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Abstract: Artificial neural networks (ANNs) have achieved great success in performing machine
learning tasks, including classification, regression, prediction, image processing, image recognition,
etc., due to their outstanding training, learning, and organizing of data. Conventionally, a gradient-
based algorithm known as backpropagation (BP) is frequently used to train the parameters’ value of
ANN. However, this method has inherent drawbacks of slow convergence speed, sensitivity to initial
solutions, and high tendency to be trapped into local optima. This paper proposes a modified particle
swarm optimization (PSO) variant with two-level learning phases to train ANN for image classifica-
tion. A multi-swarm approach and a social learning scheme are designed into the primary learning
phase to enhance the population diversity and the solution quality, respectively. Two modified search
operators with different search characteristics are incorporated into the secondary learning phase to
improve the algorithm’s robustness in handling various optimization problems. Finally, the proposed
algorithm is formulated as a training algorithm of ANN to optimize its neuron weights, biases, and
selection of activation function based on the given classification dataset. The ANN model trained by
the proposed algorithm is reported to outperform those trained by existing PSO variants in terms
of classification accuracy when solving the majority of selected datasets, suggesting its potential
applications in challenging real-world problems, such as intelligent condition monitoring of complex
industrial systems.

Keywords: particle swarm optimization; artificial neural network; training algorithm; machine
learning; two-level learning phases

1. Introduction

The human nervous system inspires an artificial neural network (ANN), and many
artificial neurons act as interconnected processing elements in ANN to emulate the cerebral
cortex of brain structure. In contrast to other conventional machine learning methods,
ANNs demonstrate outstanding capabilities in generalizing, organizing, and learning the
nonlinear data that are commonly observed in real-world scenarios [1]. Due to these
appealing features, ANNs have been widely implemented to solve various real-world
application, including intelligent condition monitoring [2], speech recognition [3], fault
diagnosis [4], pothole classification [5], etc. Generally, ANN structure can be separated
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into three parts: the input layer, the hidden layer, and the output layer. Information
flows in a single direction within an ANN model, i.e., from the input layer to the hidden
layer, followed by the output layer [6]. Each neuron of the layers is incorporated with an
activation function to convert the summed weighted input received by each neuron into
the nonlinear output. This nonlinear characteristic serves as the cornerstone for ANN to
have competitive performance in tackling various challenging machine learning tasks, such
as the learning of complex data, functions approximation, and predictions [7].

Before deploying an ANN model to solve machine learning tasks, a training process
is performed to determine the optimal combinations of weight and bias values for all
neurons that can achieve minimum error. A gradient-based algorithm known as the
backpropagation (BP) method is conventionally used to train ANN models [7]. At the
beginning stage of ANN training, the initial weight and bias values of neurons are randomly
generated, and the actual output values of the network are determined. The error signals
between the desired and actual outputs are then calculated and backpropagated to the
network to adjust the weight and bias values of each neuron. Despite its popularity,
some drawbacks were reported when using the classical BP method to train ANN models,
especially when solving complex nonlinear problems. For instance, the BP method has
a high tendency to be trapped in local optima and fail to reach global optimum when
dealing with solution regions with complex characteristics. The performance of the ANN
model when solving complex problems can be significantly degraded due to suboptimal
weight and bias values assigned to all neurons [7]. The convergence characteristic of the
classical BP method in ANN training is also sensitive to the initial values of weight, bias,
and network parameters (e.g., activation function). There might be scenarios where the
classical BP method produces poor initial weight and bias values for ANN during the
training process, leading to compromised network performances [7]. These limitations
of classical BP methods have motivated researchers to seek robust alternatives that can
address ANN training problems more efficiently and effectively.

In recent years, metaheuristic search algorithms (MSAs) have emerged as promising
solutions to tackle complex optimization problems, such as those reported in [8–13]. The
excellent global search ability and stochastic characteristic of these MSAs can also be
harnessed for training ANN models to solve classification or regression problems. Particle
swarm optimization (PSO) is one of the most popular MSAs, and it is motivated by the
collective behavior of bird flocks in locating food sources [14]. Each PSO particle can
memorize its previous best searching experiences, and this unique feature distinguishes
PSO from other MSAs [15]. The search trajectory of each PSO particle is adjusted based
on its previous best experience and the best experience achieved by the entire population
during the optimization process. Since the inception of the original PSO in 1995, many new
variants have been proposed to solve various real-world optimization problems. Despite its
appealing features, such as simplicity in implementation and fast convergence speed, the
capability of original PSO to solve complex optimization problems such as ANN training
remain questionable due to its high tendency to suffer from premature convergence issues
when solving complex problems with high-dimensional search space. Therefore, more
robust search mechanisms must be incorporated into the original PSO to balance the
algorithm’s exploration and exploitation searches.

1.1. Research Motivations

A PSO variant known as particle swarm optimization without velocity (PSOWV)
was proposed in [16] by discarding the velocity component of each particle during the
search process. PSOWV has demonstrated more competitive performance than the conven-
tional PSO by solving simple benchmark problems with better accuracy in fewer iteration
numbers. Despite its promising performance, PSOWV still suffers from some inherent
drawbacks that might restrict its feasibility to solve more challenging optimization prob-
lems, such as the training of ANN models for classification or regression tasks.
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Similar to most MSAs, PSOWV employs a conventional initialization scheme to ran-
domly generate the initial population of particles during the search process. This conven-
tional initialization scheme produces the initial position of each particle using uniform
distribution without considering the characteristics or fitness landscapes of given optimiza-
tion problems [17]. When particles are mistakenly initialized in local optima, it may lead to
premature convergence issues and poor solution accuracy. In contrary, the convergence
speed of the algorithm can be significantly deteriorated if particles are initialized at solution
regions far away from the global optimum. It is more desirable to have a robust initializa-
tion scheme that can generate the initial position of each particle more systematically to
ensure the initial population has a better solution quality.

When carefully inspecting the search operator of PSOWV, the new position of each
particle is directly affected by the directional information of historical best positions, i.e.,
the personal best position of the particle itself and the global best position of the population.
While these historical best positions are beneficial to accelerate the convergence speed of
PSOWV at the early stage of optimization, they are less frequently updated at the latter
stages [18]. When both personal and global best positions are overemphasized during
the search process of PSOWV, the entrapment of these historical best positions into local
optima at the early stage of the search process could misguide the remaining particles
converging towards the inferior solution regions and lead to premature convergence. To
prevent these undesirable scenarios, it is necessary for PSOWV to be incorporated with
a more robust diversity preservation scheme when dealing with complex problems. The
directional information offered by other non-historical best positions should be leveraged
during the search process to prevent the potential negative impacts brought by personal
and global best positions.

Finally, it is observed that PSOWV has limited ability to achieve proper trade-off
between exploration and exploitation searches because only one search operator is used
to perform the search process. Hence, PSOWV can only perform well in certain types of
optimization problems (i.e., unimodal problem), and it exhibits poor optimization perfor-
mance in other problem categories. When solving optimization problems with different
complexity levels as governed by the characteristics of fitness landscapes, it is crucial for
an algorithm to intelligently regulate its exploration and exploitation strength to locate the
global optima [19]. The incorporation of multiple search operators with different levels of
exploration and exploitation strengths can be envisioned as an alternative to enhance the
robustness of the algorithm to solve different complex optimization problems competitively.

1.2. Research Contributions

To address the shortcomings of PSOWV in solving complex optimization problems
such as the ANN model training, an enhanced variant known as multi-swarm-based
particle swarm optimization with two-level learning phases (MSPSOTLP) is proposed.
Apart from optimizing the weight and bias values of ANN models during the training
process, the proposed MSPSOTLP can also determine the optimal activation function of an
ANN model to solve the given classification problem. The main modifications introduced
into MSPSOTLP to highlight its research contributions are summarized as follows:

1. A modified initialization scheme is incorporated into MSPSOTLP to generate an
initial population with better robustness and diversity by leveraging the benefits of
the chaotic system (CS) and oppositional-based learning (OBL).

2. In the primary learning phase of MSPSOTLP, both the multi-swarm concept and
social learning concept are incorporated to promote rapid convergence of the popula-
tion towards the optimal regions by enabling particles to learn from other superior
population members while preserving the diversity level of population.

3. In the secondary learning phase of MSPSOTLP, two modified search operators with
different characteristics are designed for each particle to perform searching with
different levels of exploration and exploitation strengths, hence enabling the proposed
algorithm to solve different types of optimization problems more competitively.
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4. The performance of MSPSOTLP in solving global optimization problems is investi-
gated using CEC 2014 benchmark functions. The classification performances of ANN
models trained using MSPSOTLP are also evaluated with 16 datasets selected from
UCI Machine Learning Repository. The proposed MSPSOTLP is proven more compet-
itive than its peer algorithms at solving the benchmark functions and ANN training.

The remaining sections of this article are organized as follows. Related works of
this study are explained in Section 2. The detailed search mechanisms of MSPSOTLP
are described in Section 3. Extensive simulation studies performed to investigate the
performance of MSPSOTLP in solving global optimization problems and its capability to
train ANN models in solving classification problems are presented in Section 4. Finally,
Section 5 concludes the research findings and future works.

