confidence
levels on the left side and the 30-day volatility including its confidence levels on the right side.
Figures 7 and 8 were generated using the same code in Python.

3.2.2. German Day-Ahead Prices

Figure 8 shows that the impact on volatility was greater on the day-ahead market
than on the intraday market. Volatility shows the highest level during the first lockdown
and decreases towards the end of the lockdown (Table 4). The prices show a clear drop in
April 2020, which is the exact opposite development of the intraday market. After the first
lockdown, the price level recovers. In April 2020, the average price under consideration
dropped significantly into negative territory. As Valitov (2020) demonstrated, negative
prices have been possible in the day-ahead market in Germany since 2008. The reason for
this is the high feed-in of RES, for example, in times of low demand [30]. The lowest price
in the data set is −83.94 EUR, whereas the highest price is 189.25 EUR which is also an
indicator of high outliers. Outliers are also characterized by higher confidence intervals in
the price graph. At the beginning of December, the price level increased and showed high
swings. During the bank holidays around Christmas, the price level decreased again before
moving up in January. Also, the 30-day volatility moved down during the bank holidays
before it increased around the 15th of November. In January, the volatility increased again,
and by the end of January, there was a drop in volatility. The price level in December 2021
is also higher than the price level in December 2020. Compared to the intraday area, the
confidence level in the day-ahead area is constantly wider.

Table 4. General Statistics about German Prices and Volatilities in EUR.

Observation
Period

Germany
Intraday

(Mean Price;
Mean Vola)

Germany
Intraday

(Std Price;
Std Vola)

Germany
Day-Ahead
(Mean Price;
Mean Vola)

Germany
Day-Ahead
(Std Price;
Std Vola)

January
2020

37.81;
1045.02

21.40;
308.11

33.91;
1138.85

13.54;
1066.01

January
2021

54.51;
1110.88

26.48;
404.37

54.72;
1110.18

17.34;
944.49

First
Lockdown

24.01;
1692.26

39.88;
531.82

21.60;
1842.29

13.03;
984.57

Second
Lockdown

48.71;
1023.19

33.32;
399.93

48.31;
1226.78

17.71;
1047.86

Summer
Months

38.10;
1146.86

39.42;
336.66

32.99;
1214.32

14.15;
916.56
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The average price was 38.23 EUR for intraday and 34.67 EUR for day-ahead prices.
The standard deviation was 35.93 for intraday and 17.02 for day-ahead.

• Compared with France and NO1, Germany has the most diverse energy mix, but is
also heavily dependent on the fluctuating energy production from on-shore wind,
which accounts for the largest share even before lignite;

• The wide confidence levels could be explained by the strongly fluctuating electricity
production via offshore wind;

• Day-ahead and intraday prices diverge sharply in the first half of the year but have
converged significantly in the second half of the year;

• The first lockdown shows a fundamentally lower price level than the second. At the
same time, the first lockdown is the period with the highest volatility;

• The price level in January 2021 is significantly higher than the price level in Jan-
uary 2020.

3.2.3. German Traded Volumes

Figures 9 and 10 compare the volumes traded on the German intraday (Figure 9) and
day-ahead (Figure 10) markets. When looking at the day-ahead volumes this figure does
not indicate any abnormalities during the COVID-19 pandemic crisis. Rather, this figure
indicates seasonal fluctuations. In the intraday area, however, the situation is different. The
confidence levels show large outliers, especially in the summer months. Higher traded
volumes on the intraday market are linked to a higher level of flexibility.

• In January 2020, higher volumes were traded than in January 2021;
• In the first lockdown, the standard deviation in the day-ahead area was higher than in

later periods, and more average daily volume was traded in the day-ahead market. It
does not decrease again until late summer;

• On the day-ahead market, it is noticeable that the confidence level is always quite
constant and that the volumes increase in the summer months;

• In the second lockdown, more was traded in the intraday area/less was traded in the
day-ahead area (compared to the first lockdown period).

Figure 9. Shows German average traded volumes per day in Intraday markets. The light blue shadow
represents the 95% confidence level. Figures 9 and 10 got generated using the same code in Python.
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Figure 10. Shows German average traded volumes per day in Day-Ahead markets. The light blue
shadow represents the 95% confidence level. Figures 9 and 10 got generated using the same code
in Python.

