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Abstract: The high-dynamic permanent magnet (PM) motor servo system with high-bandwidth is the
core equipment for industrial production, and the control bandwidth is also an important indexes to
evaluate the performance of the servo system. The non-cascaded direct predictive speed control is an
appropriate scheme to optimize the dynamic performance of the PM motor servo system. However,
the high bandwidth of the non-cascaded control structure results in poor anti-interference ability,
and it cannot effectively deal with the coupling relationship between current and speed, leading to
poor control performance in the current limit region. Regarding the above problems, a nonlinear
predictive speed control strategy combined with harmonic disturbance observer is proposed. In the
proposed strategy, the disturbances of the servo system are separated from the mathematical model
according to the nonlinear modeling theory, and the traditional disturbance observer is modified to
estimate the harmonics. A nonlinear control law with strong disturbance suppression ability was
designed. Furthermore, a complete current and speed prediction mechanism was introduced into
the algorithm, in which the proportional differential (PD) controller is employed as the connection
medium between the reference current and speed to solve the coupling problem of the non-cascaded
control structure.

Keywords: model predictive control; nonlinear observer; disturbances attenuation; permanent
magnet synchronous motor (PMSM); observer-based control

1. Introduction

High precision servo control has been widely used in computer numerical control
(CNC) machines, artificial intelligence, etc. Because permanent magnet (PM) motors have
the advantages of simple structure, high specific power, and wide speed range [1,2], they
are usually employed as the main motor system of servo control. The speed control
algorithm of the PM servo system usually adopts the cascade control structure with the
current inner loop and the speed outer loop. This control structure requires that the
control bandwidth of the current loop is much larger than that of the speed loop, to
meet the stability condition of system, resulting in the limitation of the dynamic response
speed of the motor [3–5]. To match the growing demand for highly dynamic and high-
precision modern servo systems, the non-cascaded direct predictive speed control (DPSC)
has become an important research direction in servo system control strategy [6,7]. Because
of its excellent dynamic performance and multivariable online optimization abilities, DSPC
is an appropriate scheme to construct the direct speed control structure of a PM servo
motor [8,9].

In recent years, the model predictive control algorithm has achieved great success in
the permanent magnet synchronous motor (PMSM) drive, which improves the dynamic
performance of the motor drive system [10,11]. DPSC is a feasible means of further opti-
mizing the dynamic performance of the PM servo system. Currently, scholars are trying
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to improve DPSC in terms of the two aspects of disturbance suppression and efficient
operation, so as to make it possible for industrial application.

The excellent dynamic performance of DPSC is due to its high-bandwidth character-
istics; however, the anti-interference capability of this high-bandwidth control structure
is relatively weak. There are a large number of harmonics in the servo system, caus-
ing the problems of parameter mismatch, machining error, and control misalignment. A
high-bandwidth structure cannot effectively suppress these medium- and high-frequency
harmonics, resulting in the deterioration of the steady-state performance [12,13]. To solve
this problem, a repetitive controller is embedded into the model predictive control (MPC)
algorithm according to the Fourier series, which is equivalent to adding periodic motion
modes to the controller. This improves the suppression ability of the MPC to the corre-
sponding periodic disturbance [14]. Similarly, an iterative learning MPC controller was
proposed in [15]. Compared with the repetitive MPC or iterative learning MPC, the fre-
quency characteristic of the resonant controller is more stable and has less impact on the
stability of the control system. On this basis, the predictive-resonant controller is formed
by integrating multiple resonant units into the MPC, which enhances the control ability
of the controller to the signal at a specific frequency [16,17]. However, DPSC is a typical
multiple input and multiple output (MIMO) controller. Both repetitive MPC and resonant
MPC algorithms adopt the design idea of a single input and single output (SISO) con-
troller, which is not suitable for the design of DPSC. The robust MPC controller is a kind
of MIMO MPC strategy, and is suitable for the transformation to DPSC [18–20]. Instead
of the accurate frequency information of disturbances, the key control information of the
robust MPC is only the extreme range of disturbances. For this reason, the robust MPC
can only satisfy the minimum control objectives (such as tracking and stability) in the
presence of disturbances. Due to its simple structure, intuitive principle, and suitability for
MIMO design, the observer-based MPC (OB-MPC) is a sophisticated methods to suppress
disturbances in a control system that adopts a predictive algorithm [21–23]. According to
the estimated value of the observer, this kind of algorithm will generate supplementary
values that can be directly superimposed in the control quantity, so as to improve the
control performance. However, these algorithms pay more attention to the estimation and
suppression of constant disturbances [24], and fewer reports have been made about the
application of the algorithms to harmonic disturbances.