2. Related Works
2.1. Particle Swarm Optimization (PSO)

PSO is inspired by the collective behavior of bird flocking or fish schooling to search
for food sources [14]. Suppose that N is the population size and D is the dimensional size of
an optimization problem. Each PSO particle is a potential solution to solve an optimization
problem represented with a velocity vector of Vn = [Vn,1, . . . , Vn,d, . . . , Vn,D] and a position
vector of Xn = [Xn,1, . . . , Xn,d, . . . , Xn,D], where n = 1, . . . , N and d = 1, . . . , D refer to
the population index and dimension index, respectively. Unlike other MSAs, each PSO
particle can memorize its previous best experience and the best experience achieved by the
population, denoted as personal best position of XPbest

n =
[

XPbest
n,1 , . . . , XPbest

n,d , . . . , XPbest
n,D

]
and global best position of Gbest =

[
Gbest

1 , . . . , Gbest
d , . . . , Gbest

D

]
, respectively. During the

t-th iteration of the search process, the new velocity Vt+1
n,d of each n-th particle in any d-th

dimension is adjusted based on the corresponding dimensional components of the personal
best position XPbest,t

n,d (i.e., self-cognitive component) and global best position Gbest,t
d (i.e.,

social component) as follows:

Vt+1
n,d = ωVt

n,d + c1r1

(
XPbest,t

n,d − Xt
n,d

)
+ c2r2

(
Gbest,t

d − Xt
n,d

)
(1)

where ω is an inertia weight; c1 and c2 are acceleration coefficients; r1, r2 ∈ [0, 1] are
two random numbers generated from a uniform distribution. Referring to Vt+1

n,d , the new
position of each n-th particle in every d-th dimension is updated as:

Xt+1
n,d = Vt+1

n,d + Xt
n,d (2)

The fitness of every n-th particle with updated position is evaluated as f
(
Xt+1

n
)

and
compared with those of the personal best position and global best position denoted as
f
(

XPbest,t
n

)
and f

(
Gbest,t

)
, respectively. Both of XPbest,t

n and Gbest,t will be updated as Xt+1
n

if the latter solution is superior. The search process of PSO using Equations (1) and (2) is
iterated until the predefined termination criteria are satisfied.

2.2. Particle Swarm Optimization without Velocity (PSOWV)

PSOWV is a velocity-discarded version of PSO proposed in [16], aiming to enhance
the ability of PSO to locate the global optimum of a given problem with a lesser iteration
number. During the search process, the d-th dimension of position for every n-th PSOWV
particle (i.e., Xt+1

n,d ) can be updated based on the random linear combination between

its personal best position (i.e., XPbest,t
n,d ) and the global best position (i.e., Gbest,t

d ) of the
population in the same dimensional component as follows:

Xt+1
n,d = c1r1XPbest,t

n,d + c2r2Gbest,t
d (3)
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The fitness evaluation and procedure to update historically best positions (i.e., XPbest,t
n

and Gbest,t) of PSOWV are similar to those of the original PSO. Although PSOWV can solve
the simple benchmark functions with a faster convergence speed than the original PSO, its
feasibility to solve more challenging real-world optimization problems, such as training
ANN models, remains unexplored. Furthermore, preliminary studies also revealed the high
tendency of PSOWV to suffer premature convergence issues because its search behavior
is governed by a single search operator that highly relies on the directional information
provided by historically best positions.

2.3. PSO Variants

Despite appealing characteristics, such as rapid convergence speed and simplistic
implementation, the original PSO tends to suffer from rapid loss of population diversity
and premature convergence issues when solving more complex optimization problems.
Proper balancing of exploration and exploitation searches is considered a fundamental
cornerstone for MSAs such as PSO to solve different optimization problems competitively.
Therefore, various modification schemes were proposed by researchers over the years to
address the demerits of the original PSO.

Parameter adaptation is a popular enhancement strategy of PSO by determining the
proper combination of control parameters that can govern its search trajectories. The control
parameters to be adjusted include inertia weight, constriction factor, acceleration coeffi-
cients, and a variety of these parameters. Some notable PSO variants that were proposed
with parameter adaptation approaches are reported in [20–23]. Neighborhood structure
modification is another promising technique of PSO because it governs the broadcast rate
of information between population members. Particularly, the fully connected population
topology tends to be more exploitative, whereas the partially connected one has stronger
exploitation strengths. PSO variants reported in [19,24–28] can achieve proper tradeoffs be-
tween the exploration and exploitation searches by varying their population topology with
time or based on current search environments. Apart from modifying the neighborhood
structure, it is also feasible to introduce single or multiple modified learning strategies
into PSO for achieving performance enhancements such as those proposed in [29–36]. To
alleviate potential negative impacts brought by the historically best solution (e.g., per-
sonal and global best positions), novel exemplars might be constructed by these modified
learning strategies from the non-fittest solutions to guide the search process of particles
more effectively while preserving the population diversity. Finally, the PSO’s robustness
in solving high-complexity real-world problems can be enhanced using the hybridization
approach, such as those reported in [37–40]. Different hybridization frameworks [41] can
be designed to leverage the strengths of search operators incorporated in other MSAs for
compensating the drawbacks of PSO in solving certain problem classes. The strengths and
limitations of selected PSO variants are analyzed and summarized in Table 1.

Table 1. Strengths and limitations of selected PSO variants.

Reference Year Strengths Limitations

[20] 2019
• Acceleration coefficients and inertia weight

of each particle were adjusted adaptively
based on current search environment.

• High computation costs incurred by the novel
method used to estimate the search environment
in each iteration.

[21] 2019

• Inertia weights of particles were adjusted
based on their personal best fitness.

• Mutation scheme was performed on
stagnated particles to preserve
swarm diversity.

• Both adaptive inertia weight and mutation
scheme were highly relying on the directional
information of global best position.
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Table 1. Cont.

Reference Year Strengths Limitations

[22] 2019
• Periodic trigonometric functions were used

to adjust the inertia weight and acceleration
coefficient of particle.

• Limited ability to adjust exploration and
exploitation searches with single search operator.

• Search process only relied on personal and global
best positions.

[23] 2021

• Gaussian white noise with different
intensity was used to adjust the acceleration
coefficients of particles adaptively.

• Wider exploration search.

• Limited ability to adjust exploration and
exploitation searches with single search operator.

• Search process only relied on personal and global
best positions.

[24] 2022
• Neighborhood structure of each particle

was gradually increased from ring topology
to fully connected topology.

• Limited flexibility to regulate exploration and
exploitation searches of algorithm because the
swarm diversity level is increased monotonically.

[19] 2018

• Neighborhood structure of each particle
can be adaptively maintained, decreased,
increased or shuffled by referring to the
search track record of population.

• Expensive computation cost used to adaptively
adjust the neighborhood structure of each
particle.

• Laborious works to fine tune the newly
introduced parameters.

[25] 2018

• Flexible neighborhood structure concept
was introduced to achieve proper tradeoff
between exploration and
exploitation searches.

• Expensive computation cost used to adaptively
adjust the neighborhood structure of
each particle.

• Relatively poor performances when dealing with
unimodal problems.

[26] 2020
• A reinforcement learning concept (i.e.,

Q-learning) was used to select the optimal
topology of particle.

• Expensive computation cost due to the
involvement of Q-learning and computation of
swarm diversity.

• Search process only relied on personal and global
best positions.

[27] 2020

• Multiple good quality subswarms were
constructed based on correlations between
group sequences.

• A dynamic regrouping strategy was
introduced to promote information sharing
between different subswarms and
accelerate their convergence speed.

• Overemphasized on the influences of historically
best positions to guide the search process
of subswarms.

• Complex population division scheme.
• Laborious works to fine tune the newly

introduced parameters.

[28] 2020

• Benefits of holonic organization in
multiagent system were leveraged to
achieve proper tradeoff between
exploration and exploitation searches.

• Relatively slow convergence speed when
locating the global optima of unimodal problems.

[29] 2017

• Multiple subswarms were constructed
based on the fitness levels of particles.

• Directional information of non-fittest
particles was used to guide the
search process.

• Relatively poor performances when dealing with
low and medium scale optimization problems.

[30] 2020
• Exemplar used to guide the general swarm

was derived from the mean positions of
elitist swarm.

• Limited enhancement of swarm diversity
because mean position used to guide the
population search was shared by all particles.

[31] 2020

• Positions of other particles were updated
using mainstream and stochastic
learning strategies.

• Global worst position was handled using
terminal replacement mechanism.

• Limited enhancement of swarm diversity
because mean position used to guide the
population search was shared by all particles.
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Table 1. Cont.

Reference Year Strengths Limitations

[32] 2020
• Forgetting ability was introduced to

maintain the population diversity
of algorithm.

• Neglected the potential benefits brought by
non-fittest particles to guide the search process.

[33] 2019

• Dimensional learning strategy and
comprehensive learning strategy were
introduced to achieve proper tradeoff
between exploration and
exploitation searches.

• High fitness evaluation numbers were consumed
by dimensional learning strategy when
generating the exemplar.

[34] 2019
• Oppositional-based learning and convex

combination concepts were used to
generate exemplar for the fittest particle.

• Strong dependency on historically best positions
used to guide the non-fittest particles.

