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Abstract: This paper proposes the implementation, analysis and comparison of the control techniques
Proportional, Integral and Derivative, Nonlinear Predictive, Fuzzy control and Sliding Mode Control
technique applied to the speed control of an independent excited DC motor driven by a three-phase
fully controlled rectifier of six pulses. The methodology proposes the design of the bench, model-
ing of the real system by the system identification method and the adjustments of the parameters
of the controllers using an optimization process. Comparisons are made between the techniques,
highlighting their characteristics and performances when executed under similar conditions. The ro-
bustness of each control, when acting on a nonlinear system, is investigated. All control techniques are
applied in three different tests: (i) reference signal of step type without load application, (ii) reference
signal with amplitude variation without load application and (iii) reference signal of step type with
load application. The smallest value of the integral of the absolute percentage error for the first test is
2.01% with the Fuzzy control, for the second test is 3.34% with the nonlinear predictive control and
for the third test it is 1.41% also with the nonlinear predictive control. The techniques present satis-
factory performance in the execution of the proposed control, depending, therefore, on the analysis
of the system to be implemented to determine the appropriate method.

Keywords: DC motor; fuzzy control; model predictive control; sliding mode control

1. Introduction

Control systems are present in everyday life in several different applications, from sim-
ple climate controls of environments and variable industrial processes to more sophisticated
implementations, such as aerospace vehicles [1]. Control systems are fundamental in ac-
complishing several tasks, changing values of some variables in order to control the outputs
of the systems, leaving them within the limits established in the project [2]. There are
several control methods, from the classical proportional, integral and derivative controls
(PID) to modern controls. The development of power electronics and the need to control
nonlinear systems with complex behavioral dynamics, forces the development of advanced
control strategies [3]. Within this new range of controllers it is possible to highlight:
(i) model-based predictive control, (ii) fuzzy control, (iii) sliding mode control, among
several others [4].

There are several applications for modern controls, Rodríguez et al. [5] apply the model-
based predictive control (MBPC) in voltage inverter current control and highlight the ef-
ficiency of the technique compared to classical controllers. Ma et al. [6] apply the MBPC
to the central plant control of refrigeration systems with thermal energy storage, verifying
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that the optimization is based on the models and that the action characteristic of predictive
control is crucial in gaining efficiency of energy management of the system. The fuzzy
control is applied by Khatun et al. [7] in the control of the Anti-lock Braking System
(ABS). Cupertino et al. [8] present a new navigation algorithm for autonomous robots
based on fuzzy logic. The method is implemented through a hierarchical control strategy
in which three different reactive behaviors are merged into a single control law by means
of a fuzzy supervisor. Camboim [9] uses the fuzzy controller in multivariable processes
and with dead time, obtaining responses with reduced rise and settling time.

Utkin [10] employs Sliding Mode Control (SMC) to power converters and verifies
better performance in the face of disturbance rejection, insensitivity to parameter variations
and simple implementation. Feng et al. [11] implement sliding mode control on robotic
manipulators, as the first proposal in second order systems, allowing the elimination
of the singularity problem of the dynamic matrix associated to the effector. Khadija et al. [12]
present the discrete second-order sliding mode control for multivariable nonlinear systems
with external disturbances, indicating the ability of the technique to reduce the chattering
phenomenon. Gouaisbaut et al. [13] optimize the SMC in order to maximize the computable
set of admissible delays. Fernandes [14] performs the optimization process of the SMC
applied to the active suspension of automobiles seeking to improve the performance
index. Ganzaroli et al. [15] implement the optimization of the parameters of the PI cascade
controller with heuristic and deterministic methods applied to the DC motor speed control.

The work of Ławryńczuk [16] presents computationally efficient nonlinear MBPC
algorithms for processes described by the input-output and Wiener state space models
composed of two serial blocks, the first being one linear dynamic block, the second a non-
linear static gain block. Fehér et al. [17] use predictive control applied to an electric drive
system of a permanent magnet synchronous motor. In control, the cost function uses
the L1 norm to penalize a speed deviation seeking a viable predictive control algorithm.
Ogonowski [18] shows that the application of the online optimization algorithm allows
a reduction in energy consumption of up to 40% of the electromagnetic mill when compared
to the nominal operating point.

Su et al. [19] discuss and show the effectiveness of using an event-triggered mecha-
nism applied to continuous time dynamic sliding mode control for Takagi–Sugeno fuzzy
nonlinear systems through a numerical example. Marino and Neri [20] model and tune,
in an initial version, the PID controller using a recursive neural network architecture.

Dias et al. [21] use genetic algorithms for tuning fuzzy and model-based predictive con-
trollers in order to compare the performance of the two controllers applied to the speed control
of a DC motor. Carvalho et al. [22] present the optimization of parameters of the controller
by dynamic matrix, aiming to achieve more efficient control, reducing the settling time and
overshoot. The literature presents several works related to the use and optimization of differ-
ent control techniques in various contexts. However, there is a gap for studies that optimize
the parameters of the controllers in several control techniques in the same plant in order to indi-
cate the performance of each controller. The comparison of controllers in the same plant has
relevance, both for the academic community as well as to the industry, having originality and
innovation in performing an analysis of the controllers under the same conditions.

In the development of the models and the implementation of several optimized control
techniques, the information of the bottlenecks of each electronic control technique with
the presentation of each tuning parameter for each technique is a burdensome and necessary
task as it helps in the choice of the technique to be used in a given application. The choice
of the same plant assists in the applicability of the type of control and justifies this work.
The main objective of this work is to implement, in the same plant, four control techniques
and compare them in terms of performance and ease of implementation. Still, as objectives,
there are: (i) PID, (ii) model-based predictive control, (iii) fuzzy control, (iv) sliding mode
control and (v) tuning of the parameters of the controllers through optimization by genetic
algorithms in an attempt to compare controllers with their best performance.
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This paper presents, in Section 2, the main characteristics of the system to be controlled
and the control techniques to be implemented; in Section 3, the proposed methodology
for the controllers; in Section 4, the results obtained by applying the proposed methodology
and in Section 5, the conclusion of the work.

2. Theoretical Background

This section is intended to present the necessary concepts for the understanding
of the proposed methodology and the results obtained. The following four control tech-
niques are discussed: (i) proportional, integral, derivative control (PID), (ii) model-based
predictive control, (iii) fuzzy control and (iv) sliding mode control. Their advantages,
disadvantages, optimal variables and the optimization process are presented.

2.1. Proportional, Integral and Derivative Control

The Proportional (P), Integral (I) and Derivative (D) controller and their combinations
are the best known controller, comprising about 90% of industrial process control loops.
PID stands out due to its simplicity of implementation, offering solutions for closed loop
processes with smooth dynamics (well-behaved) and low-demand specifications. However,
one of its limitations is the difficulty of implementation when subjected to the control
of nonlinear systems to systems with complex behavioral dynamics [3]. This controller is
named PID due to its control law, which is formed by proportional, integral and derivative
parts, given by:

u(t) = KP × (t) + KI ×
∫ t

0
e(τ) dτ + KD ×

de(t)
dt

(1)

For the calculation of the control law error, the signal is calculated in the first step,
given by:

e(t) = r(t)− y(t) (2)

where e(t) is the error signal, obtained by subtracting the output signal y(t) and the de-
sired reference signal r(t). The constants KP, KI , KD, are the tuning parameters of this
controller. The adjustment of the parameters tends to reduce the transient times regime
and the stationary errors and may lead the controlled process to satisfactory time stability,
when it comes to nonlinear systems with smooth dynamics [3]. The PID controller, unlike
other controllers, has several tuning methods: (i) geometric locus of the roots, (ii) frequency
response analysis, (iii) Ziegler–Nichols and (iv) optimization process. Tuning by means
of an optimization process can be applied to any controller.