The cascade control structure is abandoned in DPSC, resulting in the disappearance
of the direct relationship between speed and current. Thus, it is difficult to utilize the
maximum operation current of the motor for DPSC, due to considerations of safe operation
and stability. Specifically, assuming that the motor boundary constraint is too strict, the
motor cannot reach its maximum efficiency; otherwise, the transient current of the motor
will be large, which means that it is easy to trigger an overcurrent fault. To solve the
above problem, an additional current limiting loop is introduced into the output [25–28].
However, this method is equivalent to re-imposing a constraint boundary on the solution of
an unconstrained optimization problem, which deviates from the actual optimal solution.
Hence, the dynamic performance of the servo system will be degraded when tracing the
reference, such as a slope signal or acceleration signal. Thus, the current limiting loop is
rejected in favor of a PI compensation link, which provides a new idea to deal with the
operation problem of DPSC on the current boundary [29]. Due to the integral saturation
phenomenon of PI controller, this algorithm needs to be improved further. The explicit
model predictive algorithm can suitably deal with the above problems, using different
control laws under different control partitions [30,31]. However, the huge number of control
partitions increases the difficulty of the algorithm implementation. Therefore, alternative
direct speed optimization algorithms without a current limiting link should be researched,
under the condition of meeting the computing power of existing microprocessors [32,33].
This would be of great value to the promotion of DPSC.

Aiming at addressing the problems of DPSC in terms of disturbance suppression and
efficient operation, a nonlinear predictive speed control strategy combined with harmonic
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disturbance observer (HDO-NPSC) is proposed for the design of a PM servo system
with high dynamic response and high operation accuracy. In the proposed strategy, the
disturbances in the servo system are separated from its classical model according to the
nonlinear modeling theory, and the corresponding predictive model including harmonic
and constant disturbances is constructed. Then, the nonlinear predictive control law
suitable for PM servo system is established by solving the given cost function. In addition,
the observer, which can effectively observe the harmonic disturbances of the system, was
designed, and the observation values were introduced into the control law to improve
the suppression ability of the proposed algorithm, so as to eliminate the control problems
caused by non-ideal modeling factors, such as parameter mismatch and control inaccuracy.
In contrast to the existing DPSC strategies, the output variables of HDO-NPSC completely
include the motor current and speed variables, and a PD controller is used to connect
the speed errors and current reference. Hence, HDO-NPSC can employ the maximum
working current of the motor without the help of a current limiting link, by appropriately
distributing the weight coefficient.

2. Harmonics Problem of PMSM Servo Drive

The speed fluctuations of a PM servo motor mainly come from the non-ideal modeling
factors in the system, including the parameter mismatch of the motor, the dead-time effect
of the converter, and the current sampling errors of the controller.

2.1. Parameter Mismatch

The value of the stator resistance is affected by the external environment temperature,
and the actual resistance of motor at a given temperature can be expressed with the
resistance coefficient α, as [34,35]:

Rs = Rs0[1 + α(Temp.− 20)], (1)

Considering that the value of α is small, and usually selected as 0.00393 ppm/◦C, it
can be approximately supposed that there is only a constant disturbance in Rs, that is:

Rs = Rs0 + ∆R, (2)

The stator inductance of the motor can be calculated by the finite element method,
and its calculation expression is [36]:

Ls =
2Lef∑∞

l=1 Hl Bl∆Sl

3i2s
, (3)

When the magnetic circuit of the motor is unsaturated, the energy in the magnetic field
is stable, and the inductance value will not change greatly. In other words, the nominal
value of inductance will only change significantly after the saturation of the magnetic
circuit. Therefore, it can still be considered that there are only constant disturbances for the
inductance parameter, i.e., {

Ld = Ld0 + ∆Ld
Lq = Lq0 + ∆Lq

, (4)

The moment of inertia of the PM servo system is composed of the motor and the load;
its calculation expression is [37]:

Jm =
1
2

[
Mironc

(
R2

iron + r2
iron

)
+ MshaftR2

shaft

]
︸ ︷︷ ︸

Motor

+ JLoad, (5)

From (5), the moment of inertia of the motor can be calculated according to the design
parameters. However, it is usually difficult to obtain the load inertia; as a result, the
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estimated value of the servo system deviates from its actual value. However, the moment
of inertia only depends on the shape of the object, the mass distribution, and the position of
the rotation axis, so it can be considered that there is only a constant estimation deviation
for Jm, that is:

Jm = Jm0 + ∆J, (6)

In the process of system modeling, the permanent flux ψf is usually considered to be a
constant value, that is, the rotor flux is assumed to be an ideal sinusoidal distribution in
space. However, due to the influence of stator slotting, core material saturation, manufac-
turing process constraints, etc., it is difficult to achieve an ideal sinusoidal distribution in
the permanent flux, which leads to the existence of harmonics in the stator winding. The
harmonics of the permanent magnet flux linkage in the d-q synchronous coordinates can
be expressed as [12]: {

ψfd = ψd0 + ∑∞
l=1 ψd6,l cos(6lωet)

ψfq = ∑∞
l=1 ψq6,l cos(6lωet) , (7)

It can be seen from (7) that subharmonics with 6lωe can be found in the permanent
magnet, which are represented as ψd6,l and ψq6,l.

2.2. Dead-Time Effects and Current Sampling Errors

Avoiding the operation faults of a voltage sourced inverter, a dead time is usually
added to the IGBT control signal, which leads to the deviation in the output voltage. This
deviation voltage can be expressed as [38]:

∆ux = −sign(ix)
Tdead

Ts
udc, (8)

According to the Park transformation, the deviation voltages of A, B, and C phases
can be transformed into the d-q frame, which can be expressed as: ∆ud,dead = 4Tdudc

πTs
∑∞

l=1
12l sin(6lωet)

36l2−1

∆uq,dead = 4Tdudc
πTs

{
−1 + ∑∞

l=1
2 cos(6lωet)

36l2−1

} , (9)

From (9), when the motor operates stably with the frequency of ωe, the deviation
voltage contains the harmonic disturbances with the frequency of 6lωe (l = 1, 2, 3, . . . ).

The stator current is the necessary information for the feedback control, and its mea-
surement process includes sensor detection, low-pass filtering, polarity conversion, and
analog-to-digital conversion. However, offset errors exist in this measurement because
of the imbalanced power supply of the current sensors. In addition, proportional errors
will also be detected, as the value of the sampling resistance changes with temperature.
To summarize, the current measurement results can be expressed with an undetermined
coefficient k1~4 as [12]:

∆id = k1 sin(ωet) + k2 sin(2ωet) + od, (10)

∆iq = k3 cos(ωet) + k4 cos(2ωet) + oq, (11)

From the above analysis, it can be seen that the main disturbance components in the
PM servo system can be divided as follows: (1) the constant disturbances caused by the
parameter mismatch of resistance, inductance, and moment of inertia; (2) disturbances with
a frequency of 6ωe caused by the flux harmonics and dead-time effect; and (3) disturbances
with a frequency of ωe and 2ωe caused by current sampling errors.
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3. Design of Nonlinear Predictive Speed Controller
3.1. Continuous-Time Predictive Model

The dynamic model of the PM servo system in the d-q frame can be expressed as [39]:

usd = Rsisd + Ld
disd
dt
− Lqnpωmisq, (12)

usq = Rsisq + Lq
disq

dt
+ Ldnpωmisd + npωmψf, (13)

Jm
dωm

dt
= Te − TL − Bωm, (14)

Considering the disturbance factors in (12)–(14), then we can obtain:

.
x(t) = f(t) + g1u(t) + g2(χc(t) + χh(t)), (15)

where x = [isd isq ωm]T, u = [usd usq]T,

χc(t) =

 ∆Risd + ∆Ld(disd/dt)− npωm∆Lqisq
∆Risq + ∆Lq

(
disq/dt

)
+ npωm∆Ldisd

TL + Bωm + ∆J(dωm/dt)

,

χh(t) =



−∆ud + ∆isd(Rs + ∆R) + (Ld + ∆Ld)(d∆isd/dt)
−npωm

(
Lq + ∆Lq

)
∆isq

−∆uq + ∆isq(Rs + ∆R) +
(

Lq + ∆Lq
)(

d∆isq/dt
)

+npωm(Ld + ∆Ld)∆isd + prωmψfd

1.5pr

[
−isq ∑∞

l=1 ψd6,l cos(6lωet) + ψd0∆iq−(
Ld − Lq

)
isd∆iq −

(
Ld − Lq

)
isq∆id

]


.

The other coefficient matrices are:

f(t) =

 fd
fq
fw

 =


(
−Rsisd + npωmLqisq

)
/Ld(

−Rsisq − npωmLdisd − prωmψf
)
/Lq{

1.5np
[
ψd0isq +

(
Ld − Lq

)
isdisq

]
− Bωm

}
/Jm

, g1 =

1/Ld 0
0 1/Lq
0 0

,

g2 =

−1/Ld 0 0
0 −1/Lq 0
0 0 −1/Jm

.