[35] 2020

• Optimal guide creation module was
designed to generate a global exemplar
based on two nearest neighbors of global
best position.

• Expensive computation cost due to the
construction of global exemplar in
every iteration.

[36] 2021

• Construction of main swarm and hover
swarm as diversity maintenance scheme.

• Construction of unique exemplar for main
swarm and hover swarm,

• Expensive computation cost due to the binary
population division scheme and construction of
unique exemplar in every iteration.

[37] 2019

• Crossover and mutation of genetic
algorithm were used to enhance the
exploitation and exploration searches of
PSO, respectively.

• Huge memory consumption to store the
individual solutions that offered significant
performance gains.

[38] 2019
• Grey wolf optimizer was used to update

the positions of some particles to
enhance exploration.

• Increasing execution time due to sequential
cascading of grey wolf optimizer and PSO.

[39] 2020
• Butterfly optimization algorithm was

hybridized with PSO to improve the
exploration ability.

• Neglected the potential benefits brought by
non-fittest particles to guide the search process.

[40] 2022

• Differential evolution was hybridized with
PSO to achieve better balancing of
exploration and exploitation searches of
algorithm

• Increasing execution time due to sequential
cascading of differential evolution and PSO.

2.4. Application of MSAs in Training ANN Models

Given the drawbacks of the conventional BP method, numerous MSAs were de-
signed as promising alternatives to train ANN models with more robust network per-
formances [42]. A two-layer PSO (PSO-PSO) algorithm was proposed in [43] to train a
multilayer perceptron (MLP) neural network by interleaving two PSO algorithms. The first
layer of PSO was used to optimize the number of perceptrons in the network architecture,
whereas the second layer of PSO optimized the weight and bias values based on the net-
work architecture obtained by the first layer. Nevertheless, simulation studies revealed
that the ANN models optimized by PSO-PSO did not significantly outperform their peers
when solving the classification benchmark datasets. A hybridized PSO and gravitational
search algorithm (PSOGSA) was proposed [44] to optimize the weights and biases of the
ANN model by leveraging the unique searching behaviors of PSO and GSA. When training
the ANN model, PSO was incorporated to alleviate the inherent drawbacks of GSA, i.e.,
low convergence rate and high tendency to be trapped in local optima. A hybrid improved
opposition-based PSO with a backpropagation algorithm (IOPSO-BPA) [45] was introduced
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to optimize the weight values of ANNs. Both oppositional-based learning and mutation
schemes were incorporated as diversity preservation schemes of IOPSO-BPA.

Furthermore, the concepts of time-varying parameters were introduced to improve
the convergence characteristic of the algorithm in optimizing the weights of ANN models.
Kandasamy and Rajendran [46] proposed a hybrid algorithm to overcome the drawbacks
of the conventional BP methods overfitting and entrapment in local optima when training
ANN models. PSO was firstly employed to search for the optimal combination of trainable
weights of the ANN model by minimizing the classification error function. Subsequently,
the steepest descent method was applied to fine tune the near-optimal weight values
encoded in the global best position to further improve classification accuracy. In [47], a
self-adaptive and strategy-based PSO (SPS-PSO) was designed to solve the large-scale
feature selection and ANN training problems for large-scale datasets. Five search operators
with different characteristics were introduced in SPS-PSO, and an adaptive mechanism
was used to assign a suitable operator for each particle to ensure it can perform searching
with balanced exploration and exploitation strengths. A comprehensive adaptive PSO
(ACPSO) was designed in [48] to tackle the denoising issue of ultrasound images by
optimizing the functional-link neural network (FLNN). The velocity of the ACPSO was
only dependent on the global best position, and its controlling parameters were adaptively
adjusted based on the personal and global best positions. To mitigate the flooding issue, an
ANN model was trained using PSO in [49] to formulate river flow modelling based on the
weather and meteorological data. It was revealed that the river flow strongly correlates
with selected variables, such as temperature, evaporation, and rainfall. In [50], hybrid
intelligent modeling was developed using PSO and ANN (PSO-ANN) to predict the soil
matric sanction, i.e., a useful metric to indicate the soil shear strength in addressing sudden
landslides issue, with improved prediction accuracy.

The genetic algorithm (GA) [51] is another popular MSA used to train ANN models.
A hybrid model of ANN and GA (ANN-GA) was proposed in [52] to optimize the weights
and biases of the ANN model used for modeling the slump of ready-mix concrete. The
initial weights and biases of ANN-GA were determined using GA and fine-tuned with the
BP algorithm. ANN-GA was reported to outperform its peers by leveraging the benefits of
GA and BP to promote its global and local search abilities, respectively. In [53], GABPNN
was proposed by integrating GA into a BP-trained ANN to optimize the thickness of
blow-molded polypropylene bellows. In GABPNN, the BP algorithm was first applied
to train the weights of the ANN model using lesser learning samples, and these weights
were further evolved in the feasible solution regions using GA. Contrary to ANN-GA,
GA promoted the local search behavior of GABPNN by adopting an elitist strategy and a
simulated annealing algorithm. GABPNN demonstrated its effectiveness and competitive
performance in solving blow molding problems. A hybrid MLP ANN and GA approach
(MLPANN-GA) was introduced in [54] to predict sludge bulking for water treatment
plants. GA was incorporated to train the weights, activation functions, and thresholds
of the MLPANN model. Simulation studies reported that the incorporation of GA to
train MLPANN can increase the accuracy of the ANN model in estimating the sludge
volume index.

In addition to GA, teaching-learning-based optimization (TLBO) [55] is another pop-
ular MSA widely used for ANN optimization. A TLBO-based ANN (TLBOANN) was
proposed in [56] to estimate the energy consumption in Turkey. TLBO was applied to
search for the optimal weights and biases of the ANN model by minimizing the error
function based on the input data provided, i.e., gross domestic product, population, and
import and export data in Turkey. An improved hybrid TLBO and ANN (iTLBO-ANN) was
proposed in [57] to solve real-world building energy consumption forecasting problems.
Three modifications, known as feedback stage, accuracy factor, and worst solution elimi-
nation, were introduced to improve the performance of TLBO in optimizing the weights
and thresholds of the ANN model within a shorter time. The iTLBO-ANN outperformed
other ANN models trained by GA and PSO by predicting building energy consumption
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with better accuracy and computational speed. Another TLBO-optimized ANN [58] was
proposed to improve the performance in predicting the axial capacity of pile foundations.
TLBO was used to train the weights of the ANN model by minimizing the mean square
error produced when predicting the ultimate capacity of both driven and drilled shaft piles
embedded in uncemented soils. The ANN model trained by TLBO outperformed that
trained by BP by producing better variance accounted for and determination coefficient. A
new TLBO variant known as TLBO-MLPs was used to train ANN model for data classifica-
tion [59]. Additional mechanisms were introduced in both the teacher and learner phases
of TLBO-MLPs to achieve realistic emulation of classroom teaching and learning that can
lead to performance gain in solving complex optimization problems [60].

3. Proposed Methodology
3.1. Formulation of ANN Training as an Optimization Problem

An ANN model to be optimized in this study consists of a three-layer structure with
P input neurons, Q hidden neurons, and R output neurons in input, hidden, and output
layers, respectively, as illustrated in Figure 1. The neurons in each layer are considered
a set of processing elements that are connected by weights with other layers. Suppose
that Ip refers to the value of p-th neuron at the input layer, Hq represents the value of
q-th neuron at the hidden layer, and Or is the r-th neuron at the output layer, where
p = 1, . . . , P, q = 1, . . . , Q, and r = 1, . . . , R. Denote WH

p,q as the connection weight between
Ip and Hq; WO

q,r as the connection weight between Hq and Or; BH
q and BO

r as the biases of
Hq and Or, respectively. The values of each q-th hidden neuron Hq and r-th output neuron
Or can be produced by computing the sum of input weight with the presence of biases,
followed by the non-linearization process of this weighted summation with an activation
function of Φ(·) expressed as follows:

Hq = Φ

(
P

∑
p=1

WH
p,q Ip + BH

q

)
(4)

Or = Φ

(
Q

∑
q=1

WO
q,r Iq + BO

r

)
(5)

Contrary to the majority of existing ANN training algorithms that only focus on
searching optimal weights and biases, this study also considers the optimal selection of the
activation function used to solve a given classification task. The decision variables to be
optimized by the proposed MSPSOTLP when training the ANN model include: (a) weights
WH

p,q, WO
q,r ∈ [−1, 1], (b) biases BH

q , BO
r ∈ [−1, 1], and (c) index K = {1, 2, 3, 4, 5} that refer to

the candidate activation functions, where Binary Step, Sigmoid [7], Hyperbolic Tangent
(Tanh) [7], Inverse Tangent (ATan), and Rectified Linear Unit (ReLU) [61] functions are
assigned with indices of 1, 2, 3, 4, and 5, respectively. The mathematical formulation of the
candidate activation functions considered in this study is presented in Table 2.

Table 2. The mathematical formulation of the considered activation functions.