3.3. French Electricity Prices

The graphical analysis follows the same pattern for France. The same parameters are
superimposed, and day-ahead and intraday prices are also compared. As each country
in Europe has its own lockdown rules, the lockdown periods in France differ from those
in Germany. In France, the first lockdown period was from March to June/July. This
extends the observation period compared to Germany. The second lockdown began in
mid-October and was relaxed again in mid-December. Until the end of our observation
period on 1 February, a curfew remained in place from 6 p.m. to 6 a.m. CET [31]. France
obtains most of its electricity from nuclear energy sources. The calculations based on the
average values showed that almost 70% of the electricity produced over the year came
from nuclear sources. Hydropower and onshore wind power take second and third place
in France. The mean values of both accounted for less than 10% of the energy mix on an
annual average [8].

3.3.1. French Intraday Prices

In direct comparison with the German intraday electricity prices, it is noticeable that
the price level of the French intraday prices fluctuates even more (Figure 11). However, the
general price level falls between March and May 2020 and rises again in June. Volatility
initially fell sharply in February 2020 but jumped again in March, coinciding with the
first COVID-19 measures. Volatility in June is lower than in the previous month. The
confidence interval of volatility from March to June also indicates a higher dispersion and,
thus, greater uncertainty regarding forecasts. As volatility decreases and prices rise in June,
the confidence level also decreases. At the time of the announcement of the second national
lockdown, prices and volatility rose simultaneously. Also, the confidence level of volatility
shows greater excesses. At the end of the second lockdown, there was a clear drop in prices
and a jump in volatility. However, the situation recovers quickly thereafter. Compared to
prices in January 2020, prices in January 2021 are at a higher level. In contrast, intraday
volatility is at a lower level. The highest price in the data set is 328.20 EUR, and the lowest
is –25.20 EUR. This indicates outliers, which are also evident in the price range via the
confidence level.
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Figure 11. This figure represents the intraday price levels for French power including its confidence
levels on the left side and the 30-day volatility including its confidence levels on the right side.
Figures 7, 8 and 11–14, got generated using the same code in Python.

3.3.2. French Day-Ahead Prices

The price development in the day-ahead area (Figure 12) hardly differs from the
intraday area. Only the confidence intervals are somewhat larger in the intraday area. This
becomes visible via the outliers. In the day-ahead area, the lowest price is −8.65 EUR and
the highest at 189.25 EUR. Like the intraday area, the prices are lower in summer than
winter. A particularly low-price level during the first lockdown should be noted. Compared
to the price level in January 2020, the price level in January 2021 is also higher. Differences
in intraday prices are visible when it comes to volatility. Volatility is characterized by
two peaks during the two lockdowns. First, there was a clear increase in April 2020 and
another in June 2020. In the period in between, volatility fell once again. At the same time,
the confidence level also decreases during this period. The development of volatility and
confidence intervals during the second lockdown shows similarities to the development in
the intraday area.

Figure 12. This figure represents the day-ahead price levels for French power including its confidence
levels on the left side and the 30-day volatility including its confidence levels on the right side.
Figures 7, 8 and 11–14, got generated using the same code in Python.
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The average price per day was 37.49 EUR; 36.16 EUR and the standard deviation for
the entire period was 18.54; 16.97.

• In France, less nuclear power is produced in the summer months, and a little more use
is made of renewable energy sources such as solar. No link between generation and
price level is visible;

• Table 5 shows that there are no major fluctuations between day-ahead and intraday.
Thus, it can be said for the forecast accuracy that it is higher in France;

• In the first lockdown, prices fell sharply and showed a high volatility. In the second
lockdown, prices rose sharply, and volatility was low;

• Day-ahead and intraday prices were always close to each other in the mean and
median. However, they also show strong outliers.

Table 5. General Statistics about French Prices and Volatilities in EUR.