It can be seen from (20) that χc(t) is mainly introduced by parameter mismatch and
external load disturbance, and χh(t) is mainly introduced by the dead-time effects and
current sampling errors. Taking the disturbance frequency as the modeling characteristic,
the nonlinear model of PM servo system can be constructed as:{ .

x(t) = f(t) + g1u(t) + g2χ(t)
y(t) = h(x)

, (16)

where χ (t) = χc(t) + χh(t), h(x) = [h1 h2 h3]T = [isd isq ωm]T

3.2. Long-Horizon Optimization and Its Control Law

From (17)–(19), the relative order of isd and isq is equal to 1, and the relative order of
ωm is equal to 2. Then, we can obtain:

isd(t + τ) = isd(t) + τ
.
isd(t), (17)

isq(t + τ) = isq(t) + τ
.
isq(t), (18)

ωm(t + τ) = ωm(t) + τ
.

ωm(t) +
τ2

2
..
ωm(t), (19)
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where: { .
isd(t) = L f isd + Lg1 isdu(t) + Lg2 isdχ(t).
isd/q(t) = L f isq + Lg1 isqu(t) + Lg2 isqχ(t)

, (20)

.
ωm(t) = L f ωm + Lg2 ωmχ(t), (21)

..
ωm(t) = L2

f ωm + Lg1 L f ωmu(t) + Lg2 L f ωmχ(t), (22)

To evaluate the tracking performance of output variables in the future time scale, the
cost function is defined as:

J =
1
2

Ti∫
0

qi


[
iref
sd (t + τ)− isd(t + τ)

]2

+
[
iref
sq (t + τ)− isq(t + τ)

]2

dτ +
1
2

Tw∫
0

qw

[
ωref

m (t + τ)−ωm(t + τ)
]2

dτ, (23)

Substituting (20)–(22) into (23), then we obtain:

J =
1
2
[
Y(t)−W(t)

]TH(τ)
[
Y(t)−W(t)

]
, (24)

where:

Y(t) =
[
isd

.
isd isq

.
isq ωm

.
ωm

..
ωm

]T
,

W(t) =
[
iref
sd

.
i
ref
sd iref

sq
.
i
ref
sq ωref

m
.

ω
ref
m

..
ω

ref
m

]T
,

H(τ)= diag

(
qi
∫ Ti

0 HT
1 H1dτ, qi

∫ Ti
0 HT

2 H2dτ,
qw
∫ Ti

0 HT
3 H3dτ

)
, H1 = H2 =

[
1 τ

]
, H3 =

[
1 τ τ2/2

]
.

According to the unconstrained quadratic optimization theory [36], the optimal so-
lution of the optimization problem corresponding to cost function (24) is equivalent to
∂J/∂u = 0; then, we can obtain the corresponding law of the nonlinear predictive speed
controller (NPSC), i.e.,

u(t) = −G−1M[Y−W + Nχ(t)], (25)

where:

G =
qiT3

i
3

[
LT

g1
idLg1 id + LT

g1
iqLg1 iq

]
+ qwT3

w
20 Lg1 LT

f ωmLg1 L f ωm,

M =

[
qiT2

i LT
g1

id/2 qiT3
i LT

g1
id/3 qiT2

i LT
g1

iq/2 qiT3
i LT

g1
iq/3

qwT3
i Lg1 LT

f ωm/6 qwT4
i Lg1 LT

f ωm/8 qwT5
i Lg1 LT

f ωm/20

]
Y =

[
L0

f isd L1
f isd L0

f isq L1
f isd L0

f ωm L1
f ωm L2

f ωm

]T
,

W =
[

iref
sd

.
i
ref
sd iref

sq
.
i
ref
sq ωref

m
.

ω
ref
m

..
ω

ref
m

]T
,

N =
[

O Lg2isd O Lg2isq O Lg2ωm Lg2L f ωm
]T.

where O is the zero matrix.

3.3. Asymptotic Stability Analysis

Assuming that χ(t) and its derivatives are continuous and bounded, χ(t) can be
estimated by constructing a disturbance observer. Therefore, on the premise of ignoring
the influence of disturbance, by substituting (25) into (15), we can obtain:

.
e =


− 3

2Ti
0 0 0

0 − 3
2Ti

− qwnpψf
2Jm

− 3qwnpψf
8Jm

0 0 0 1
0 − 10qi Jm

npψfT3
i

− 10
3T2

w
− 5

2Tw

e, (26)



Energies 2022, 15, 4107 7 of 16

where e =
[
isd − iref

sd isq − iref
sq ωm −ωref

m
.