2.2. Model-Based Predictive Control

Model-based predictive control (MBPC) is versatile and can be applied to both linear and
nonlinear systems, serving processes with one or more input and output variables, containing
(or not) restrictions to the system in its outputs and control actions, serving processes with one
or more input and output variables and containing transport delays [23]. However, the MBPC
results are tied to the system model. The need of a model that represents all the components
and particularities of the plant, in addition to the computational effort to an elevated amount
of controller calculations makes the implementation of MBPC not simple.

MBPC is one of the varieties of predictive control, which is divided into a series
of techniques that have the same idea presenting a peculiar structure. Figure 1, adapted
from Carvalho et al. [21], illustrates the technique divided into stages. The integral parts
of the controller are: (i) process model, (ii) disturbance model, (iii) objective function,
(iv) reference paths, (v) constrained paths and (vi) control law.
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Figure 1. Flowchart of the model-based predictive control technique.

Among the predictive control strategies, there is the Practical Nonlinear Predictive
Control (PNMPC), capable of generating effective paths for the control of nonlinear sys-
tems [24]. Because it is a complex controller to implement, there are several variables to be
optimized: (i) prediction horizon Ny, (ii) control horizon Nu, (iii) damping rate of the ref-
erence signal αr, (iv) damping rate of the control action λ, (v) non-linearity damping rate
of the GPNMPC, γG and (vi) delta for linearization at each sampling instant δ [22].

2.3. Fuzzy Control

The use of fuzzy logic is an advanced strategy with relevance in process control [25].
Fuzzy logic is based on the fuzzy set theory initially proposed by Zadeh [26], which allows
the existence of intermediate values between the two extreme possibilities, offered by binary
or Boolean logic [27]. This feature becomes paramount in the face of the uncertainties
present in practical implementations. Fuzzy control acts based on the use of this feature
through linguistic variables that associate qualitative values with quantitative ones, and
the ability to represent specialized knowledge concerning specific routines of process
execution [28].

The first documented implementation of fuzzy control was performed by Mam-
dani [29] in cement manufacturing. Takagi and Sugeno [30] discuss how to absorb the expert
knowledge of the operators in establishing the controller rules. Lee [31] details important
aspects related to the execution of fuzzy control. These and several other papers demon-
strate the evolution of the technique and its use in various sectors [32]. The fuzzy controller
contains two input functions, coded as error and error variance. Both have five membership
functions, all of which are trapezoidal. The output of the controller refers to the control
action and also has five trapezoidal membership functions. The bounds of the membership
functions, of both inputs and outputs are the parameters to be optimized in this controller.

2.4. Sliding Mode Control

Sliding mode control (SMC) has advantages in its relative structural simplicity, robust-
ness and the existence of several possibilities of action, such as regulatory control, trajectory
tracking and status observation. It can serve nonlinear systems, processes with stochastic
behavior and plants with multiple inputs and outputs [33]. SMC is based on switching
the gains of the control laws in order to guarantee dynamics to the system, thus, reach-
ing the sliding surface. One of the characteristics of this variable structure technique is
the discontinuous control action, in which, once in sliding modes, it becomes insensitive
to parametric uncertainties of the plant and to some classes of disturbances, maintaining
the desired output in the process [34].
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The main disadvantage of sliding mode controllers lies in the occurrence of the chat-
tering phenomena, which are high-frequency oscillations in the command information
of the control system [12]. In the conventional SMC technique, the vibration phenomenon
occurs, which can be reduced or even eliminated with changes in the method of calculating
the control action. While the conventional SMC acts on the first derivative of the constraint
deviation, the higher-order SMC acts on the time derivatives with orders higher than
the value of the constraint deviation. Among the possibilities for higher order SMCs are:
(i) super-twisting SMC, (ii) double integral SMC and (iii) fast terminal SMC.

In SMC, the tuning of three parameters is necessary: (i) B is associated with the second
order sliding function, (ii) M determines the amplitude of the signal function and (iii) C
imposes the dynamic behavior of the output variable.

Discrete Sliding Mode Control Using Input-Output Model

The origin of the SMC theory is directly related to the representation of systems in state
space [35]. However, there are systems in which the states are not fully known and/or their
relationship with the analyzed variables is not direct [3]. Furthermore, for most practical
applications the available representation consists of models that describe the relationship
between the input and output of the systems. Thus, to enable the application of SMC, it is
necessary to adapt the technique to representations that relate the input and output signals
of the plant [36]. Considering the system input and output model described by:

A(q−1)y(k) = q−1B(q−1)u(k) + d(k) (3)

where y(k) is the output signal, u(k) is the input signal, d(k) is the perturbation signal, ql

with l ∈ Z is the shift operator in the time domain and can represent the signal advance
for l > 0 or the signal delay for l < 0. The dynamics of the model are represented by
the polynomials A(q−1) and B(q−1). Considering r(k) as the reference for the control signal,
one can calculate the system error as:

e(k) = y(k)− r(k) (4)

The first step for the design of the discrete SMC using the input-output model (DSMC)
is the determination of the sliding surface. It is defined by Furuta [36] as:

S(k) = C(q−1)e(k) (5)

in which the stable polynomial C(q−1) = 1+ c1q−1 + . . .+ cnCq−nC is associated with the er-
ror convergence dynamics. Considering the polynomials F(q−1) and G(q−1) as solutions,
one can write the diophantine polynomial equation given by:

C(q−1) = A(q−1)E(q−1)F(q−1) + q−1G(q−1) (6)

In practical applications of DSMC, the discontinuous term may cause unwanted
oscillations at high frequency, called chattering. In order to reduce the influence of this
phenomenon, Houda et al. [37] proposes discrete second-order sliding mode control. In
which it establishes that, for the occurrence of the sliding mode, one must guarantee the two
conditions given by:

S =

{
S(k + 1) = 0
S(k) = 0

(7)

Houda et al. [37] defines the new, now second-order, sliding function based on (5),
using as variables, S(k + 1) and S(k), given by:

σ(k) = S(k) + βS(k− 1) (8)

where β is the constant contained in the interval [0, 1].
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The sliding mode must also be guaranteed for the new sliding surface using the ex-
pression given by:

σ(k + 1) = σ(k) = 0 (9)

Solving (3) for y(k) and substituting in (5):

S(k + 1) = C(q−1)[A(q−1)]−1[q−1B(q−1)u(k + 1) + d(k + 1)]− C(q−1)r(k + 1) (10)

Considering the polynomial C(q−1) obtained in (6), one can rewrite (10) as:

S(k + 1) = E(q−1)B(q−1)u(k) + [A(q−1)]−1G(q−1)B(q−1)u(k + 1)− C(q−1)r(k + 1) (11)

The equivalent control law resulting from applying (9) to (11) is given by:

ueq(k) = [B(q−1)E(q−1)][βS(k)− G(q−1)y(k) + C(q−1)r(k + 1)] (12)

To ensure robustness to the controller it is necessary to add the discontinuous control
action udis, which for the second-order discrete mode, is given by:

udis(k) = udis(k− 1)− Te Msgn(σ(k)) (13)

where Te is the sampling rate and M is the gain of the signal function sgn(×) described by:

sgn(σ(k)) =

{
+1RRseRRσ(k) > 0
−1RRseRRσ(k) < 0

(14)

2.5. Optimization Process Applied to Controllers

Optimization process is the search for the best answer/result among the several exist-
ing possibilities and constraints. Typically, in order to find the optimal or optimized answer,
the actual system is required in order to create the model. Once the model is validated,
it is possible to build a simulator capable of representing the real system. The optimization
process is used in many different areas and problems, such as the tuning of different types
of controllers. Computational optimization searches are used for the best values of con-
troller parameters, aiming at maximizing their performance and minimizing the errors
of a given control technique. Figure 2 illustrates the flow of the optimization process
applied to the adjustment of the parameters of a given controller, where f (x∗) is the value
of the optimal or optimized evaluation function.