Observation
Period

France
Intraday

(Mean Price;
Mean Vola)

France
Intraday

(Std Price; Std
Vola)

France
Day-Ahead
(Mean Price;
Mean Vola)

France
Day-Ahead

(Std Price; Std
Vola)

January
2020

38.31;
1221.29

12.21;
717.49

37.55;
546.84

10.73;
321.90

January
2021

62.37;
601.00

18.39;
309.41

61.24;
644.05

17.17;
647.56

First
Lockdown

22.00;
1397.17

9.78;
476.57

21.30;
1161.13

9.32;
795.95

Second
Lockdown

47.09;
843.06

16.76;
405.42

46.26;
824.63

15.41;
651.17

Summer
Months

41.45;
527.49

16.33;
242.01

40.76;
567.71

12.34;
490.50

3.3.3. French Traded Volumes

The following is a brief supporting analysis of the volumes for French electricity prices.
Table 6 represents the general statistics regarding the traded volumes. Thereby, the

analysis was conducted on the mean and standard deviation for intraday and day-ahead
prices. The average volume traded per day was 169.43 MWh; 14,082.17 MWh and the
standard deviation for the entire period was 288.43; 2814.81.

• During the first lockdown, less than normal trading took place on the intraday market;
• During the second lockdown, the most trading took place on the intraday market. The

standard deviation was also above average;
• During the summer months, less than average was traded via the day-ahead market;
• In January 2021, more than the average was traded on the day-ahead market and more

compared to the previous year;
• The standard deviation of the day-ahead volumes is quite constant.

Table 6. General Statistics about French Volumes in MWh.

Observation Period
France

Intraday
(Mean)

France
Intraday

(Std)

France
Day-Ahead

(Mean)

France
Day-Ahead

(Std)
January 2020 178.21 292.91 14,724.14 2855.71

January 2021 178.99 257.54 16,449.86 2642.51

First Lockdown 132.13 244.21 14,088.72 2381.12

Second Lockdown 195.73 309.71 14,373.57 2600.35

Summer Months 180.25 288.66 12,450.08 2650.61
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3.4. Norwegian Electricity Prices

The graphical analysis follows the same pattern for Norway. It only considers the Oslo
region (NO1). The Norwegian government declared a national lockdown in mid-March
2020. At the end of April, the first relaxations were decided, and relaxations were introduced
until mid-June [32]. Norway introduced new national restrictions by the end of October
2020. These restrictions were still in place once the observation period ended [33]. In terms
of energy production, Norway produces electricity mainly from hydropower. This energy
source is divided into the hydro water reservoir and hydro run-of-river and poundage.
Together, these two energy sources account for almost 100% on an annual average. Wind
onshore or fossil gas accounts for less than 5% of Norway’s energy production [8].

3.4.1. NO1 Intraday Prices

The price development in the intraday area (Figure 13) shows a bearish trend, includ-
ing several outliers until April. At the beginning of June, the price level was relatively stable
at EUR 9.00. During the second lockdown period, the prices show volatile movements.
The trend is a rising price. Compared to the price level in January 2020, the price level in
January 2021 was higher. However, the curve shows a high price level in winter and a low
price level in summer. The confidence level of the prices does not show any conspicuous
features and is evenly distributed over the year. The lowest price in the data set here is
−1.73 EUR, and the highest price is 205.68 EUR. The 30-day volatility also increased during
the first lockdown period. Thus, it started being around 350 in the first lockdown and
ended up at a level of 770 during the second lockdown. The confidence level of the 30-day
volatility increased between March and July and decreased again in September. The second
lockdown also shows a widened confidence level.

Figure 13. This figure represents the intraday price levels for NO1 power including its confidence
levels on the left side and the 30-day volatility including its confidence levels on the right side.
Figures 7, 8 and 11–14, got generated using the same code in Python.

3.4.2. NO1 Day-Ahead Prices

The price development in the day-ahead area (Figure 14) also shows a bearish trend
until April. Like in the intraday area, the prices reached their lowest point in June. From
June, the day remained at nearly the same level. During the summer months, the price level
remained low and showed some peaks in September and November. In December, the price
level increased again. Compared to January 2020, the price level was higher in January 2021
(Table 7). Regarding the confidence level of the prices, there are no conspicuous features in
the day-ahead area. This indicates that the uncertainty regarding prices is less great. In the
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day-ahead area, the curve also shows a low price level in summer and a high price level in
winter. In terms of this shape, there is a similarity to the intraday prices. The lowest price in
the data set is 0.02 EUR, and the highest price is 152.25 EUR. At the end of March, volatility
started increasing and reached the first peak in the mid of April where it remained relatively
stable. The volatility shows more peaks between May and October. In November, it started
to rise and ended up at a higher level compared to January 2020. Between November and
March, the confidence level widened until it narrowed again in January.