Activation Functions Mathematical Formulation

Binary Step Φ(X) =

{
0, for X < 0
1, for X ≥ 0

Sigmoid Φ(X) = X
1 + e−X

Hyperbolic Tangent (Tanh) Φ(X) =
(

eX − e−X

eX+e−X

)
Inverse Tangent (ATan) Φ(X) = tan−1(X)

Rectified Linear Unit (ReLU) Φ(X) =

{
X, for X ≥ 0
0, for X < 0
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The decision variables to be optimized by the proposed MSPSOTLP in ANN training
are encoded into the position vector X of each particle as follows:

X
=
[
WH

1,1, . . . , WH
p,q, . . . , WH

P,Q, WO
1,1, . . . , WO

q,r, . . . , WO
Q,R, BH

1 , . . . , BH
q , . . . , BH

Q , BO
1 , . . . , BO

r , . . . , BO
R , K

] (6)

Referring to Equation (6), the ANN training considered in the current study can be
formulated as an optimization problem with a dimensional size of D, where

D = PQ + QR + Q + R + 1 (7)

In this study, the fitness of each MSPSOTLP particle when it is used to train the ANN
model can be evaluated by measuring the mean square error between the predicted and
expected output values. Given a dataset with a total of G data samples, the predicted
output of g-th data sample produced by an ANN model trained by MSPSOTLP and its
corresponding expected outcome stored in the dataset are indicated as =pred

g and =exp
g ,

respectively, where g = 1, . . . , G. The mean square error ε(X) produced by an ANN model
constructed using the decision variables stored in the position vector X of the particle is
calculated as the fitness value f (X) as follows:

f (X) = ε(X) =
1
G

G

∑
g=1

[
=pred

g (X)−=exp
g

]2
(8)

Based on Equation (8), the ANN training is considered a minimization problem
because it is more desirable to produce an ANN model with a minor error, implying its
high classification accuracy in solving a given dataset.

3.2. Proposed MSPSOTLP Algorithm

In this study, a new PSO variant known as MSPSOTLP is proposed to solve challenging
optimization problems, including the ANN training problem formulated in Equation (8),
with improved performances. For the latter problem, the proposed MSPSOTLP is used to
optimize the weights, biases, and selection of activation functions of the ANN model when
solving the given datasets. The essential modifications introduced to enhance the search
performance of MSPSOTLP are described in the following subsections.
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3.2.1. Modified Initialization Scheme of MSPSOTLP

Population initialization is considered a crucial process to develop robust MSAs
because the quality of initial candidate solutions can influence the algorithm’s convergence
rate and searching accuracy [17]. Most PSO variants employed random initialization to
generate the initial population without considering any meaningful information about the
search environment [17]. The stochastic behavior of the random initialization scheme might
produce particles at inferior solution regions at the beginning stage of optimization. This
undesirable scenario can prevent the algorithm’s convergence towards the global optimum,
thus compromising the algorithm’s overall performance.

In this study, a modified initialization scheme incorporated with the chaotic system
(CS) and oppositional-based learning (OBL), namely the CSOBL initialization scheme, is
designed for the proposed MSPSOTLP to overcome the drawbacks of the conventional
initialization scheme. Unlike a random system that demonstrates completely unpredictable
behaviors, CS is considered a more powerful initialization scheme that can produce an
initial swarm with better diversity by leveraging its ergodicity and non-repetition natures.
Denote ϑ0 as the initial condition of a chaotic variable that is randomly generated in
each independent run. ϑz refers to the value of the chaotic variable in z-th iteration with
z = 1, . . . , Z, where Z represents the maximum sequence number. Given the bifurcation
coefficient of µ = π, the chaotic sequence is updated using a chaotic sine map [62] as:

ϑz+1 = sin(µϑz), where z = 1, . . . , Z (9)

Let XU
d and XL

d be the upper and lower limits of the decision variable in each d-th
dimension, respectively, where 1 = 1, . . . , D. Given the chaotic variable ϑZ produced in
the final iteration of Z, the d-th dimension of each n-th chaotic swarm member XCS

n,d can be
initialized as:

XCS
n,d = XL

d + ϑZ

(
XU

d − XL
d

)
(10)

Referring to Equation (10), a chaotic population with a swarm size of N can be pro-
duced and represented as a population set of PCS =

[
XCS

1 , . . . , XCS
n , . . . , XCS

N
]
.

Despite the benefits of the chaotic map in enhancing population diversity, these chaotic
swarm members can be initialized in solution regions far away from the global optimum,
leading to the low convergence rate of the algorithm. To overcome this drawback, a solution
set opposite with PCS is generated by leveraging the OBL concept [63]. For every d-th
dimension of n-th chaotic swarm member represented as XCS

n,d, the corresponding opposite
swarm member XOL

n,d is calculated using OBL strategy [17,64] as follows:

XOL
n,d = XL

d + XU
d − XCS

n,d (11)

Similarly, an opposite population with a swarm size of N can be generated using
Equation (11) and represented as another population set of POL =

[
XOL

1 , . . . , XOL
n , . . . , XOL

N
]
.

To produce an initial population with better fitness and wider coverage in the solution
space, both of PCS and POL are merged as a combined population set of PMRG with a
swarm size of 2N as follows:

PMRG = PCS ∪ POL (12)

Subsequently, the fitness of all solution members in PMRG are evaluated, and a sorting
operator of Ψ(·) is then applied to rearrange these solution members from the best to worst
based on their fitness to produce a sorted population set of PSort, where

PSort = Ψ (PMRG ) (13)

Finally, a truncation operator Γ(·) is applied to select the top N solution members of on
PSort to construct the initial population of MSPSOTLP, i.e., P = [X1, . . . , Xn, . . . , XN ], where

P = Γ (PSort ) (14)
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The pseudocode used to describe the CSOBL initialization scheme of MSPSOTLP is
presented in Algorithm 1.

Algorithm 1. Pseudocode of CSOBL initialization scheme for MSPSOTLP

Input: N, D, XU, XL, Z
01: Initialize PCS ← ∅ and POL ← ∅ ;
02: for each n-th particle do
03: for each d-th dimension do
04: Randomly generate initial chaotic variable ϑ0 ∈ [0, 1];
05: Initialize the chaotic sequence as z = 1;
06: while z is smaller than Z do
07: Update chaotic variable ϑz+1 using Equation (9);
08: end while
09: Compute XCS

n,d using Equation (10);
10: Compute XOL

n,d using Equation (11);
11: end for
12: PCS ← PCS ∪ XCS

n ;/* Store new chaotic swarm member */
13: POL ← POL ∪ XOL

n ;/* Store new opposite swarm member */
14: end for
15: Construct PMRG using Equation (12);
16: Evaluate the fitness of all solution members in PMRG;
17: Sort all solution members of PMRG from the best to worst using Equation (13);
18: Produce the initial population P using Equation (14);
Output: P = [X1, . . . , Xn, . . . , XN ]

3.2.2. Primary Learning Phase of MSPSOTLP

Most PSO variants, including PSOWV, rely on the global best position to adjust the
search trajectories of particles during the optimization process without considering the
useful information of other non-fittest particles in the population. Although the directional
information of the global best position might be useful to solve simple unimodal problems,
it might not necessarily be the best option to handle complex problems with multiple
numbers of local optima due to the possibility of the global best position being trapped at
the local optima in an earlier stage of optimization. Without a proper diversity preservation
scheme, other population members tend to be attracted by misleading information about
the global best position and converge towards the inferior region, leading to premature
convergence and poor optimization results.

To address the aforementioned issues, several modifications are incorporated into the
primary learning phase of MSPSOTLP to achieve a proper balancing of exploration and
exploitation searches. The multiswarm concept is first introduced as a diversity preserva-
tion scheme at the beginning stage of the primary learning phase by randomly dividing
the main population of P = [X1, . . . , Xn, . . . , XN] into S subswarms. Each s-th subswarm
is denoted by Psub

s =
[

Xsub
1 , . . . , Xsub

n , . . . , Xsub
Nsub

]
consists of Nsub = N/S particles, where

s = 1, . . . , S. To produce each s-th subswarm Psub
s from the main population P, a reference

point ofRs =
[

Xre f
s,1 , . . . , Xre f

s,d , . . . , Xre f
s,D

]
is randomly generated in search space. The nor-

malized Euclidean distance between the reference pointRs and personal best position of
each n-th particle, i.e., XPbest

n =
[

XPbest
n,1 , . . . , XPbest

n,d , . . . , XPbest
n,D

]
are measured as Ξ(s, n), i.e.,

Ξ(s, n) =

√√√√√ D

∑
d=1

Xre f
s,d − XPbest

n,d

XU
d − XL

d

2

(15)

Referring to the Ξ(s, n) values computed for all N particles, the Nsub particles with
the nearest Ξ(s, n) distances fromRs are identified as the members of s-th subswarm and
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stored in Psub
s before they are discarded from the main population P. From Algorithm 2,

the reference-point-based population division scheme used to generate the multiswarm for
the primary learning phase of MSPSOTLP is repeated until all S subswarms are generated.