Optimization 

Method

Control 

Technique 

Simulation

Optimality 

Measure

Stop 

condition

NO

*f (  x  )Start
Optimization 

Method

Control 

Technique 

Simulation

Optimality 

Measure

Stop 

condition

NO

*f (  x  )Start YES

Figure 2. Flowchart of the optimization process applied to controllers.

In the optimization process, the main steps are: (i) choice of input values and definition
of the parameters of the optimization process at initialization, in which the choice depends
on the type of optimization method used, (ii) choice of the optimization method, which depends
on the problem to be solved, (iii) building the simulator from the modeling of the real system,
(vi) construction/definition of the evaluation function that represents the performance of the real
system and (v) definition of the stopping condition of the optimization process.
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3. Methodology

The methodology analyzes, implements and compares four controllers: (i) PID,
(ii) practical nonlinear predictive control (PNMPC), (iii) fuzzy control (FC) and (iv) discrete
sliding mode control using an input-output model (DSMC). All four controllers were ap-
plied in the same plant to control the direct current motor speed and all were tuned using
an optimization process with genetic algorithm. The methodology describes the proposed
system, the optimization process, the implementation of the parameters of the controllers
and the method for comparing them.

3.1. Description of the Proposed System

For the practical implementation of the controllers it is necessary to build the set
of plant, actuators and sensors. In order to control the speed of the direct current motor
(DC motor), it is necessary to have a real system to which the four controllers are imple-
mented and adjusted. Thus, the real system has a direct current motor with a constant
forced cooling fan to maintain the constant ventilation to the proper working temperature.
Changes in temperature can cause physical damage to the motor, as well as changes in plant
parameters, which is undesirable for any type of control.

The DC motor is equipped with a magnetic brake coupled to its axis, allowing dif-
ferent tests to be performed, through the simulation of mechanical loads. It also has a
coupled tachogenerator, supplying continuous voltage proportional to the motor speed.
Other options for feeding back the speed of the DC motor, in addition to the tachogener-
ator, are with the encoder or by calculation, using modeling and indirect measurement
of the counter electromotive force. The DC motor has separate field and armature windings,
which enables the choice of its connection in different configurations such as: (i) in series,
(ii) in derivation and (iii) composite or independent. Figure 3 illustrates the block diagram
of the proposed model.

Actuator

Main 

Controller
(Computer) 

Sensors

Actuator

Direct Current Motor

Communication 

Device
Firing Circuit 

Controlled 

Three-Phase 

Rectifier

D.C.M.
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(Field)
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Current and 
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Transducers
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Current 

Transducer
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Controller 

(Arduino) 

DC-DC

Converter

(Buck) 

Uncontrolled 

Three-Phase 

Rectifier

Three-Phase 

Power

(Rede Comum)

Figure 3. Model for the proposed real system.

Due to the electromagnetic interactions between field and armature, the field current
control is performed ensuring the same conditions for performing the speed control, which
is the main control. To power the field, a full-wave rectifier is used in conjunction with
a chopper, whose trigger circuit has its control action provided by a micro-controlled
prototyping platform. The feedback of the field current signal is performed through a Hall
Effect sensor with filter. The control technique is employed to guarantee that the fixed
current, in this particular case, is PID.

Once it is assured that the magnetic interactions of the field will not influence the ar-
mature control, the main control can be performed. For the armature drive, a three-phase
fully controlled rectifier of six pulses is used, capable of supplying voltages to the high
power loads. To obtain the desired output voltage, the controller sends a control signal
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to the trigger circuit composed of pulse generators, oscillator circuit, amplifiers, isola-
tors and filters. This trigger circuit is responsible for converting the voltage signal into
pulses that determine the conduction interval of the thyristors, transforming the alternating
voltage into a continuous voltage with desired amplitude.

The speed of the DC motor was obtained from the tachogenerator coupled to the ma-
chine shaft, which translates what voltage is to be applied to the circuit consisting of a
voltage divider and filter, in order to condition the speed signal. The measurement of field
voltages and currents, armature and load was performed by Hall Effect sensors added
to signal conditioning circuits. These signal conditioning circuits adequate the signal by
performing filtering through the Butterworth second order filter; thus, the signal can be
received by the controller. The execution of the calculations of the control actions is per-
formed on a computer, programmable logic controllers or microcontrollers because there
is a need for high performance in computational processing. To convert the plant data
from analog to digital, we used an analog-to-digital converter.

3.2. Plant Modeling

The model used for the system was the nonlinear autoregressive moving average
model with exogenous inputs (NARMAX). It is a single block with input represented
by the control voltage applied to the RTTC trigger circuit, and output designated by
the rotational speed of the shaft. The relationship between these two variables occurs
through several elements, such as: (i) controller, (ii) signal converter, (iii) trigger circuit,
(iv) fully controlled three-phase rectifier, (v) motor armature circuit, (vi) electromechanical
relationships of the DC motor, (vii) sensors.

The NARMAX was defined by Leontaritis and Billings [38] as a discrete polynomial model
of the output value, composed by a function of previous values of the output signals y(k), input
u(k) and noise e(k). The general NARMAX polynomial model can be defined as:

y(k) = F`[y(k− 1), · · · , y(k− na), u(k− τd), · · ·
· · · , u(k− nb), e(k− 1), · · · , e(k− ηe)] + e(k)

(15)

where F`(y, u, e) is a polynomial function with degree ` ∈ N, τd is the dead time, na, nb and
ηe are, respectively, the maximum delays in y, u and e and e(k) represents the effects not
contemplated by F.

Another possibility of representing the polynomial NARMAX model is through
the composition between linear and nonlinear terms. In this way, it is possible to de-
scribe features not considered by nonlinear models with rigid structures. This structure is
given by:

F(x) = (x− r)× L + R× f ns((x− r)× S) + d (16)

where R and S are nonlinear coefficients of the function f with order ns, L is linear coeffi-
cient, x is the vector of regressors’ values, r is the mean vector of the regressors and d is
the signal offset. The definition of the nonlinear function f is determinant for the approxi-
mation of the NARMAX model to the modeling system. For NARMAX models, the use
of the sigmoid function presents significant results. The sigmoid function is given by:

f (z) =
1

e−z + 1
(17)

Applying (17) on (16), it can be expressed the model of a certain system with the struc-
ture NARMAX given by:

F(x) = (x− r)× P× L + a1 f ((x− r)Qb1 + c1) + · · ·
ans f ((x− r)×Q× bns + cns) + d

(18)

where P is the determinant constant of the linear subspace, A = {a1, a2, · · · , ans} is
the nonlinear coefficient, Q, B = {b1, b2, · · · , bns} and C = {c1, c2, · · · , cns} are coefficients
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from the sigmoid function f with order ns. Q is the determining constant of the nonlinear
subspace, B is the matrix of dilation and C is the translation vector.

3.3. Proposed Optimization Process

To control the speed of the DC motor through the armature voltage, it is necessary
to build the system modeling in order to make it possible to design the controller, perform
simulations of the system, as well as the possibility of using the model to implement
the optimization process to find the controller parameters. The model to be built should
mathematically describe the dynamics of the whole set formed by: (i) motor armature
bearings and their electromechanical relationships, (ii) trigger circuit and rectifier bridge,
(iii) voltage, current and speed sensors and (iv) communication device. The excitation
of the field is performed separately, keeping its current constant, as well as the internal
temperature of the motor.