Figure 14. This figure represents the day-ahead price levels for NO1 power including its confidence
levels on the left side and the 30-day volatility including its confidence levels on the right side.
Figures 7, 8 and 11–14, got generated using the same code in Python.

Table 7. General Statistics about NO1 Prices and Volatilities in EUR.

Observation
Period

NO1
Intraday

(Mean Price;
Mean Vola)

NO1
Intraday

(Std Price; Std
Vola)

NO1
Day-Ahead
(Mean Price;
Mean Vola)

NO1
Day-Ahead

(Std Price; Std
Vola)

January
2020

25.34;
160.33

4.19;
100.58

23.68;
97.94

4.06;
29.08

January
2021

59.16;
575.52

28.79;
124.94

52.41;
539.61

19.25;
162.48

First
Lockdown

8.96;
354.71

4.86;
178.76

7.79;
193.10

2.05;
76.19

Second
Lockdown

28.86;
773.76

28.10;
332.86

26.10;
688.65

22.98;
365.61

Summer
Months

5.47;
620.98

5.20;
299.48

4.71;
419.00

4.65;
272.55

The average price of the daily traded volume was 14.17 EUR for intraday and 12.72 EUR
for day-ahead prices. The standard deviation was 17.65 for intraday and 14.82 for day-ahead.

• During the first lockdown, the price in the day-ahead and intraday area fell sharply.
This trend was reinforced in the summer months. In the summer months, less electric-
ity was produced by waste and wind power;

• In the second lockdown, the price level and the level of volatility increased. At the
beginning of the second lockdown, the production of hydropower by water reser-
voirs collapsed;
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• The price level in January 2021 is significantly higher than the price level in January
2020. The same applies to volatility;

• Intraday and day-ahead prices both have low confidence level shears and have a
similar shape (low prices in summer and high prices in winter);

• There are no strong outliers, as is the case with German and French prices. Intraday
prices show more outliers than Day-Ahead prices;

• Hydropower as the largest generation source can be stored and is more independent
of the weather;

• Both curves show very similar price and volatility developments.

The results confirm the statement that the 2nd lockdown had a stronger impact on the
energy markets in the NO1 region.

4. Discussion
4.1. Critical Appraisal

The following section discusses elements of the paper based on the current state of
research. Since a further step in analyzing the data would be prediction methods, we will
now briefly discuss back testing, which is commonly used in practice. We can refer to
the study by L. Han et al. (2020). They pointed out that spot electricity prices are among
the financial products with the highest price deviations and the greatest volatility. They
attribute this to the non-storable nature of electricity [13]. Due to the many uncertainties
caused by the high volatilities and the price outliers, increasingly complex technologies
are being used in the energy markets to predict prices [13,34]. This is necessary because
errors arise, for example, through back testing. This is the case because back testing cannot
detect so-called black swans [35,36]. An example of a so-called black swan event was the
negative oil prices in April 2020 [5,36]. Machine learning (ML) can get around this problem.
For example, multivariate analyses using ML can be used to find important indicators that
point to a crisis [35]. Different energy markets would support the research here. Therefore,
we recommend ML techniques for further analysis of the data.

Another challenge regarding the forecasting accuracy of German electricity is the
rapidly changing energy mix. The higher volatilities caused by this also require further
complex models and automated trading techniques. In addition, there is a growing need
for more comprehensive analyses of alternative data types, such as weather [4,6,37]. This
alternative data type is an additional element of the analysis compared to the financial
markets. O. B. Adekoya and J.A. Oliyide (2021) and A. Elsayed et al. (2020) have highlighted
the links between financial markets and other commodities during the COVD-19 crisis.
This comparison is not made in this paper, as the focus is on pure price and volatility
movements, supported in some cases by volume data [10,12]. J. Ali, W. Kahn (2020)
analyzed the markets according to the lockdown periods [9]. The same procedure was
used in this paper. However, weaknesses of the method have become apparent since, in
a comprehensive comparison of countries, the lockdown periods differ due to national
regulations [25,29,31,33]. This leads to more difficult comparability of the data. However,
we have deliberately decided to extend the analysis to include different countries and,
in contrast to S. Halbrügge et al. (2021) and C. Fezzi and V. Fanghella (2020), to carry
out a country comparison [4,14]. Furthermore, this analysis should draw attention to the
growing importance of the intraday electricity markets during the expansion of renewable
energies [19,38]. In this way, links to the energy mixes of the countries and the response to
COVID-19 can be established.