Algorithm 2. Pseudocode of reference-point-based population division scheme used to generate
the multiswarm for the primary learning phase of MSPSOTLP

Input: P, N, S, D, Nsub, XU , XL

01: Initialize s← 1 ;
02: while main population P is not empty do
03: Randomly generateRs = [Xre f

s,1 , . . . , Xre f
s,d , . . . , Xre f

s,D ] in search space;
04: for each n-th particle do
05: Calculate Ξ(s, n) using Equation (15);
06: end for
07: Select Nsub particles with the nearest Ξ(s, n) fromRs to construct Psub

s ;
08: Eliminate the members of Psub

s from P;
09: s← s + 1 ; /* Update the index of subswarm*/
10: end while
Output: Psub

s = [Xsub
1 , . . . , Xsub

n , . . . , Xsub
Nsub ] where s = 1, . . . , S

Define f (XPbest,s
n ) as the personal best fitness of each n-th particle stored in the s-th

subswarm Psub
s , where n = 1, . . . , Nsub and s = 1, . . . , S. All Nsub particles stored in each

s-th subswarm Psub
s are then sorted from the worst to best based on their personal best

fitness values, as shown in Figure 2. Accordingly, any k-th particle stored in the sorted Psub
s

is considered to have better or equally good personal best fitness than that of n-th particle
if the condition of n ≤ k ≤ Nsub is satisfied. Referring to Figure 2, it is notable that the first
particle stored in Psub

s has the worst personal best fitness, whereas the final particle stored
in Psub

s has the most competitive personal best fitness after the sorting process. Therefore,
the personal best position of the final particle is also considered as the subswarm best
position of Psub

s represented as XSbest
s = XPbest,s

Nsub for s = 1, . . . , S.

For each s-th sorted subswarm, define Ωs
n = {XPbest,s

k |k ∈ [n, Nsub ]} as a set variable
used to store the personal best position of all solution members that are superior to that
of n-th solution member for n = 1, . . . , Nsub − 1. Notably, the set variable Ωs

Nsub is not
constructed for the final solution member because none of the solution members stored
in Psub

s has better personal best fitness than XPbest,s
Nsub or XSbest

s . Referring to the solution
members stored in each Ωs

n, a unique mean position denoted as Xmean,s
n is then specifi-

cally constructed to guide the search process of every n-th solution member in the s-th
subswarm, where:

Xmean,s
n =

1
Nsub − n + 1

(
Nsub

∑
k=n

XPbest,s
k

)
(16)
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Apart from Xmean,s
n , a social exemplar XSOC,s

n = [XSOC,s
n,1 , . . . , XSOC,s

n,d , . . . , XSOC,s
n,D ] that

plays crucial roles to adjust the search trajectory of each n-th particle stored in Psub
s is also

formulated. In contrary to global best position, the social exemplar constructed for each n-th
particle is unique and it can guide the search process with better diversity by fully utilizing
the promising directional information of other particles stored in Ωs

n with better personal
best fitness values. Specifically, each d-th dimension of n-th social learning exemplar for
s-th subswarm, i.e., XSOC,s

n,d , can be contributed by the same dimensional component of any
randomly selected solution members of Ωs

n. The procedures used to construct the social
exemplar XSOC,s

n for each n-th particle stored in Psub
s are described in Algorithm 3, where α

refers to a random integer generated between the indices of n and Nsub.

Algorithm 3. Pseudocode used to generate the social exemplar for each non-fittest solution
member in each subswarm

Input: D, Nsub, n, Ωs
n

01: for each d-th dimension do
02: Randomly generate an integer α between indices of n and Nsub;
03: Extract the associated component of XPbest,s

α,d from Ωs
n;

04: XSOC,s
n,d ← XPbest,s

α,d ;
05: end for
Output: XSOC,s

n

Given the subswarm best position XSbest
s , mean position Xmean,s

n and social exemplar
XSOC,s

n , the new position Xs
n of each n-th non-fittest solution member stored in the s-th

subswarm, where n = 1, . . . , Nsub − 1 and s = 1, . . . , S, is updated as follows:

Xs
n = Xs

n + c1r1 (XSOC,s
n − Xs

n ) + c2r2 (XSbest
s − Xs

n ) + c3r3 (Xmean,s
n − Xs

n ) (17)

where c1, c2 and c3 represent the acceleration coefficients; r1, r2, r3 ∈ [0, 1] are random
numbers generated from uniform distributions. Referring to Equation (17), the directional
information contributed by XSOC,s

n and Xmean,s
n are unique for each n-th non-fittest solution

member of Psub
s because the better solution members are stored in every set variable Ωs

n are
different for n = 1, . . . , Nsub − 1. The social learning concept incorporated in Equation (17)
also ensures that only the useful information brought by better-performing solutions is used
to guide the search process of each n-th particle to accelerate the algorithm’s convergence
rate. Furthermore, this learning strategy does not consider the global best position in
updating the new position of each n-th particle; therefore, it has better robustness against
premature convergence issues.

On the other hand, different approaches are proposed to generate the mean position
and social exemplar used for guiding the search process of the final particle stored in every
n-th subswarm because none of the solution members of Psub

s can have better personal best
fitness than that of XPbest,s

Nsub . Define Ωs
Nsub as a set variable used to store the subswarm best

position of any b-th subswarm Psub
b if f (XSbest

b ) is better than f (XSbest
s ), i.e.,

Ωs
Nsub = {XSbest

b | f (XSbest
b ) is better than (XSbest

s ), b ∈ Bs } (18)

where Bs is a set containing the indices of all subswarms that have better subswarm best
fitness than that of s-th subswarm; |Bs | refers to the size of set Bs in the range of 0 to S− 1.
Obviously, |Bs | = 0 is the subswarm best position of s-th subswarm is the same as the
global best position Gbest of population, therefore the empty sets of Bs = Ωs

Nsub = ∅ are
obtained under this circumstance.
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The subswarm consists of Gbest, the unique mean position Xmean,s
Nsub used to guide the

search process of the final particle Xs
Nsub stored in each s-th subswarm based on Ωs

Nsub are
calculated as follows:

Xmean,s
Nsub =

1
|Bs |

 ∑
b∈Bs ,|Bs |6=0

XSbest
b

 (19)

Similarly, a social exemplar of XSOC,s
Nsub =

[
XSOC,s

Nsub ,1
, . . . , XSOC,s

Nsub ,d, . . . , XSOC,s
Nsub ,D

]
is also de-

rived from adjusting the search trajectory of the final particle Xs
Nsub stored in each s-th

subswarm except for the one consisting of Gbest. As shown in Algorithm 4, each d-th
dimension of the social exemplar is assigned to the final particle of s-th subswarm Psub

s ,
i.e., XSOC,s

Nsub ,d, is contributed by the same dimensional component of any subswarm best posi-

tion XSbest
b randomly selected from Ωs

Nsub , where b refers to a subswarm index randomly
selected from Bs.

Algorithm 4. Social Exemplar Scheme for the Best Particle in Each Subswarm

Input: D, Ωs
Nsub , Bs, Nsub

01: for each d-th dimension do
02: Randomly generated a subswarm index of b ∈ Bs;
03: Extract the corresponding component of XSbest

b,d from Ωs
Nsub ;

04: XSOC,s
Nsub ,d ← XSbest

b,d ;
05: end for
Output: XSOC,s

Nsub =
[

XSOC,s
Nsub ,1, . . . , XSOC,s

Nsub ,d, . . . , XSOC,s
Nsub ,D

]
Except for the subswarm consisting of Gbest with Bs = Ωs

Nsub = ∅, the position Xs
Nsub

of final particle stored in each s-th subswarm can be updated as follows:

Xs
Nsub = Xs

Nsub + c1r4 (XSOC,s
Nsub − Xs

Nsub ) + c2r5 (Gbest − Xs
Nsub )

+c3r6 (Xmean,s
Nsub − Xs

Nsub )
(20)

where r4, r5, r6 ∈ [0, 1] are random numbers generated from a uniform distribution. Simi-
larly, the directional information provided by XSOC,s

Nsub and Xmean,s
Nsub are unique for each final

particle Xs
Nsub in each s-th subswarm Psub

s because the solution members stored in each
Ωs

Nsub set are different. Contrary to Equation (17), the social learning concept introduced in
Equation (20) allows each subswarm to converge towards the promising solution regions
without experiencing rapid loss of population diversity by facilitating the information
exchanges between different subswarms. In addition, the employment of Gbest in Equation
(20) is expected to improve the convergence rate of MSPSOTLP.