Due to the need for the model to represent the system consisting of several parts,
the use of the system identification method becomes feasible, because modeling by physical
principles requires greater effort and accuracy. Obtaining the model by the system identifi-
cation method follows five steps: (i) dynamic testing and data collection, (ii) mathematical
representation choice, (iii) model structure selection, (iv) model parameters estimation
and (v) model with the real system validation. For the dynamic tests and data collection,
several step signals are applied to the system input, with different amplitudes and different
frequencies, in order to obtain most of the dynamics of the system. The data collection
meets the Nyquist theorem, in such a manner that it is possible to reconstruct the sampled
signal and use it in the modeling of the system [39].

The mathematical modeling used to represent the system is the Nonlinear Autoregres-
sive Moving Average Model with Exogenous Inputs (NARMAX), with sigmoidal regressors.
The choice of this method is due to its specific characteristics of the plant, such as nonlin-
earity and time invariance. For the selection of the structure and estimation of the model
parameters, the heuristic Genetic Algorithm (GA) method is used, in which the optimized
variables are: (i) the number of input regressors na, (ii) the number of output regressors nb,
(iii) response delay instants nk, (iv) order of the function l and (v) values of the coefficients
of the function P, L, A, d, Q, B, C. The evaluation function used compares the integral of ab-
solute error of the plant IAEp and the model IAEm, in order that the difference is as small
as possible.

To identify the full dynamics of the plant, the multivariable model NARMAX was
used. The inputs to this model are: (i) control voltage u and (ii) load torque Tl . As
outputs, it has: (i) speed ω, (ii) armature voltage Va and (iii) armature current ia of the DC
motor. The validation of the NARMAX model was obtained through tests on the plant
and the model, verifying the similarity in the dynamics of the input and output signals.

3.4. Implementation of the Parameters of the Controllers in Simulation and on the Bench

The tuning of the controller can be done manually, using the expert’s knowledge about
the controller and the system to be controlled, or through mathematical and optimization
methods. The tuning of the controller has a direct impact on the performance of any process
to be controlled. Thus, to extract the full potential of the controllers, all of them will have
their parameters optimized by the heuristic genetic algorithms method.

For the PID controller, the optimizable variables are: (i) proportional constant KP,
(ii) integral constant KI and (iii) derivative constant KD. In the Practical Nonlinear Predic-
tive Control (PNMPC), the optimizable variables are: (i) prediction horizon Ny, (ii) control
horizon Nu, (iii) damping rate of the reference signal αr, (iv) damping rate of the control
action λ, (v) non-linearity damping rate of the GPNMPC, γG and (vi) delta for linearization
at each sampling instant δ.

The fuzzy controller contains two input functions, coded as error and error variance.
Both have five membership functions, all of them trapezoidal. The output of the controller
refers to the control action and also has five trapezoidal membership functions. The bounds
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of the membership functions of both inputs and outputs are the parameters to be optimized
in this controller. In DSMC, it is necessary to tune three parameters: (i) B, which associates
the second order sliding function, (ii) M, which determines the amplitude of the signal
function, and (iii) C, which imposes the dynamic behavior of the output variable.

For the elaboration of the main term of the evaluation function for the PID, PNMPC,
Fuzzy and DSMC controllers, the IAE is used for the step response. The areas used
for the calculation of the IAE are illustrated in Figure 3, adapted from Carvalho et al. [22]
and given by (19). Due to the physical limitations of the engine, some penalties must be
inserted in the evaluation function, such as maximum limits for the current and voltage
of the armature supply, avoiding damage to the motor, in order that it does not work
outside its operating region.

IAE =
n

∑
i=1

Ai (19)

Figure 4 is a hypothetical representation of the areas that make up the IAE and in (19)
n is the number of areas A that will appear above and below the reference value with
i = 1, 2, · · · , n. In this work, for the representation of the IAE, the percentage deviation
of the performance of certain controlled in relation to the IAE calculated for the ideal
answer, IAE = 0, is considered. In this case, the reference IAE is the area calculated
for the reference signal, in which the percentage representation of the IAE is given by:

IAE% =
‖IAER − IAE‖

IAER
(20)

where IAER is the reference IAE%. The calculation of IAE% produces a result independent
of the test time. In this way, it is possible to compare the performance of the controllers
independent of the test performed.

Figure 4. Composition of the integral of the absolute error.

3.5. Comparison Method between Controllers

To analyze the performance of the four controllers, tests are performed with different
conditions, in order to verify the system responses. The working conditions of the controllers
are identical: same plant, actuators, sensors and processor. To analyze the system response and
the control action, three tests are performed that consider different characteristics of the DC motor
operation. The tests have the speed signals as reference: (i) a step-type reference, without load
application, (ii) a reference with amplitude variation, without load application and (iii) a step-
type reference, without amplitude variation, with load application.

All tests start with a zero reference signal, making it possible to verify the dead time.
After the tests are performed, some factors should indicate the quality of the controller,
such as: (i) integral of the absolute value of velocity error IAEω , (ii) rise time Tr, (iii) settling
time Ts, (iv) fall time Td, v) stabilization time after load insertion Teic and (vi) stabilization
time after load removal Terc.

The first test aims to verify the settling time and overshoot. The second test analyzes
the response system with varying set point levels. The existence of positive and negative
variations provides analyses of different dynamics of the system. The third test aims to ana-
lyze the system response to the insertion and removal of loads in the DC motor. The load
insertion and removal actions make it possible to analyze the dynamics of the system when
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subjected to different disturbances. Maintaining the reference signals throughout the third
test allows the exclusive analysis of the response to disturbances in the controlled system.

4. Results

This section initially describes the system composed of the DC motor fed by a three-
phase fully controlled rectifier. In the sequence, it exposes the parameters identified
for the NARMAX model and its validation with the measured data from the system. It then
discusses the tuning of the controllers through the optimization process and the results
obtained in the implementation and comparison of the controls: (i) Proportional, integral,
and derivative (PID), (ii) Practical Nonlinear Predictive Control (PNMPC), (iii) Fuzzy and
(iv) Discrete Sliding Mode Control using input-output model (DSMC).

4.1. System Description

The proposed system is composed of a direct current motor (DC motor) powered by
a three-phase fully controlled rectifier (TPFCR). Figure 5 shows the bench with the imple-
mented system, in which the state of the current configuration is the result of the evolution
promoted through improvements, substitutions and adjustments made to the bench initially
designed and used in the works Dias et al. [21] and Ganzaroli et al. [40].

Figure 5. Workbench with the implemented system.

The main element of the system is the DC motor of independent excitation. Its main
electrical characteristics indicated in the nameplate data are: (i) power of 1 kW, (ii) nominal
armature voltage 220 V, (iii) nominal current in the armature of 5.5 A, (iv) nominal field
voltage of 190 V and (v) nominal field current of 1.15 A. The DC motor has elements
associated with its structure and installed by the manufacturer, such as forced ventilation
system, electromagnetic brake and tachogenerator coupled to the shaft. Figure 6 shows
the diagram of the association between the system components, trigger circuit, devices
for communication, measurement and signal conditioning.
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Figure 6. Block diagram of the implemented system.

Among the possibilities of choosing the different connection configurations, inde-
pendent excitation was chosen, in order to obtain a relationship between the armature
voltage and the speed developed by the DC motor. The field voltage is provided by the
auxiliary control system. The field voltage is provided by the auxiliary control system.
In this system, the PID control action is calculated by a routine implemented in the de-
velopment platform that uses the ATmega328P microcontroller. This platform receives
the field current signal from the current sensors, calculates the control action and provides
as a result the Pulse-width modulation (PWM) voltage signal and applies it to the Buck
DC-DC converter. The Buck converter has, at its output, the average voltage value equal
or lower than the input voltage, as the control signal applied to its static switch. For this
application, the input voltage is generated by the uncontrolled three-phase SKD25/08
rectifier from the Semikron® manufacturer.