N. Löhndorf and D. Wozabal have shown in the course of their research why the
intraday and day-ahead markets are interdependent and why trading only on one of the
markets would not make sense. For example, it would not be optimal to fully utilize
the capacity of the day-ahead market without leaving capacity for the intraday markets.
They point out that the attractiveness of the intraday markets lies in their volatility and
information content. They assume that the attractiveness of the day-ahead markets lies
in the market department. According to their research, forecast errors in the day-ahead



Energies 2022, 15, 3494 18 of 21

market can be caused by e.g., wrong weather forecasts. These forecast errors then trigger,
among other things, price changes in the intraday markets [28,39].

4.2. Research Limitations

This paper refers to forecasting accuracy when the price difference between the intra-
day and the day-ahead electricity markets are described. However, the prevailing research
contradicts the term forecast accuracy is a precise term to describe the price differences be-
tween day-ahead and intraday markets. As some bidders perform price arbitrage between
day-ahead and intraday markets to maximize profits, the day-ahead price is not often a
forecast of the intraday price [40,41]. In order to obtain even more valid results, factors
such as weather, seasonal fluctuations and correlations with other commodities, and, if
applicable, public holidays would also have to be considered. Furthermore, the data quality
of the Norwegian data is limited as there is no volume data available on Bloomberg. For
further analyses, it would therefore be helpful to draw on other Nordic markets and more
regions in Norway with a high share of renewable energies as well. Sweden or Denmark,
for example, could be considered [22]. This paper does not consider different price systems.
For instance, in Europe and Australia, a zonal price system is common, whereas the U.S.
uses a nodal price system. In the case of a wider selection of countries, these differences
need to be considered [42]. In addition to it, we only considered the market closing prices
of each day under consideration. In order to draw a conclusion on intraday volatility,
hourly price data should be included as it might have had a positive impact on the data
quality. We did include weather forecasts in our analysis as done by Kuppelwieser and
Wozabal (2021) [7]. An additional factor that could be considered is the COVID-19 case
numbers or, in the meantime, the vaccination rate for the countries studied.

5. Conclusions and Outlook

This paper finds that COVID-19 had an impact on the energy markets in Germany,
France, and Norway (NO1). The German electricity market is facing changes. Due to
the increase in energy production from renewable energies, more and more energy is
being traded on the intraday market [39]. This trend is confirmed by our analysis of
the volume. Our overall objective was to determine whether (iii) forecasting methods
in intraday electricity markets in Germany have improved. To find out, we compared
day-ahead prices and intraday prices. We did this because the day-ahead price is the
market-clearing price [38,42,43]. In the comparison, we found that prices in France and
Norway were consistently close. (ii) The power generation in France, which consists mainly
of nuclear electricity, gives a hint here. We conclude that France shows close intraday
and day-ahead prices. This may be due to the constant use of nuclear power. We had
expected that (ii, iii) Norway would also be highly efficient. Based on our analysis, we
can conclude that the intraday and day-ahead prices are close together. Norway seems
to be an exception here. Based on our data NO1 data, we can conclude they have low
prices and hardly any outliers, which is particularly evident in the first lockdown period
when compared to the developments of the German and France day-ahead and intraday
markets. Regarding the day-ahead data, the 30-day volatilities were consistently lower than
in Germany and France. These findings provide an indication of the link to the increased
use of hydropower and hydro reservoirs in Norway (NO1) [8]. In Germany, prices were
initially far apart during the first lockdown period. During the second lockdown period,
there was a convergence of prices in the mean and median. This convergence is (i) an
indication, but not proof, that the use of the out-of-sample data of the first lockdown may
have improved the forecast accuracy. In addition, (iii) the constantly changing energy mix
in Germany may have played a role. The results for the German market could be used as
pioneering data for other countries that want to undertake such an energy transition [39].
Other results are as follows:

• All products considered show a higher price in January 2021 compared to the previ-
ous year;
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• In the case of German electricity, however, a lower daily average volume was traded in
January 2021 compared to the previous year. The volume in France remains constant
in the intraday area and is increased in the day-ahead area;

• All prices considered fell in the first lockdown, whereas volatilities rose sharply in
some cases;

• In contrast to France and Germany, the electricity prices for NO1 show fewer outliers,
which could be explained by the generation from water reservoirs and hydropower;

• All prices increased in the second lockdown. Unlike the other products, the volatility
of NO1 increased particularly strongly in the second lockdown. This suggests that
NO1 was hit harder by the second lockdown than by the first.