The overall procedures of the primary learning phase proposed for MSPSOTLP is
described in Algorithm 5. For each new position Xs

n obtained from Equations (17) or (20),
boundary checking is first performed to ensure all decision variables’ upper and lower
limits are not violated. The fitness value corresponding to the updated Xs

n for each particle
in s-th subswarm is then evaluated as f (Xs

n) and compared with those of its personal best
position and global best position denoted as f (XPbest,s

n ) and f (Gbest ), respectively. Both
XPbest,s

n and Gbest are replaced by the updated Xs
n if the latter solution is proven to be

superior to the latter two solutions.
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Algorithm 5. Pseudocode of primary learning phase for MSPSOTLP

Input: P, N, S, D, Nsub, XU , XL,Gbest

01: Divide main population into multiple subswarm using Algorithm 2;

02:
Sort the solution members of Psub

s from the worst to best based on their personal best fitness
values and create Ωs

n for each s-th subswarm;

03:
Identify the subswarm best position XSbest

s of each s-th subswarm and create Ωs
Nsub for the

final particle in all S subswarms using Equation (18);
04: Determine Bs and |Bs | for the final particle of all S subswarms based on Ωs

Nsub ;
05: for each s-th subswarm do
06: for each n-th particle do
07: if n 6= Nsub then

08: Calculate Xmean,s
n based on Ωs

n using Equation (16);

09: Generate XSOC,s
n based on Ωs

n using Algorithm 3;
10: Update Xs

n using Equation (17);
11: else if n = Nsub then
12: if Bs 6= ∅ and Ωs

Nsub 6= ∅ then

13: Calculate Xmean,s
Nsub based on Ωs

Nsub using Equation (19);

14: Generate XSOC,s
Nsub based on Ωs

Nsub using Algorithm 4;
15: Update Xs

Nsub using Equation (20);
16: end if
17: end if
18: Evaluate f (Xs

n) of the updated Xs
n;

19: if f (Xs
n) is better than f (XPbest,s

n ) then

20: XPbest,s
n ← Xs

n , f (XPbest,s
n )← f (Xs

n) ;
21: if f (Xs

n) is better than f (Gbest ) then
22: Gbest ← Xs

n , f (Gbest )← f (Xs
n) ;

23: end if
24: end if
25: end for
26: end for
Output: Xs

n, f (Xs
n), XPbest,s

n , f (XPbest,s
n ), Gbest and f (Gbest )

3.2.3. Secondary Learning Phase of MSPSOTLP

Substantial studies [19,65] reported that most PSO variants employed single search
operators that can only solve specific optimization problems with good results, but fail to
perform well in the remaining problems due to the limited variations of exploration and
exploitation strengths. For some challenging optimization problems, the fitness landscapes
contained in different subregions of search space can be significantly different. Therefore,
the particles need to adjust their exploration and exploitation strengths dynamically when
searching in different regions of the solution space to locate global optimum and deliver
good optimization results.

Motivated by these findings, a secondary phase is designed as an alternative frame-
work of MSPSOTLP, where two search operators with different search characteristics are
incorporated to guide the search process of particles with varying levels of exploration and
exploitation strengths. Unlike the primary learning phase, both search operators assigned
in the secondary learning phase aim to further refine those already found promising re-
gions by searching around the personal best positions of all MSPSOTLP particles. Before
initiating the secondary learning phase, all S subswarms constructed during the primary
learning phase, i.e., Psub

s for s = 1, . . . , S, are merged to form the main population P with N
particles as shown below:

P = Psub
1 ∪ . . . ∪ Psub

s ∪ . . . ∪ Psub
S (21)
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To assign a search operator for each n-th particle during the secondary learning phase
of MSPSOTLP, a randomly selected particle with a population index of e is randomly
generated, where e ∈ [1, N] and e 6= n. Define XPbest

e as the personal best position of this
randomly selected e-th particle and its personal best fitness is evaluated as f (XPbest

e ). If
the e-th particle has better personal best fitness than that of XPbest

n , the new personal best
position of latter particle can be updated as XPbest,new

n , where

XPbest,new
n = XPbest

n + r7 (XPbest
e − XPbest

n ), if f (XPbest
e ) is better than f (XPbest

n ). (22)

where r7 ∈ [0, 1] are random numbers generated from a uniform distribution. The search
operator of Equation (22) can attract of n-th particle towards the promising solution regions
covered by the e-th peer particle, hence it behaves more exploratively.

For the case, if e-th particle has more inferior personal best fitness than that of n-th
particle, the former solution is discarded. Another four distinct particles with popula-
tion indices of w, x, y and z are randomly selected instead, where w, x, y, z ∈ [1, N] and
w 6= x 6= y 6= z. Denote XPbest

w,d , XPbest
x,d , XPbest

y,d and XPbest
z,d as the d-th dimension of the

personal best position for the w-th, x-th, y-th and z-th particles, respectively. Let Gbest
d be

the same d-th dimension of the global best position. For every n-th particle, each of the d-th
dimension of its new personal best position can be calculated as:

XPbest,new
n,d =

{
Gbest

d + τ1 (XPbest
w,d − XPbest

x,d ) + τ2 (XPbest
y,d − XPbest

z,d ), if r8 > 0.5
XPbest

n,d , otherwise
(23)

where τ1, τ2, r8 ∈ [0, 1] are random numbers generated from a uniform distribution. From
Equation (23), there is a probability for each XPbest,new

n,d to inherit its original information from
XPbest

n,d or to perform searching around the nearby region of Gbest
d with small perturbations

based on the information of XPbest
w,d , XPbest

x,d , XPbest
y,d and XPbest

z,d . Hence, the search operator of
Equation (23) is considered more exploitative than that of Equation (22). The procedures
used to implement the secondary learning phase of MSPSOTLP is shown in Algorithm
6. For each new XPbest,new

n obtained from Equations (22) or (23), boundary checking is
performed. For each n-th particle, the fitness value of its updated XPbest,new

n is obtained as
f (XPbest,new

n ) and compared with f (XPbest
n ) and f (Gbest ). If XPbest,new

n is better than XPbest
n

and Gbest, the latter two solutions are replaced by the former one.

3.2.4. Overall Framework of MSPSOTLP

The overall framework of MSPSOTLP is described in Algorithm 7. The initial pop-
ulation of MSPSOTLP is first generated using the CSOBL initialization scheme, where
the chaotic map and oppositional-based learning concepts are incorporated to enhance
the quality and coverage of the initial solutions in the search space, respectively. The
primary learning phase is performed to update the positions of particles by leveraging the
benefits of the multiswarm and social learning concepts. The secondary learning phase is
then executed to fine-tune the personal best position of each particle based on two newly
proposed search operators with different search characteristics. These iterative search
processes are repeated until the termination criterion of γ > Γmax is satisfied, where γ
is a counter used to record the fitness evaluation number consumed by MSPSOTLP and
Γmax is a predefined maximum fitness evaluation number. At the end of the optimization
process, Gbest is returned as the best-optimized result found by the proposed algorithm.
If MSPSOTLP is used to train the ANN model, then Gbest can be decoded as the optimal
combination of weights, biases, and activation functions used by an ANN model to solve a
given dataset.
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Algorithm 6. Pseudocode of secondary learning phase for MSPSOTLP

Input: Psub
s for s = 1, . . . , S, Gbest

d , f (Gbest )
01: Reconstruct main population P using Equation (21);
02: for each n-th particle do
03: Randomly select e-th particle from P with XPbest

e and f (XPbest
e );

04: if f (XPbest
e ) is better than f (XPbest

n ) then
05: Calculate XPbest,new

n using Equation (22);
06: else if f (XPbest

e ) is not better than f (XPbest
n ) then

07: for each d-th dimension do
09: Calculate XPbest,new

n,d using Equation (23);
10: end for
11: end if
12: Evaluate f (XPbest,new

n );
13: if f (XPbest,new

n ) is better than f (XPbest
n ) then

14: XPbest
n ← XPbest,new

n , f (XPbest
n )← f (XPbest,new

n ) ;
15: if f (XPbest,new

n ) is better than f (Gbest ) then
16: Gbest ← XPbest

n , f (Gbest )← f (XPbest
n ) ;

17: end if
18: end if
19: end for
Output: XPbest

n , f (XPbest
n ), Gbest, f (Gbest )

Algorithm 7 (Main Algorithm). MSPSOTLP

Input: N, D, , XU , XL, Γmax

01: Initialize Gbest as an empty vector and f (Gbest )← ∞ ;
02: Initialize γ← 0 ;
03: Generate the initial population P using Algorithm 1;
04: γ← γ + 2N ;
05: for each n-th particle do
06: XPbest

n ← Xn , f (XPbest
n )← f (Xn) ;

07: If f (Xn) is better than f (Gbest ) then
08: Gbest ← Xn , f (Gbest )← f (Xn) ;
09: end if
10: end for
11: while γ ≤ Γmax do
12: Perform the primary learning phase using Algorithm 5;
13: γ← γ + N ;
14: Perform the secondary learning phase using Algorithm 6;
15: γ← γ + N ;
16: end while
Output: Gbest, f (Gbest )

4. Performance Analysis of MSPSOTLP

The performance of the proposed MSPSOTLP in solving various types of challenging
optimization problems is investigated and compared with well-established PSO variants.
This includes the performance of MSPSOTLP in solving CEC 2014 benchmark functions,
followed by its performance in optimizing the weights, biases, and activation functions of
ANN models for solving classification problems.

4.1. Performance Evaluation of MSPSOTLP in Solving Global Optimization Problems
4.1.1. CEC 2014 Benchmark Functions

The optimization performance of the proposed MSPSOTLP is evaluated using 30 bench-
mark functions of CEC 2014 [66]. As described in Table 3, the benchmark functions with
different fitness landscape characteristics can be classified into four categories, known
as (i) unimodal functions (F1–F3), (ii) simple multimodal functions (F4–F16), (iii) hybrid
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functions (F17–F22) and (iv) composition functions (F23–F30). For all benchmark functions
in CEC 2014 with D dimensions, the search range X of each decision variable is constrained
between −100 to 100. Furthermore, the fitness value of theoretical global optimum f (X∗)
of each function is presented in Table 3.

Table 3. CEC 2014 benchmark functions and its fitness value of theoretical global optimum.