ωm −
.

ω
ref
m

]T
.

From (26), the characteristic polynomial of system is:
(

s + 3
2Ti

)2
= 0

s2 + 5
2Tw

s + 10
3T2

w
= 0

, (27)

From (27), the solutions of the characteristic polynomial are s1,2 = −3/2Ti,
s3,4 = (−1.25 ± j1.307)/Tw. Because the predictive horizon Ti and Tw are positive, the
eigenvalues are located in the left plane of the complex plane, which means the designed
system is stable.

It can also be seen from Equation (27) that NPSC has four system characteristic roots,
which correspond to the current and speed control performance of the d-axis and q-axis,
respectively. Among these, the current control performance is approximately equal to
the first-order controller, and the speed control performance is approximately equal to
the under-damped second-order controller. In addition, the dynamic regulation time of
speed is usually longer than the control period; as a result, it is necessary to implement
multi-step prediction for predictive speed control to ensure the stability of the algorithm,
and the predictive horizon is required to cover the dynamic process of speed. Thus, Tw > Ti,
which shows that the current dynamic performance of NPSC is better than that of speed.
Furthermore, with the increase in Ti and Tw, the eigenvalues of the system are closer to
the imaginary axis of the complex plane, and the dynamic process of the system slows
accordingly. To summarize, the values of Ti and Tw should not be selected as being too
large or too small to ensure the stability of system.

The high bandwidth is the key element for high-performance control of NPSC. Hence,
it is necessary to undertake quantitative analysis of the actual bandwidth of NPSC. Employ-
ing the transformation results of idref, id, ωe

ref, and ωe in the Laplace domain, Id
ref(s), Id(s),

Wref(s), and W(s), the control bandwidth of the proposed strategy is analyzed as follows:
Iref
d (s)
Id(s)

= 1 + 1
6 Tis

Wref(s)
W(s) =

K∗[2qwTiT5
ws2+(12qwT5

w+5qwTiT4
w)s+30qwT4

w]
2qwTiT5

ws2+(12qwT5
w+5qwTiT4

w)s+30qwT4
w+240J

, (28)

It can be seen from (28) that NPSC is essentially a type of PD controller for the
d-axis current control. The control characteristics are externally manifested as an all-pass
characteristic, which has high-control bandwidth and poor noise suppression. However,
the application of the following harmonic disturbance observer (HDO) can effectively
compensate for this defect. For the speed control part, HDO-NPSC is approximately
equivalent to a class of P-type controller. Similarly, HDO is used to suppress harmonics in
the control system.

4. Harmonic Disturbance Observer
4.1. Modified Observer Targeting at Harmonics Estimation

There are still unknown disturbances in the optimal control law shown in (25), with
the exceptions of the given nominal parameters, predetermined control parameters, and
predictive horizon. According to the construction principle of the nonlinear observer [40],
the disturbance observer with (16) can be constructed as:

.
^
χ(t) = L

(
χ(t)− ^

χ(t)
)

χ(t) = g−1
2 (−f(t)− g1u(t))

, (29)

From (34), the nonlinear observer converges when
.
^
χ(t) = 0, which means

^
χ(t)→ χ(t) .

That is, the classical nonlinear observer can only observe the constant or slowly varying
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disturbances. However, not only are constant disturbances χc(t) present in the PM servo
system, but also harmonic disturbances χh(t).

To observe the harmonic disturbances with frequencies of ωe, 2ωe, and 6ωe, which
are denoted as χh(t), χ2h(t), and χ6h(t), χ(t) can be reconstructed according to the different
disturbance frequencies, as:

.
ξ = Xξ =


O

X(ωe)
X(2ωe)

X(6ωe)

ξ, (30)

where:
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I
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Combined with (16) and (30), the modified nonlinear disturbance observer can be

contrasted as: 

.
^
ξ = X

^
ξ + Lg2

(
χ(t)− ^

χ(t)
)

χ(t) = g−1
2
( .
x− f(t)− g1u(t)

)
^
χ(t) = C

^
ξ

, (31)

where C = [11×3 11×3 0 11×3 0 1 0], 11×3 is the ones matrix, and L = [ Lc Lh L2h L6h]T is the
coefficient matrix of the observer.