In the general price and volatility analysis, it was determined that the weather factor
was omitted in the case of nuclear electricity and electricity from hydropower, which
could lead to higher forecast accuracy and to greater crisis security. Higher forecast
accuracy is becoming more important because of extreme electricity prices that have
occurred with larger magnitude and higher frequency in recent years [44]. In addition, new
market regulations and cross-country interconnections need to be considered to understand
electricity prices [45]. Macroeconomic events can lead to an increased level of uncertainty
in the natural gas and electricity market [46,47]. Furthermore, the aim of our research is
to provide statistical evidence for the relationship between energy production and price
and volatility movements. We want to do this because this paper only makes assumptions
based on the results of the graphical analysis.

To produce more valid results, we plan to expand the dataset and consider further
crisis periods. Thus, potential future research would include generalizable indicators
from the prevailing time series that could be employed to filter out or predict future crisis
situations. Reference data for validation could be price data during the Russian aggression
against Ukraine or the subprime crisis. Such a model should be possible even though
there are different energy mixes and or other special features regarding the data structure,
e.g., different lockdown periods. The overall research goal is to develop methods that can
predict the crisis or key indicators such as volatility.

Author Contributions: Conceptualization, J.N.B. and F.M.; methodology, J.N.B. and F.M.; software,
J.N.B.; validation, J.N.B., F.M., D.G. and A.Z.; formal analysis, J.N.B., F.M. and D.G.; investigation,
D.G.; resources, F.M. and D.G.; data curation, J.N.B.; writing—original draft preparation, D.G.;
writing—review and editing, J.N.B., F.M., D.G. and A.Z.; visualization, J.N.B.; project administration,
D.G.; Supervision, A.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The price and volume data has been retrieved from Bloomberg.
The generation data has been retrieved from: URL https://transparency.entsoe.eu/generation/
r2/actualGenerationPerProductionType/show (assessed on 5 June 2021).

Acknowledgments: We would like to thank the 2021 International Joint Conference on Energy,
Electrical and Power Engineering (CoEEPE 2021) for giving us the opportunity to present the paper
at their first conference in Huangshan, China. The underlying research has been published in
the corresponding conference proceedings using the title: How did the COVID-19 crisis affect the
efficiency of European intraday electricity markets? The price and volume data has been retrieved via
the Bloomberg terminal of the ISF Institute for Strategic finance (FOM University of Applied Sciences
for Economics and Management).

Conflicts of Interest: The authors declare no conflict of interest.

https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show
https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show


Energies 2022, 15, 3494 20 of 21

References
1. Marshman, D.; Brear, M.; Jeppesen, M.; Ring, B. Performance of wholesale electricity markets with high wind penetration. Energy

Econ. 2020, 89, 104803. [CrossRef]
2. Detemple, J.; Kitapbayev, Y. The value of green energy under regulation uncertainty. Energy Econ. 2020, 89, 104807. [CrossRef]
3. Härtel, P.; Korpås, M. Demystifying market clearing and price setting effects in low-carbon energy systems. Energy Econ. 2020, 93,

105051. [CrossRef]
4. Halbrügge, S.; Schott, P.; Weibelzahl, M.; Buhl, H.U.; Fridgen, G.; Schöpf, M. How did the German and other European electricity

systems react to the COVID-19 pandemic? Appl. Energy 2021, 285, 116370. [CrossRef]
5. Ghiani, E.; Galici, M.; Mureddu, M.; Pilo, F. Impact on Electricity Consumption and Market Pricing of Energy and Ancillary

Services during Pandemic of COVID-19 in Italy. Energies 2020, 13, 3357. [CrossRef]
6. Duso, T.; Szücs, F.; Böckers, V. Abuse of dominance and antitrust enforcement in the German electricity market. Energy Econ.