Categories No. Function Name f(X*)

Unimodal
F1 Rotated High Conditioned Elliptic Function 100
F2 Rotated Bent Cigar Function 200
F3 Rotated Discus Function 300

Simple Multimodal

F4 Shifted and Rotated Rosenbrock’s Function 400
F5 Shifted and Rotated Ackley’s Function 500
F6 Shifted and Rotated Weierstrass Function 600
F7 Shifted and Rotated Griewank’s Function 700
F8 Shifted Rastrigin’s Function 800
F9 Shifted and Rotated Rastrigin’s Function 900
F10 Shifted Schewefel’s Function 1000
F11 Shifted and Rotated Schwefel’s Function 1100
F12 Shifted and Rotated Katsuura Function 1200
F13 Shifted and Rotated HappyCat Function 1300
F14 Shifted and Rotated HGBat Function 1400

F15 Shifted and Rotated Expanded Griewank’s plus
Rosenbrock’s Function 1500

F16 Shifted and Rotated Expanded Schaffer’s F6 Function 1600

Hybrid

F17 Hybrid Function1 1700
F18 Hybrid Function 2 1800
F19 Hybrid Function 3 1900
F20 Hybrid Function 4 2000
F21 Hybrid Function 5 2100
F22 Hybrid Function 6 2200

Composition

F23 Composition Function 1 2300
F24 Composition Function 2 2400
F25 Composition Function 3 2500
F26 Composition Function 4 2600
F27 Composition Function 5 2700
F28 Composition Function 6 2800
F29 Composition Function 7 2900
F30 Composition Function 8 3000

4.1.2. Performance Metrics for Solving Benchmark Functions

Performances of all compared algorithms are measured using the mean fitness Fmean
and standard deviation SD. Specifically, Fmean is the mean error between the fitness of the
best solution produced by an algorithm and the actual global optimum of a benchmark
function in multiple runs. At the same time, the SD value measures the consistency of an
algorithm in solving a given problem. Smaller Fmean and SD imply the capability of an
algorithm to solve a function with better accuracy and consistency, respectively.

A set of non-parametric statistical analysis procedures [67,68] are applied to analyze
the performance of the proposed MSPSOTLP and its competitors from a statistical point
of view. The Wilcoxon signed rank test [68] is applied to conduct a pairwise comparison
between the proposed MSPSOTLP and each competitor at a significance level of α = 0.05.
The results generated by the Wilcoxon signed rank test are presented in terms of R+, R−,
p, and h values. R+ and R− summarize the sum of ranks where MSPSOTLP outperforms
or underperforms its peer algorithm, respectively. The p-value indicates the minimum
significance level required to identify the performance deviations between the two algo-
rithms. If the p-value is smaller than α = 0.05, the better result achieved by an algorithm is
considered statistically significant. Based on the obtained p-value and predefined α, the
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corresponding h value is concluded to be significantly better (i.e., h = “+”), statistically
insignificant (i.e., h = “=”), or significantly worse (i.e., h = “-”).

Multiple comparisons among the proposed MSPSOTLP and its competitors is also
conducted using the Friedman test [67]. The Friedman test first produces the average
ranking of each algorithm. The p-value obtained from the Friedman test measures the global
differences among all compared algorithms at a significance level of α = 0.05. If significant
global differences are observed, three post-hoc analyses [67], known as Bonferroni-Dunn,
Holm, and Hochberg, are performed to analyze the substantial differences among all
compared algorithms based on the adjusted p-values (APVs).

4.1.3. Parameter Settings for Solving Benchmark Functions

The performance of the proposed MSPSOTLP in solving CEC 2014 benchmark func-
tions is compared with seven well-established PSO variants. The selected PSO variants
include the conventional PSO (PSO) [14], PSO without velocity (PSOWV) [16], uncon-
strained version of multi-swarm PSO without velocity (MPSOWV) [15], competitive swarm
optimizer (CSO) [69], social learning PSO (SLPSO) [18], hybridized PSO with gravitational
search algorithm (PSOGSA) [44], and accelerated PSO (APSO) [70].

The parameter settings of all of the compared algorithms are set with the recommended
values in their respective literature and presented in Table 4. All compared algorithms are
configured with a population size of N = 100 to solve each benchmark function at D = 30
for 30 independent times. The maximum fitness evaluation numbers of all algorithms are
set as Γmax = 10, 000× D. All compared algorithms are simulated using Matlab 2019b on a
personal computer with Intel ® Core i7-7500 CPU @ 2.70 GHz.

Table 4. Parameter settings of all compared algorithms.

Algorithms Parameter Settings

PSO Inertia weight ω : 0.9→ 0.2 , acceleration coefficients c1 = c2 = 2.05
PSOWV c1 = 1.00, c2 = 1.70

MPSOWV Subpopulation size Nsub
s = 10, where s = 1, . . . , 10, acceleration coefficients

c1 = c2 = c2 = 4.1/3
CSO Parameter control the influence of mean position ϕ ∈ [0, 0.3]

SLPSO
Exponential component to adjust learning probability α̃ = 0.5, parameter to
control social influence factor β̃ = 0.01

PSOGSA Initial gravitational constant G0 = 1, descending coefficient of gravitational
constant α̂ = 20

APSO Additional acceleration coefficient A = 0.3, ω = 1, c1 = c2 = 2.05
MSPSOTLP Nsub

s = 10, where s = 1, . . . , 10, c1 = c2 = c2 = 4.1/3

4.1.4. Performance Comparison in Solving CEC 2014 Benchmark Functions

The simulation results of Fmean and SD produced by the proposed MSPSOTLP and
other selected PSO variants in solving the CEC 2014 benchmark functions are presented in
Table 5. The algorithms’ best and second-best Fmean obtained are indicated in boldface and
underlined, respectively. Moreover, the performance comparison between the proposed
MSPSOTLP and selected PSO variants is summarized in #BMF and w/t/l. Specifically,
#BMF indicates the number of best Fmean obtained by an algorithm in solving all function,
while w/t/l reports that the proposed MSPSOTLP has better performance in w function,
similar performance in t function, and worse performance in l function as compared to the
particular compared algorithm.
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Table 5. Fmean and SD values produced by the proposed MSPSOTLP and other PSO variants in
solving CEC 2014 benchmark functions.

Func. Criteria MSPSOTLP PSO PSOWV CSO MPSOWV SLPSO PSOGSA APSO

F1 Fmean 5.61× 103 6.69 × 106 4.70 × 108 3.12 × 105 1.61 × 108 4.88 × 105 2.47 × 105 1.25 × 108

SD 2.57 × 103 8.99 × 106 3.79 × 108 1.32 × 105 7.38 × 107 2.86 × 105 7.24 × 104 2.02 × 107

F2 Fmean 0.00× 100 7.27 × 101 6.94 × 1010 6.84 × 103 2.12 × 1010 1.57 × 104 1.25 × 104 3.01 × 107

SD 0.00 × 100 2.90 × 102 1.56 × 1010 5.63 × 103 2.74 × 109 1.10 × 104 6.97 × 103 5.81 × 107

F3 Fmean 2.18× 1011 4.87 × 101 3.18 × 105 7.85 × 103 8.20 × 104 7.26 × 103 6.93 × 103 1.97 × 105

SD 2.52 × 10−11 6.61 × 101 5.70 × 104 5.62 × 103 2.44 × 104 5.50 × 103 1.33 × 103 3.56 × 104

F4 Fmean 1.44 × 10−2 1.79 × 102 8.66 × 103 5.71 × 101 1.39 × 103 2.56 × 101 4.49 × 101 2.71 × 102

SD 1.23 × 10−2 5.12 × 101 3.26 × 103 2.31 × 101 3.56 × 102 3.04 × 101 2.91 × 101 3.29 × 101

F5 Fmean 2.01 × 101 2.09 × 101 2.09 × 101 2.10 × 101 2.09 × 101 2.09 × 101 2.00× 101 2.00× 101

SD 5.32 × 10−2 8.52 × 10−2 9.48 × 10−2 3.65 × 10−2 3.01 × 10−2 6.49 × 10−2 2.99 × 10−4 3.26 × 10−2

F6 Fmean 3.25 × 100 2.12 × 101 3.83 × 101 4.08× 10−1 3.38 × 101 5.43 × 10−1 1.80 × 101 2.45 × 101

SD 1.02 × 100 5.40 × 100 2.41 × 100 6.73 × 10−1 9.46 × 10−1 6.38 × 10−1 5.22 × 100 3.50 × 100

F7 Fmean 0.00× 100 2.62 × 10−2 5.61 × 102 1.48 × 10−3 1.62 × 102 1.97 × 10−3 1.23 × 10−2 1.25 × 100

SD 0.00 × 100 2.21 × 10−2 2.05 × 102 3.12 × 10−3 1.44 × 101 4.41 × 10−3 7.38 × 10−3 6.16 × 10−1

F8 Fmean 1.15 × 101 1.15 × 102 3.87 × 102 8.66× 100 2.68 × 102 1.37 × 101 1.70 × 102 1.37 × 102