4.2. Stability of Modified Observer

The observation errors are defined as ε = ξ−
^
ξ; then, the following equation can be

obtained according to (31):
.
ε = (X− Lg2C)ε, (32)

and the Lyapunov function is defined as follows:

V = εTPε, (33)

where P is an arbitrary symmetric positive definite matrix. The derivative of the Lyapunov
function is: .

V = εTP
.
ε +

.
ε

TPε = εT
[
P(X− Lg2C) + (X− Lg2C)TP

]
ε, (34)

For the nonlinear disturbance observer in (37), it can be seen from (36) and (37) that
there is always an observer coefficient matrix L which makes P(X − Lg2C) negative definite.

That is, the observation errors ε→0,
^
ξ→ ξ when t→∞.

Since the derivative information of the state variables is difficult to obtain, we can

solve this problem by introducing the relationship of
^
ξ = z + p(x) into (37). Finally, the

mathematical expression of HDO is constructed as:
.
z = (X− Lg2C)z + Xp(x)− Lf(t)−

Lg1u(t)− Lg2Cp(x)
^
χ(t) = C[z + p(x)]
p(x) = Lx

, (35)
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5. Proposed Scheme and Its Parameter Tuning

From substituting the estimated value in (35) into (25), the principal block diagram of
HDO-NPSC can be shown as in Figure 1.

Figure 1. Control block diagram of the proposed HDO-NPSC.

In the proposed algorithm, isd
ref = 0. Furthermore, an additional PD controller is

introduced to adjust the relationship between the q-axis reference current and the speed;
its expression is:

iref
sq =

[
0 0 1/1.5npψf

]^
χ(t) + Kp

(
ωref

m −ωm

)
+ Kd

( .
ω

ref
m −

.
ωm

)
, (36)

where Kp and Kd are the proportional and differential coefficients, respectively. The PD
controller is employed to modify the reference value of the q-axis current in advance to
ensure the dynamic performance, but it does not change the control structure and stability
of HDO-NPSC.

From the system model in (15), state errors in (26), and observation errors in (32), it
can be concluded that:
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In (37), B is a parameter matrix independent of L. The control parameters of NPSC 
are the current weight qi and predictive horizon Ti, and speed weight qw and predictive 
horizon Tw. The control parameters of HDO are contained in the coefficient matrix L. From 
(37), it can be found that HDO and NPSC can be designed separately, and there is no direct 
parameter coupling relationship between them. Therefore, the parameter design of NPSC 
can be completed under the assumption that χ(t) = 0, and then L can be adjusted based on 
the pole assignment of the NPSC-based system. The specific parameter tuning process is 
shown in Figure 2. 

, (37)

In (37), B is a parameter matrix independent of L. The control parameters of NPSC
are the current weight qi and predictive horizon Ti, and speed weight qw and predictive
horizon Tw. The control parameters of HDO are contained in the coefficient matrix L.
From (37), it can be found that HDO and NPSC can be designed separately, and there is no
direct parameter coupling relationship between them. Therefore, the parameter design of
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NPSC can be completed under the assumption that χ(t) = 0, and then L can be adjusted
based on the pole assignment of the NPSC-based system. The specific parameter tuning
process is shown in Figure 2.

Figure 2. Parameter tuning flowchart of the proposed HDO-NPSC.

According to the flowchart of Figure 2, the detailed parameter setting procedure is
listed as follows:

Step I: Current control parameters. The parameters of the current control part should
be set first in the case of disconnecting the speed control part (i.e., set isq

ref to a fixed value
and block the output of the PD controller). The specific parameter tuning process is as
follows. Firstly, the current horizon Ti within the allowable range should be selected to
set the current weight coefficient (e.g., Ti = Ts is also allowed). The setting process of
the current weight coefficient is completed until the motor system can operate normally
and the q-axis current can track the given value. Then, the current horizon should be
optimized under the condition of keeping the current weight coefficient unchanged. It is
worth mentioning that the speed predictive horizon should be selected to be sufficiently
long to cover the dynamic process of the motor system as much as possible. However, it
can be seen from Section 3.3 that a predictive horizon having a too-large value will lead
to dynamic performance degradation. For this reason, the current predictive horizon is
generally selected as 10%–20% of the transient time constant of servo system; then:

Tid = (10% ∼ 20%)
Ld
Rs

, Tiq = (10% ∼ 20%)
Lq

Rs
, (38)

Step II: Speed Control Parameters. Similarly, the speed predictive horizon is generally
selected as:

Tw = (10% ∼ 20%)
JmRs

npψf
, (39)

The weight coefficient determines the importance of each variable in the control
process; however, a too-large value will destroy the stability of the system. Therefore, it
is necessary to gradually increase the value of qw from a smaller value until a satisfactory
control effect is achieved.