The implementation of the main control action is performed through the armature
voltage of the DC motor and is supplied through the fully controlled three-phase recti-
fier. For this element, the SK70DT16 bridge from the Semikron® manufacturer was used.
This bridge operates with voltages up to 1600 V and a current of 70 A. The generation
of pulses and the control of the conduction period of the thyristors are performed by
the electronic tripping circuit. This circuit is based on the use of three commercial TCA785,
being the IC for each pair of thyristors. The operation of the integrated circuit is based
on the application of a continuous voltage signal of low magnitude that proportionally
promotes the displacement of the position of pulse generation within the range in which
the thyristor is able to conduct.

The use of the TCA785 IC makes the logic that relates the control voltage signal
from the circuit Vc and the DC motor armature voltage Va is reversed. This establishes the re-
lationship between the percentage control action, the control voltage signal from the trigger
circuit Vc and the DC motor armature voltage Va: for 0.00% control action, Vc = 4.10 where
V represents Va ≈ 0 V; for 100% control action, Vc = 2.7 where V represents Va ≈ 230 V.
The speed signal was obtained by the tachogenerator coupled to the DC motor shaft.
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The voltage × speed ratio was 20 mV/rpm. Considering the possibility of speeds up
to 2000 rpm and the specifications of the multifunctional input-output device, the resistive
voltage divider was used, converting the value of this ratio to 5 mV/rpm. In addition,
the output signal has high frequency noise characteristic of the tachogenerator, requir-
ing the presence of the low-pass filter in order to condition the speed signal and reduce
the noise.

The voltage and current signals from the armature circuit, the field circuit and the elec-
tromagnetic brake system come from Hall Effect sensors. The sensor used to measure
the voltage was LV-25P, with a maximum voltage of 500 V. For the current, the LA-55P
was used, which operates with currents of up to 55 A. These elements are associated with
signal conditioners represented by the Butterworth filter of second order with active am-
plifier. The power supply for the electronic circuits was supplied by regulated 5 V and
12 V regulated voltage sources. The interface between the computer and the system was
performed by means of the multifunctional input-output device. The USB-6008 from Na-
tional Instruments® was used. Among its main features are: (i) bus power supply; (ii) eight
analog inputs with acquisition rate up to 10, 000 samples/s, resolution up to 12 bits, −10 V
to 10 V range with 37.5 mV accuracy; (iii) two analog outputs with an acquisition rate of up
to 150 amostras/s, resolution up to 12 bits, 0 V to 5 V range with 7 mV of accuracy and
current up to 10 mA; (iv) twelve digital channels configurable as input or output, all with
0 V to 5 V, range, 37.5 mV of accuracy, 5 mV and output current up to 102 mA; and (v) one
32 bit counter channel. Tables 1 and 2 provide a summary of the parameters of the DC
motor and the three-phase fully controlled rectifier parameters (TPFCR).

Table 1. Summary of DC motor parameters.

Parameter Value

Power 1 kW

Nominal armature voltage 220 V

Nominal armature current 5.5 A

Nominal field voltage 190 V

Nominal field current 1.15 A

Table 2. Summary of three-phase fully controlled rectifier parameters.

Parameter Value

Manufacturer Semikron

Model SK70DT16

Peak Repetitive Off-State Voltage (VDRM) 1.6 kV

On State RMS Current (ITRMS) 68 A

Gate trigger voltage (VGT) 2 V

Gate Trigger Current (IGT) 100 mA

4.2. Optimization Process Applied to the Model

The model used is the result of the identification process performed by the NARMAX
method, considering two inputs and three outputs. The process of obtaining the model
follows the main steps proposed by [41]: (i) dynamic testing and data collection, (ii) choice
of the mathematical representation, (iii) structure selection, (iv) parameter estimation and
(v) validation with the system. The dynamic tests were performed by applying the signal
characterized basically by the gradual variation, increasing and decreasing at different
levels within the voltage range supported by the DC motor.

The signal configuration was established in order to capture the transient behavior
from the variations at different levels, the behavior on the permanent regime allowing
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the signal to remain long enough to stabilize the system response, as well as the various
dynamics such as hysteresis through increasing and decreasing variation considering
the same voltage levels and dead time, comparing the instant of transitions in the input
signal and the output signal. The sampling period was set at Ts = 100 ms, respecting
the Nyquist theorem and the processing time required for the calculation and execution
of the control action.

The characteristics of the mathematical representation using the NARMAX model are
expressed by: (i) sigmoidal regressors, (ii) two inputs, control voltage and shaft load and
(iii) three outputs, speed, armature voltage and armature current. Expressions (21) through
(23) present the optimized parameters for defining the structure of the system model;
expressions (24) through (30) ) present the optimized system model coefficients for speed
outputs; expressions (31) through (37) present the optimized system model coefficients
for armature voltage outputs; and expressions (38) through (44) present the optimized
system model coefficients for armature current outputs.

Expressions (21) through (44) are values that determine the selection structure and
parameters of the NARMAX model, resulting from the heuristic optimization process using
genetic algorithm (GA). The implementation of the GA for determining the model pa-
rameters was performed considering: (i) initial randomly generated population with
15 individuals, (ii) linear crossover rate PCL = [90%; 30%], (iii) linear mutation rate
PML = [30%; 90%]. The selection method adopted was the tournament involving four
individuals, τ = 4 and the stopping criteria were set at 30 generations, Gmax = 30 or
until obtaining f (x) = 0. The uniform mutation operator and the crossover operator with
a cutoff point were used. The evaluation function used is given by (45), which is formed
by the motor speed IAEω plus the penalties relative to the nominal armature voltage
Vn = 230 V and the peak current In In = 38 A.

na =

0 3 0
0 1 1
0 1 2

 (21)

nb =

3 2
4 7
2 0

 (22)

nk =

0 2
0 0
0 0

 (23)

P1 =


1.29× 10−3 2.27× 10−3 −1.66× 103 −1.25× 10−1 −3.86× 10−1

1.43× 10−4 −6.97× 10−4 1.31× 10−2 1.14 3.50
2.56× 10−7 −3.16× 10−4 3.98× 10−3 3.23× 10−1 −1.25× 101

5.05× 10−5 −2.82× 10−2 −3.32× 10−1 3.46× 10−3 6.76× 10−3

5.07× 10−5 −2.79× 10−2 3.36× 10−1 −4.59× 10−2 1.64× 10−2

 (24)

L′1 =
[
7.65× 102 −5.75 1.19× 10−1 5.95 −3.35

]
(25)

d1 =
[
1.19× 103] (26)

Q1 =


1.29× 10−3 2.27× 10−3 −1.66× 103 −1.25× 10−1 −3.86× 10−1

1.43× 10−4 −6.97× 10−4 1.31× 10−2 1.14 3.50
2.56× 10−7 −3.16× 10−4 3.98× 10−3 3.23× 10−1 −1.25× 101

5.05× 10−5 −2.82× 10−2 −3.32× 10−1 3.46× 10−3 6.76× 10−3

5.07× 10−5 −2.79× 10−2 3.36× 10−1 −4.59× 10−2 1.64× 10−2

 (27)

A1 =
[
−2.65× 102 3.78× 101 −2.53× 102 5.83 −6.45

]
(28)
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B1 =


−1.42 1.02 1.12 1.61 1.98

4.78× 10−1 1.96× 10−1 −3.42× 10−1 −7.71× 10−1 2.96× 10−1

−3.94× 10−3 −2.80× 10−2 5.16× 10−3 −2.09× 10−2 6.47× 10−2

−9.91× 10−2 −9.59× 10−2 8.76× 10−2 9.59× 10−3 4.15× 10−2

2.14× 10−1 −3.09× 10−1 −2.04× 10−1 −1.67× 10−1 −1.22× 10−1

 (29)