2020, 92, 104936. [CrossRef]
7. Kuppelwieser, T.; Wozabal, D. Intraday Power Trading: Towards an Arms Race in Weather Forecasting? Eur. J. Oper. Res. 2021,

in press.
8. ENTSO-E. Actual Generation per Production Type. Available online: https://transparency.entsoe.eu/generation/r2

/actualGenerationPerProductionType/show (accessed on 5 June 2021).
9. Ali, J.; Khan, W. Impact of COVID-19 pandemic on agricultural wholesale prices in India: A comparative analysis across the

phases of the lockdown. Public Aff. 2020, 20, e2402. [CrossRef]
10. Elsayed, A.H.; Nasreen, S.; Tiwari, A.K. Time-varying co-movements between energy market and global financial markets:

Implication for portfolio diversification and hedging strategies. Energy Econ. 2020, 90, 104847. [CrossRef]
11. Bompard, E.; Mosca, C.; Colella, P.; Antonopoulos, G.; Fulli, G.; Masera, M.; Poncela-Blanco, M.; Vitiello, S. The Immediate

Impacts of COVID-19 on European Electricity Systems: A First Assessment and Lessons Learned. Energies 2020, 14, 96. [CrossRef]
12. Adekoya, O.B.; Oliyide, J.A. How COVID-19 drives connectedness among commodity and financial markets: Evidence from

TVP-VAR and causality-in-quantiles techniques. Resour. Policy 2020, 70, 101898. [CrossRef] [PubMed]
13. Han, L.; Kordzakhia, N.; Trück, S. Volatility spillovers in Australian electricity markets. Energy Econ. 2020, 90, 104782. [CrossRef]
14. Fezzi, C.; Fanghella, V. Real-Time Estimation of the Short-Run Impact of COVID-19 on Economic Activity Using Electricity

Market Data. Environ. Resour. Econ. 2020, 76, 885–900. [CrossRef] [PubMed]
15. Kath, C.; Ziel, F. The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts.

Energy Econ. 2018, 76, 411–423. [CrossRef]
16. Kath, C.; Ziel, F. Conformal prediction interval estimation and applications to day-ahead and intraday power markets. Int.

J. Forecast. 2021, 37, 777–799. [CrossRef]
17. Finnah, B.; Gönsch, J.; Ziel, F. Integrated day-ahead and intraday self-schedule bidding for energy storage systems using

approximate dynamic programming. Eur. J. Oper. Res. 2021, 301, 726–746. [CrossRef]
18. Maciejowska, K.; Nitka, W.; Weron, T. Day-Ahead vs. Intraday—Forecasting the Price Spread to Maximize Economic Benefits.

Energies 2019, 12, 631. [CrossRef]
19. Kramer, A.; Kiesel, R. Exogenous factors for order arrivals on the intraday electricity market. Energy Econ. 2021, 97, 105186.

[CrossRef]
20. Ghosh, S.; Bohra, A.; Dutta, S. The Texas Freeze of February 2021: Event and Winterization Analysis Using Cost and Pricing

Data. In Proceedings of the IEEE Electrical Power and Energy Conference (EPEC), Toronto, ON, Canada, 22–31 October 2021;
IEEE: Piscataway, NJ, USA; pp. 7–13. [CrossRef]

21. Xiao, D.; AlAshery, M.K.; Qiao, W. Optimal price-maker trading strategy of wind power producer using virtual bidding. J. Mod.
Power Syst. Clean Energy 2021, 1–13. [CrossRef]

22. Snow, D. Machine Learning in Asset Management. SSRN Electron. J. 2019. [CrossRef]
23. Rintamäki, T.; Siddiqui, A.S.; Salo, A. Does renewable energy generation decrease the volatility of electricity prices? An analysis

of Denmark and Germany. Energy Econ. 2017, 62, 270–282. [CrossRef]
24. Cramton, P. Electricity market design. Oxf. Rev. Econ. Policy 2017, 33, 589–612. [CrossRef]
25. Malec, M.; Kinelski, G.; Czarnecka, M. The Impact of COVID-19 on Electricity Demand Profiles: A Case Study of Selected

Business Clients in Poland. Energies 2021, 14, 5332. [CrossRef]
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