Step III: Observer parameters. To ensure the observation speed and interference
suppression performance, the observer poles are usually assigned to be 2~5 times faster
than the system poles.
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6. Experimental Results

To verify the feasibility and effectiveness of NDO-NPSC, the experiments were carried
out on a 2.3 kW surface-mounted PMSM. The parameters of the motor are given in Table 1.
In the testbench, the load torque is produced by a PM servo motor of the same model.
In the following experiments, the algorithms were implemented with a TMS320F28377D
micro controller unit (MCU) produced by TI and a Cyclone V FPGA produced by Intel.
DSP was used to execute the code of the main algorithm, and FPGA was used to implement
the high-precision analog-to-digital conversion (ADC), digital-to-analog conversion (DAC),
and pulse generation.

Table 1. PMSM parameters.

Parameter Symbol Value

Rated power PN 2.3 kW
Number of pole-pairs p 2
Rated speed nN 1500 r/min
Rated torque TN 15 Nm
Rated current IN 10 A
Permanent magnet flux ψr 0.33 Wb
Stator resistance Rs 0.63 Ω
Stator inductance Ls 4.0 mH
Moment of inertia Jm 0.00272 kg·m2

Control period Ts 100 µs

Figure 3 shows the steady-state experimental waveforms of the motor speed, current,
and rotor position with the proposed HDO-NPSC. In the experiments, the operating
performance of PMSM adopting HDO-NPSC under the condition of high/low speed with
heavy/light load were verified. It can be seen from Figure 3 that the servo motor system can
work stably at the given speed with load when HDO-NPSC is adopted. The proposed HDO-
NPSC algorithm can achieve favorable speed tracking performance regardless of high/low
speed and light/heavy load conditions. At the low speed and light load condition, the
low-frequency harmonics introduced by non-ideal flux harmonics are more significant and
the three-phase current has slight distortion. However, the overall steady-state control
performance is still excellent.

Figure 3. Experimental results of the proposed algorithm under the steady-state operation. (a) Low
speed (200 r/min) with light-load condition (3.75 Nm). (b) High speed (1200 r/min) with heavy-load
condition (12 Nm). (c) Low speed (200 r/min) with heavy-load condition (12 Nm). (d) High speed
(1200 r/min) with light-load condition (3.75 Nm).
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Figure 4 shows the dynamic experimental waveforms of speed, stator current, and
rotor position of FOC with the Luenberger observer (DOB-FOC), predictive speed control
with the Luenberger observer [41], and HDO-NPSC, respectively. In Figure 4, the rotor
speed is accelerated abruptly from 0 to 800 r/min with no load; the given speed is then
unchanged and the load torque is abruptly increased to 8.2 Nm. As shown in Figure 4,
when the speed reference is a step signal, all three strategies can track the speed reference
value without bias. The speed response time of DOB-FOC is 697.1 ms, whereas that of
DOB-PSC is 43.5 ms and that of HDO-NPSC is 204 ms. More importantly, when load
disturbance occurs, the speed recovery time of DOB-FOC is 65 ms and that of DOB-PSC
is 319.2 ms, whereas that of HDO-NPSC is 40.2 ms. Furthermore, comparing the q-axis
current waveforms of the three methods, it can be seen that the q-axis current waveform of
HDO-NPSC is relatively stable.

Figure 4. Comparison results of the proposed algorithm with DOB-FOC and DOB-PSC. (a) DOB-FOC.
(b) DOB-PSC. (c) HDO-NPSC.

Furthermore, in order to comprehensively verify the performance of the proposed
algorithm, the above three strategies without auxiliary observers were been compared. By
comparing Figures 4 and 5, it can be found that, after adding the observer, the dynamic
performance of FOC is indeed improved, but it is still inferior to HDO-NPSC. When the
observer is removed, the prediction algorithms (PSC and NPSC) have some small steady-
state errors. However, the dynamic performance of the proposed algorithm is satisfactory in
the absence of an observer. In general, compared with the existing strategies, the proposed
algorithm can significantly improve the dynamic performance of the motor system without
increasing the cost of the control hardware and deteriorating the steady-state performance
of the motor system.