C1 =
[
6.43 −5.12 −5.59 −2.85 −2.75

]
(30)

P2 =


1.29× 10−3 2.27× 10−3 −1.66× 103 −1.25× 10−1 −3.86× 10−1

1.43× 10−4 −6.97× 10−4 1.31× 10−2 1.14 3.50
2.56× 10−7 −3.16× 10−4 3.98× 10−3 3.23× 10−1 −1.25× 101

5.05× 10−5 −2.82× 10−2 −3.32× 10−1 3.46× 10−3 6.76× 10−3

5.07× 10−5 −2.79× 10−2 3.36× 10−1 −4.59× 10−2 1.64× 10−2

 (31)

L′2 =
[
8.56× 101 −9.85× 10−1 −5.09× 10−2 1.37 −6.58× 10−1] (32)

d2 =
[
1.32× 102] (33)

Q2 =


1.29× 10−3 2.27× 10−3 −1.66× 103 −1.25× 10−1 −3.86× 10−1

1.43× 10−4 −6.97× 10−4 1.31× 10−2 1.14 3.50
2.56× 10−7 −3.16× 10−4 3.98× 10−3 3.23× 10−1 −1.25× 101

5.05× 10−5 −2.82× 10−2 −3.32× 10−1 3.46× 10−3 6.76× 10−3

5.07× 10−5 −2.79× 10−2 3.36× 10−1 −4.59× 10−2 1.64× 10−2

 (34)

A2 =
[
−5.20 2.86 −2.39 −3.90 −5.78

]
(35)

B2 =


1.08 −1.25 −1.83× 10−1 3.60× 10−2 −8.95× 10−1

1.79× 10−1 1.02× 10−1 6.18× 10−1 5.70× 10−2 5.35× 10−1

7.80× 10−2 −3.83× 10−2 −1.11× 10−1 −1.00× 10−1 −7.32× 10−2

4.17× 10−2 1.50× 10−1 −4.63× 10−2 1.41× 10−1 1.46× 10−1

−2.76× 10−1 7.17× 10−2 −2.87× 10−1 −1.58× 10−1 −1.07× 10−1

 (36)

C2 =
[
−6.25 1.77 1.46 −1.24 −1.93

]
(37)

P3 =


1.29× 10−3 2.27× 10−3 −1.66× 103 −1.25× 10−1 −3.86× 10−1

1.43× 10−4 −6.97× 10−4 1.31× 10−2 1.14 3.50
2.56× 10−7 −3.16× 10−4 3.98× 10−3 3.23× 10−1 −1.25× 101

5.05× 10−5 −2.82× 10−2 −3.32× 10−1 3.46× 10−3 6.76× 10−3

5.07× 10−5 −2.79× 10−2 3.36× 10−1 −4.59× 10−2 1.64× 10−2

 (38)

L′3 =
[
2.73× 10−1 −5.22× 10−1 3.32× 10−2 1.51× 10−1 −1.38× 10−1] (39)

d3 =
[
3.03

]
(40)

Q3 =


1.29× 10−3 2.27× 10−3 −1.66× 103 −1.25× 10−1 −3.86× 10−1

1.43× 10−4 −6.97× 10−4 1.31× 10−2 1.14 3.50
2.56× 10−7 −3.16× 10−4 3.98× 10−3 3.23× 10−1 −1.25× 101

5.05× 10−5 −2.82× 10−2 −3.32× 10−1 3.46× 10−3 6.76× 10−3

5.07× 10−5 −2.79× 10−2 3.36× 10−1 −4.59× 10−2 1.64× 10−2

 (41)

A3 =
[
1.12 −1.52× 10−1 3.47 −9.41 3.72

]
(42)

B3 =


−1.72 1.68 −1.80 −1.03 4.55× 10−1

5.24× 10−1 −5.60× 10−1 −1.80× 10−1 −8.91× 10−3 −5.67× 10−2

−6.81× 10−2 −9.69× 10−2 1.02× 10−1 6.90× 10−2 −1.06× 10−1

7.22× 10−2 −7.88× 10−2 −1.74× 10−1 −1.06× 10−1 −1.63× 10−1

1.85× 10−1 4.36× 10−1 8.87× 10−2 −3.01× 10−1 −2.29× 10−1

 (43)
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C3 =
[
5.06 −2.61 4.48 7.06× 10−1 −3.70× 10−1] (44)

In the validation stage of the NARMAX model, the result generated by the model was
compared with the signals obtained from the real system, Figure 5, considering the applica-
tion of the same input signal to the model and for the plant with and without the presence
of load. To evaluate the quality of the model, considering the existence of three outputs,
different weights were established according to the relevance of each signal to the work.
The weights adopted are: (i) 0.70 for approximation of the motor speed signal ω, (ii) 0.20
for approximation of the armature voltage signal Va and (iii) 0.10 for approximation of the ar-
mature current signal Ia. The output signals of the real × model system are shown in
Figure 7. The individual approximation rate for each output is 91.12% for the speed signal,
91.69% for the armature voltage signal and 86.04% for the armature current signal. After
the assignment of the weights, the overall model evaluation criterion rate was 90.16%.

Figure 7. DC motor output signal at model and plant: (a) speed, (b) armature voltage and
(c) armature current.

Figure 7 shows the unloaded tests in the range [0; 3.0× 103] and the loaded tests
in the range [3.0× 103; 5.650× 103]. The implementation of the load is identified in the re-
sponse of the system through reduced speed levels and increased armature current levels
when compared to the test without the presence of the load, despite the reference signal
being the same for both tests. This behavior is characteristic of the DC motor operating
in open loop, i.e., in the absence of the control system.

4.3. Applying the Optimization Process to Controllers

The tuning of the controllers is performed, as well as the optimization of the model
parameters by the heuristic optimization method genetic algorithm (GA). The implemen-
tation of the GA for tuning the parameters of all the controllers studied was established
based on the considerations: (i) initial randomly generated population with 50 individuals,
(ii) linear crossover rate PCL = [90%; 30%], (iii) linear mutation rate PML = [30%; 90%].
The selection method adopted was the tournament involving five individuals, τ = 5
and the stopping criteria were set at 250 generations, Gmax = 250 or until obtaining
f (x) = 0. The Non-Uniform Mutation operator and the Simple Crossover operator were
used. The evaluation function used is given by (45), which is formed by the IAEω of engine



Energies 2022, 15, 4139 17 of 27

speed plus penalties related to the nominal armature voltage Vn = 230 V and the peak
current In = 38 A.

f (x) = IAEω + PV + PI (45)

Heuristic optimization searches for the best solution to the problem within the search
space Ω. The definition of Ω is directly related to the speed of convergence of the algo-
rithm and thus, specific limits were established for the parameters of each controller based
on a priori knowledge of the system. The proposed simulator used in the optimization
process represents different scenarios, due to different setpoints, different dynamics and
the insertion or removal of loads. This simulator allows the optimization to be performed
considering the main characteristics and dynamics of the system. In this way, the op-
timized parameters of the various controllers, take into account the different dynamics
for the different operating points.

4.3.1. Tuning of the PID Controller

The tuning of the PID controller sought to optimize the parameters in the sets referring
to the search space Ω of each constant: (i) proportional constant {Kp ∈ R | 1× 10−6 ≤
Kp ≤ 100}, (ii) integral constant {Ki ∈ R | 0 ≤ Ki ≤ 100} and (iii) derivative constant
{Kd ∈ R | 0 ≤ Kd ≤ 100}. Table 3 provides the optimized values for the tuning parameters
of the PID controller and Figure 8 presents the performance of the GA over the generations.
It can be seen that the best individual was obtained in generation 249 with the value
of f (x) = 0.087094%.

Table 3. Optimized parameters for tuning the PID controller.

Parameters Kp Ki Kd

Values 0.0311 1.37× 10−7 0.0112

Figure 8. Presentation of the evaluation function values in the optimization process of the PID controller.



Energies 2022, 15, 4139 18 of 27

4.3.2. Tuning of the Practical Nonlinear Predictive Controller

The PNMPC controller was optimized by considering the parameters bounded by
their respective search spaces Ω: (i) prediction horizon: {Ny ∈ N | 1 ≤ Ny ≤ 50},
(ii) control horizon: {Nu ∈ N | 1 ≤ Nu ≤ Ny}, (iii) damping rate of the reference signal:
{αr ∈ R | 0.00 ≤ αr ≤ 1.00}, (iv) damping rate of the control action: {λ ∈ R | 0.00 ≤ λ ≤
1.00× 104}, (v) damping rate of nonlinearity of the GPNMPC matrix: {γG ∈ R | 0.00 ≤ γG ≤
1.00} and (vi) variation for linearization at each sampling instant: {ε ∈ R | − 1.00× 106 ≤
ε < −1.00 ; 1.00 < ε ≤ 1.00× 106}. The optimized parameters of the PNMPC controller
are arranged in Table 4, and Figure 9 shows the performance of the GA over the generations
in the optimization process, in which it is observed that the best individual was obtained
in generation 116 with the value of f (x) = 0.085205%.

Table 4. Optimized parameters for the Practical Nonlinear Predictive Controller.

Parameters Ny Nu αr λ γG ε

Values 10 1 1.61× 10−4 3.28× 10−4 3.00× 10−4 5.02× 102

Figure 9. Presentation of the evaluation function values in the optimization process of the Practical
Nonlinear Predictive Controller.

4.3.3. Tuning of the Fuzzy Controller

The optimization of the membership functions of the fuzzy controller resulted in the val-
ues of the limits shown in Table 5. The choice of trapezoidal shape is a consequence
of the inability of the controller to meet the requirements of the output signal specification
with triangular functions. The membership functions, MF1 to MF5, represent the degree
of truth of the variables Error and Error Variation, considering their universes of discourse.
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Table 5. Limits of the membership functions for the input and output variables of the fuzzy controller.

Linguistic Variable—Error

MF1 MF2 MF3 MF4 MF5

2.06× 102 1.23× 102 4× 10−1 9.74× 101 −2.50× 103

8.42× 102 1.59× 102 2.32× 101 1.79× 103 7.05× 101

1.84× 103 1.86× 102 6.03× 101 2.50× 103 5.97× 102

2.50× 103 2.22× 103 2.11× 103 2.50× 103 8.16× 102

Linguistic Variable—Error Variation

3.65× 102 4.69× 101 −2.76× 102 −5.13 −4.16× 102

8.48× 102 1.84× 103 4.55× 101 4.09× 102 4.47× 102

1.43× 103 2.35× 103 1.47× 102 2.50× 103 4.49× 102

2.50× 103 2.35× 103 2.59× 102 2.50× 103 2.50× 103

Linguistic Variable—Control Action

4.99× 101 5× 101 5× 101 5.01× 101 4.29× 101

5.83× 101 7.28× 101 5.01× 101 7.73× 101 4.49× 101

6.39× 101 9.59× 101 5.08× 101 7.74× 101 5× 101

8.10× 101 1× 102 5.44× 101 1× 102 5× 101

Figure 10 shows the performance of the GA over the generations in the process of fuzzy
controller optimization. It can be seen that the best individual was obtained in generation 218
with the value of f (x) = 0.087361%. The fuzzy response surface, shown in Figure 11, indicates
sharp transitions resulting from the irregular shapes obtained for the membership functions.

Figure 10. Presentation of the evaluation function values in the fuzzy controller optimization process.
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Figure 11. Fuzzy response surface.

4.3.4. Tuning of the Discrete Sliding Mode Controller

The DSMC optimization considers the parameters: (i) B, which is associated with
the second order sliding function, (ii) M, which determines the amplitude of the sig-
nal function and (iii) C, which enforces the dynamic behavior of the output variable.
In the optimization, all parameters are bounded by their respective search spaces as:
{B, M, C ∈ R | 0 ≤ B, M, C ≤ 1}, in which the values optimized by the GA are arranged
in Table 6. Figure 12 shows the performance of the GA over the generations, in which
the best individual was obtained in generation 215 with the value of f (x) = 0.086856%.

Table 6. Optimized parameters for tuning the sliding mode control.

Parameters B M C

Values 0.00001 0.1 0.79

Figure 12. Presentation of the evaluation function values in the sliding controller optimization process.
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4.4. Comparison of Control Results from Simulations and Practical Tests

The individual performance of the PID, DSMC, Fuzzy and PNMPC controllers after
having their parameters tuned is verified through simulations and test executions on the DC
motor system. For each control technique presented, three tests were performed: (i) analysis
of the transient response through the settling time and the possible occurrence of overshoot,
(ii) analysis of the permanent response of the system at different levels of the reference signal
and (iii) analysis of the response of the control system to disturbances in the output variable
through load insertion and removal while keeping the reference speed signal constant.

4.4.1. Test with Application of Step Signal

In the first test, the step signal with amplitude 1000 rpm for the reference speed was
used. The total duration time was 30 s. In this test, no load was applied to the DC motor.
Table 7 provides the values of IAEω, rise time Tr and settling time Ts for each control
technique. The speed and armature voltage signals regarding the application of each
controller are presented in Figure 13.

Table 7. Speed signal of the analyzed controllers considering the application of step signal.

Controller IAEω Tr[s] Ts[s]

PID 2.81% 3.10 5.50

PNMPC 2.31% 0.3 1.5

Fuzzy 2.01% 0.5 1.10

DSMC 3.43% 0.5 2.5

Figure 13. Output signal of the DC motor system in the test with application of step signal: (a) speed
and (b) armature voltage.

In this first test, the four controllers present satisfactory results, but the Fuzzy controller
presents lower values of IAEω and Ts, while the PNMPC obtained the best Tr.
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4.4.2. Test with Varying Amplitude of the Reference Signal

For the second test, the reference signal with different amplitude values was applied
with: (i) 0 ≤ t < 30 s and speed reference at 500 rpm, (ii) 30s ≤ t < 60 s and speed reference
at 1700 rpm, (iii) 60 s≤ t < 120 s and speed reference at 1000 rpm and (iv) 120s ≤ t ≤ 150 s
and speed reference speed reference at 1500 rpm. No load was applied to the DC motor
in this test. Table 8 provides the values of IAEω, Tr and Ts for each control technique.
The speed and armature voltage signals referring to the application of each controller are
presented in Figure 14.

Table 8. System response with application of the reference signal with amplitude variation.

Controller IAEω
Time

Interval [s] Tr [s] Td [s] Ts [s]

PID 3.78%

0− 30 0.18 - 6.4
30–60 3.2 - 4.1
60–120 - 5 9

120–150 2 - 5

PNMPC 3.34%

0–30 0.3 - 5
30–60 2.5 - 2.5
60–120 - 5 9

120–150 1 - 4

Fuzzy 3.51%

0–30 0.17 - 5.58
30–60 1.24 - 2.56
60–120 - 5 9

120–150 1.32 - 1.75

DSMC 3.89%

0–30 0.1 - 7
30–60 0.4 - 4
60–120 - 5 9

120–150 1.5 - 4

In this second test, PNMPC presented the best IAEω among the control techniques
used. As for the values of Tr and Ts, the controllers presented similarity in their results.
It can be observed that Td had a high value for the four techniques. This occurs due
to the inertia of the DC motor. Therefore, these values are normal for any control technique.