Figure 6 shows the dynamic experimental waveforms of speed, stator current, and
rotor position of HDO-NPSC, FOC (with the feedforward and anti-windup link), and
PI-PCC, respectively. In Figure 6, the given speed of the servo motor system is set to a
triangular wave with a peak value of 800 r/min with no external load. After a period of
time, the load torque is abruptly increased to 8.2 Nm. From Figure 6, it can be seen that the
proposed HDO-NPSC algorithm has better dynamic performance and faster response to
the slope reference signal compared with the FOC and PI-PCC strategies. More importantly,
it can also effectively avoid the tracking errors caused by the saturation effect of the PI
controller. However, HDO-NPSC has a slight tracking error due to the lack of an integral
link. This error is relatively small, and within the acceptable range for applications. From
Figure 6, for the given signal of triangular wave speed, it can be seen more intuitively that
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HDO-NPSC has smaller tracking error and faster response speed when tracking the given
signal of a high type, which has obvious advantages.

Figure 5. Comparison results of the proposed algorithm with FOC and PSC; all strategies are not
equipped with observers. (a) FOC. (b) PSC. (c) NPSC.

Figure 6. Tracking performance validation with triangular reference signals. (a) FOC (with the
feedforward and anti-windup link). (b) PI-PCC. (c) HDO-NPSC.

7. Conclusions

An HDO-NPSC strategy for the PM servo system is presented in this paper. By sepa-
rating the disturbance terms from the mathematical model of the system, a high-bandwidth
nonlinear speed controller with non-cascaded structure was constructed, and the matching
harmonic disturbance observer was designed to improve the anti-interference ability of
the controller. Furthermore, the PD controller was employed to eliminate the traditional
limitation loop, which further improves the tracking ability of the predictive speed al-
gorithm for the high-type reference signals, e.g., the ramping signals and acceleration
signal. To summarize, HDO-NPSC effectively solves the problems of classical DPSC in
terms of disturbance suppression and efficient operation. Specifically, compared with FOC,
the dynamic performance of HDO-NPSC is significantly improved; and, compared with
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PI-PCC, it can achieve more stable steady-state performance, which means it has great
value for the promotion and application of the predictive algorithm in servo systems.

The algorithm in this paper has the following disadvantages, and thus needs to be
further improved. The essence of the proposed algorithm is to observe the spectrum of
the disturbance distribution in the system by applying HDO. On this basis, it can inject
the corresponding compensation into the control quantity (d-axis and q-axis voltages), so
as to improve the control performance of motor speed. In conclusion, the compensation
values that are opposite to the system disturbance in phase will be injected into the d-axis
and q-axis currents, which will lead to a certain amount of compensation harmonics in the
three-phase current.

Author Contributions: Conceptualization, Z.Z. and S.Y.; methodology, Z.Z.; software, C.M.; valida-
tion, Z.Z., S.Y. and C.M.; formal analysis, Z.Z.; investigation, Z.Z.; resources, Z.Z.; data curation, G.Z.;
writing—original draft preparation, Z.Z.; visualization, G.Z.; supervision, Q.G.; project administra-
tion, Q.G.; funding acquisition, Z.Z. and Q.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the financial support from the National Natural Science
Foundation of China under Grant (51907142, 52077154), and in part by the Natural Science Foundation
of Tianjin City under Grant 20JCQNJC00030.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

i, u, ψf, Ts Current, voltage, flux linkage of rotor, control period
ωe, ωm Electric angular frequency, mechenical angular frequency

R, L, Jm, Jload
Resistance, inductance, the moment of inertia, the moment of
inertia of load

pr, B, TL Pole pairs, friction coefficient, load torque

Lef, H, B, S
Core length of stator winding, magnetic field intensity, magnetic
flux density, calculation area

Miron, Mshaft, Riron, riron, Rshaft
Core mass, the shaft mass, the inner radius of core, the outer radius
of the core, the inner radius of shaft

x, u, χ, h State vector, input vector, disturbance vector, output vector
q, T Weight coefficient, predictive horizon
τ, L Future time scale, Lie derivative
ξ, L State variable of observer, coefficient matrix of observer
Kp, Kd Proportional and differential coefficien of PD controller
∆, o Incremental quantity of variables, high-order infinitesimal variable
A, B, C, d, q (subscript) Variables under A-, B-, C-, d-, q-axis
dc, s, 0 (subscript) DC bus variables, stator variables, nominal value
c, h (subscript) Constant disturbances variables, harmonics variables
dead (subscript) Variables related to dead-time effects
i, w (subscript) Current control loop variables, speed control loop variables
ref, ∧ (superscript) Reference values, estimated values
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