Figure 14. Output signal of the DC motor system in the test with application of step signal: (a) speed
and (b) armature voltage.
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4.4.3. Load Application Test

In the third test, the reference speed was set at 1000 rpm and the load insertion occurred
between t = 30 s and t = 60 s. Table 9 provides the values of IAEω, Tr and Ts for each
control technique. The speed and armature voltage signals referring to the application
of each controller are presented in Figure 15.

Table 9. System response with load application.

Controller IAEω Tr [s] Ts [s] Teic [s] Terc [s]

PID 1.76% 0.56 5.5 3.2 4

PNMPC 1.41% 0.4 5 2 4

Fuzzy 1.55% 0.55 5 3 4

DSMC 2.25% 0.2 6 3 4

Figure 15. Output signal of the DC motor system with amplitude variation of the reference signal:
(a) speed and (b) armature voltage.

It can be seen from this test that the DSMC controller obtains the lowest Tr and equal
value for load removal stabilization time Terc, while the PNMPC controller obtained better
values of IAEω and load insertion stabilization time Teic.

4.5. Discussion

In the comparison between the four control techniques: (i) PID, (ii) PNMPC, (iii) Fuzzy
and (iv) DSMC, we presented the characteristics in the performance of each of the con-
trollers. The results indicate the expected performance for the controllers, low IAE values,
rise time Tr, settling time Ts, load insertion stabilization time Teic and load removal stabi-
lization time Terc.

In general, the controllers showed responses with similar dynamics, but from an im-
plementation point of view, each technique has its own particularities: the PID control
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stood out for its simplicity in implementation; however, despite having wide applications,
it has difficulties in situations of nonlinearities and noise. The PNMPC, despite being
extremely efficient in nonlinear plants, is extremely dependent on the model and requires
high computational effort, since it needs to run the model in parallel with the control.
The Fuzzy controller showed low mathematical dependence, requiring only the knowledge
of the system. The DSMC, despite using mathematical analysis, stands out in design for its
robustness, presenting itself as insensitive to the parametric uncertainties of the plant.

The PID control showed a significant trade-off relationship between the spare signal
value and the rise time, Tr, as verified by Dubey et al. [42]. This relationship shows that
lower rise values are related to an increase in the overshoot. The responses of the Fuzzy,
PNMPC controllers confirmed the direct model independence mentioned in the works
of Kovacic and Bogdan [43] and Yang et al. [44]. The dynamic complexities associated with
the control of nonlinear systems are generally factors that make it difficult to tune the PID
control parameters. Thus, differently from the methodology of linearization of the plant
for tuning these parameters, proposed by authors such as Wang [45], Lan and Woo [46]
and Iplikci [47], the use of genetic algorithms allowed the results of PID control to be close
to the other techniques studied. The PID controller is based on a linear control technique.
To adjust the parameters of this controller in a non-linear system, it is necessary to consider
several operating points. However, the optimized values obtained for these parameters
use the proposed simulator, which considers several scenarios with different dynamics.
Thus, it is expected that this controller can present satisfactory performance even though
the plant is non-linear.

For the implementation of the PID control, an anti wind-up mechanism was used.
This was necessary because the control action reached its maximum limit, remaining
this value independent of the process output variable. Thus, if this mechanism was not
implemented, the error would continue to be integrated and the integral term would
become very large, which would promote a slow correction of the output variable.

In this way, this work contributes to the gathering and comparison of different control
techniques applied to the same plant with nonlinear characteristics. These techniques have
their tuning parameters obtained from the optimization by genetic algorithms. Since this is
a practical implementation, it is worth mentioning the obstacles encountered in the con-
struction and configuration of the system. During the execution of the work, changes
in the plant were necessary, such as the implementation of field current control, in order
to avoid variations in the armature voltage due to electromagnetic interactions. The switch-
ing of the converters inserted electrical and electromagnetic noise in the system, making
it difficult to read the variables. To solve the problem, filters and shielded cables were
installed for conditioning of the measurement of voltage, current and motor speed.

It was observed that the motor temperature has a direct influence on its performance,
interfering with the output speed. Even with forced ventilation, periods of operation with
prolonged machine running time can cause disturbances in the system. The three-phase
converter also received ventilation, in order to provide more stability in the armature
supply. The tripping circuit of the three-phase rectifier had ceramic capacitors replaced by
polyester capacitors, for being more resistant to thermal alterations.

In the proposal of this work, since the system is composed of motor, converter, trig-
ger circuit, acquisition board and others, it is necessary to represent all these elements
in the modeling. As the PNMPC uses the model to calculate its control action, the closer
the model is to the real system, the better results will be extracted from this controller.
The approximation of the model has a direct effect on the controller tuning, enabling the ge-
netic algorithm to find values for the controller parameters that have IAE and acceptable
dynamic behavior.

It was observed that operating under different conditions, the four controllers present
similar behavior, in which both achieve satisfactory results. Despite having met the desired
results, there is still to explore such as: (i) embed the controllers on the bench, eliminating
the use of a computer, (ii) perform the system modeling by using other methods such
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as neural networks, (iii) replace the three-phase fully controlled rectifier by a dual converter,
enabling reversal in the direction of rotation of the motor and (iv) replace the AC-DC
converter by a DC-DC converter.

For the speed control methodology adopted, changing the armature voltage and keep-
ing the field constant, it is essential that the field exists before the application of the armature
voltage. Hence, it is necessary that the electric control logic does not allow the existence
of armature voltage without the presence of a magnetic field because if this condition is not
met, there will be increasing acceleration of the rotor until the armature winding breaks,
and the mechanical components of the motor may be compromised.

5. Conclusions

This work carried out the implementation, analysis and comparison of the control
techniques: (i) PID, (ii) PNMPC, (iii) Fuzzy and (iv) DSMC applied to the DC motor speed
control with independent excitation and driven by a three-phase fully controlled rectifier
of six pulses. In order to compare the four controllers, similar working conditions were
sought, such as: same system, same model, same controller tuning and same performance
analysis method.

The methodology presented the design of the bench, the model of the real system
using the system identification method, and the adjustments of the controllers’ parameters
using an optimization process. For the tuning of the controllers, the genetic algorithm was
used. A detailed analysis of the PID, PNMPC, Fuzzy and DSMC controllers was performed,
in which three tests were presented: (i) test with fixed speed reference and without load
insertion in the motor, (ii) test with variable amplitude speed reference and without load
insertion in the motor and (iii) test with fixed speed reference and load insertion and
removal in the motor. The verification of the controllers’ efficiency used the IAE values,
settling time Ts, rise time Tr, fall time Td, insertion stabilization time Teic and load removal
stabilization time Terc.

In the comparisons between the techniques, the characteristics and performance when
executed under similar conditions were highlighted, presenting the robustness of each
control technique when acting on the proposed non-linear system. Thus, it is concluded
that the controllers tuned by genetic algorithm, applied to the speed control of DC mo-
tor driven by three-phase fully controlled rectifier present satisfactory results. However,
the PNMPC controller, when compared to other control techniques, presents better per-
formance. Regarding the robustness and precision of the techniques, even operating with
a nonlinear system, it obtained desired results when: (i) in the transient regime time, (ii) in
the overspeed and (iii) in the integral of the absolute error between the requested reference
and the speed developed by the motor.
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Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD Linear dichroism
PID Proportional, Integral and Derivative
MBPC Model Based Predictive Control
ABS Anti-lock Braking System
SMC Sliding Mode Control
DSMC Discrete Sliding Mode Control
DC Direct Current
PI Proportional and Integral
PNMPC Practical Nonlinear Predictive Control
FC Fuzzy Control
NARMAX Nonlinear Autoregressive Moving Average Model with Exogenous Inputs
GA Genetic Algorithm
TPFCR Three-phase fully controlled rectifier
PWM Pulse-width modulation
IC Integrated Circuit
AC Alternating Current
IAE Integral Absolute Error
ML Mutation Linear
CL Linear Crossover
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