SD 1.57 × 100 2.51 × 101 3.23 × 101 1.88 × 100 2.21 × 101 3.25 × 100 9.24 × 100 2.75 × 101

F9 Fmean 1.20 × 101 1.39 × 102 4.85 × 102 9.65 × 100 3.29 × 102 1.65 × 101 1.91 × 102 1.98 × 102

SD 3.16 × 100 1.42 × 101 3.67 × 101 3.78 × 100 1.25 × 101 5.52 × 100 7.06 × 100 2.18 × 101

F10 Fmean 1.52× 102 2.63 × 103 7.66 × 103 1.78 × 102 6.22 × 103 5.47 × 102 3.89 × 103 3.71 × 103

SD 7.91 × 101 4.52 × 102 4.67 × 102 1.36 × 102 2.45 × 102 2.60 × 102 3.20 × 102 5.04 × 102

F11 Fmean 2.42 × 103 3.76 × 103 7.56 × 103 2.85× 102 7.24 × 103 7.21 × 102 4.36 × 103 4.16 × 103

SD 3.73 × 102 6.08 × 102 4.57 × 102 2.28 × 102 4.44 × 102 2.29 × 102 1.82 × 102 8.01 × 102

F12 Fmean 1.62 × 100 1.74 × 100 2.70 × 100 2.39 × 100 2.65 × 100 2.50 × 100 2.07× 10−1 5.61 × 10−1

SD 2.07 × 10−1 3.84 × 10−1 1.22 × 10−1 3.10 × 10−1 1.63 × 10−1 3.68 × 10−1 1.66 × 10−1 2.68 × 10−1

F13 Fmean 1.29× 10−1 4.82 × 10−1 6.12 × 100 1.34 × 10−1 3.09 × 100 1.97 × 10−1 5.62 × 10−1 5.92 × 10−1

SD 7.49 × 10−3 1.19 × 10−1 5.58 × 10−1 1.61 × 10−2 2.33 × 10−1 2.41 × 10−2 7.52 × 10−2 1.17 × 10−1

F14 Fmean 1.93× 10−1 2.90 × 10−1 1.46 × 102 3.94 × 10−1 4.48 × 101 4.42 × 10−1 2.82 × 10−1 2.57 × 10−1

SD 8.61 × 10−3 9.55 × 10−2 6.54 × 101 4.61 × 10−2 7.08 × 100 7.32 × 10−2 2.23 × 10−2 5.35 × 10−2

F15 Fmean 2.30× 100 1.10 × 100 3.58 × 106 3.14 × 100 9.90 × 104 5.07 × 100 8.15 × 100 3.16 × 101

SD 2.08 × 10−1 3.82 × 100 7.86 × 105 4.29 × 10−1 2.26 × 104 4.93 × 100 4.94 × 100 2.06 × 101

F16 Fmean 7.60× 100 1.16 × 101 1.34 × 101 1.08 × 101 1.30 × 101 1.21 × 101 1.25 × 101 1.28 × 101

SD 3.86 × 10−1 5.88 × 10−1 2.05 × 10−1 4.73 × 10−1 1.38 × 10−1 1.79 × 10−1 2.12 × 10−1 6.66 × 10−1

F17 Fmean 2.10× 103 2.86 × 105 1.77 × 107 1.49 × 105 6.01 × 106 1.05 × 105 1.86 × 104 2.05 × 106

SD 5.36 × 102 3.25 × 105 1.08 × 107 6.66 × 104 1.12 × 106 5.42 × 104 5.76 × 103 2.37 × 106

F18 Fmean 1.22× 102 3.79 × 103 5.88 × 108 2.17 × 103 2.58 × 108 8.42 × 102 3.84 × 102 1.41 × 105

SD 6.67 × 101 4.62 × 103 2.87 × 108 3.17 × 103 8.05 × 107 4.97 × 102 1.85 × 102 3.12 × 105

F19 Fmean 4.08× 100 1.24 × 101 3.64 × 102 5.30 × 100 1.41 × 102 6.13 × 100 1.59 × 101 2.93 × 101

SD 2.68 × 10−1 3.21 × 100 1.51 × 102 6.33 × 10−1 2.38 × 101 5.50 × 10−1 2.89 × 100 2.74 × 101

F20 Fmean 7.96× 101 3.74 × 102 2.78 × 105 1.26 × 104 2.90 × 104 2.48 × 104 2.84 × 103 1.02 × 105

SD 8.58 × 100 2.38 × 102 1.88 × 105 9.04 × 103 9.09 × 103 1.36 × 104 2.73 × 102 4.65 × 104

F21 Fmean 8.02× 102 6.12 × 104 6.03 × 106 6.92 × 104 1.56 × 106 8.18 × 104 1.18 × 104 1.16 × 106

SD 2.07 × 102 6.19 × 104 6.96 × 106 3.80 × 104 5.59 × 105 3.84 × 104 1.29 × 103 9.69 × 105

F22 Fmean 3.52× 101 6.77 × 102 1.08 × 103 1.28 × 102 9.76 × 102 1.51 × 102 7.94 × 102 6.23 × 102

SD 1.30 × 101 2.68 × 102 2.42 × 102 5.43 × 101 1.96 × 102 1.32 × 101 1.59 × 102 173 × 102

F23 Fmean 3.15 × 102 3.16 × 102 3.15 × 102 3.15 × 102 4.17 × 102 3.15 × 102 2.00× 102 3.62 × 102

SD 3.20 × 10−13 3.52 × 10−1 8.04 × 101 9.16 × 10−12 1.26 × 101 4.99 ×
10−13 1.06 × 10−7 1.51 × 101

F24 Fmean 2.24 × 102 2.30 × 102 4.66 × 102 2.26 × 102 3.20 × 102 2.33 × 102 2.01× 102 2.50 × 102

SD 1.50 × 10−1 6.64 × 100 3.90 × 101 4.74 × 100 1.13 × 101 7.32 × 100 1.09 × 10−1 2.84 × 100

F25 Fmean 2.00× 102 2.13 × 102 2.59 × 102 2.06 × 102 2.25 × 102 2.06 × 102 2.00× 102 2.22 × 102

SD 0.00 × 100 4.81 × 100 2.21 × 101 1.55 × 100 5.87 × 100 2.72 × 100 8.94 × 10−10 2.99 × 100

F26 Fmean 1.00× 102 1.70 × 102 1.06 × 102 1.00× 102 1.03 × 102 1.40 × 102 1.00× 102 1.83 × 102

SD 2.32 × 10−2 4.81 × 101 1.57 × 100 1.83 × 10−2 5.44 × 10−1 5.47 × 101 1.35 × 10−1 4.59 × 101

F27 Fmean 3.94 × 102 8.49 × 102 1.28 × 103 3.55 × 102 1.14 × 103 3.69 × 102 2.00× 102 8.02 × 102

SD 2.91 × 101 3.58 × 102 3.92 × 101 5.77 × 101 6.81 × 101 2.77 × 101 5.10 × 10−9 2.03 × 102

F28 Fmean 8.55 × 102 4.04 × 103 1.82 × 103 8.57 × 102 1.36 × 103 9.77 × 102 2.00× 102 2.50 × 103

SD 1.80 × 101 9.59 × 102 5.12 × 102 4.42 × 101 3.69 × 102 1.07 × 102 2.07 × 10−8 5.80 × 102

F29 Fmean 8.60 × 102 1.43 × 103 1.04 × 107 1.63 × 103 2.15 × 106 1.55 × 103 2.02× 102 1.23 × 107

SD 5.36 × 101 7.53 × 102 9.14 × 106 4.77 × 102 4.02 × 106 4.57 × 102 2.00 × 10−1 1.88 × 107

F30 Fmean 1.72 × 103 3.56 × 103 3.79 × 105 2.69 × 103 4.04 × 104 3.17 × 103 2.00× 102 9.88 × 104

SD 5.39 × 102 1.93 × 103 339 × 105 1.06 × 103 8.14 × 103 3,17 × 103 3.62 × 10−3 3.25 × 104

#BMF 18 0 0 5 0 0 10 1
w/t/l - 29/1/0 30/0/0 22/3/5 30/0/0 26/1/3 19/2/9 28/0/2



Processes 2022, 10, 2579 22 of 35

For unimodal functions (i.e., F1–F3), the proposed MSPSOTLP has the most dominat-
ing search performance by producing the best Fmean values to solve these three functions.
MSPSOTLP is also the only PSO variant to locate the global and near-global optimum
solutions of F2 and F3, respectively. Apart from MSPSOTLP, both PSO and PSOGSA are
considered to have relatively better search performance than the rest of the algorithms
in solving unimodal functions by producing one second-best Fmean. Meanwhile, PSOWV,
MPSOWV and APSO have inferior search performance by producing Fmean values that are
generally larger than those of the other algorithms.

For simple multimodal functions (i.e., F4-F16), the proposed MSPSOTLP has the most
competitive performance in solving these 13 functions with the seven best Fmean (i.e., F4,
F7, F10, F13, and F14) and three second-best Fmean (i.e., F5, F8, and F9). MSPSOTLP is also
the only algorithm that successfully locates the global optimum of function F7. Contrary
to unimodal functions, CSO and SLPSO have exhibited relatively better performance in
solving several simple multimodal functions, such as F6, F8, F9, and F11. Although PSO
and PSOGSA have good performance in solving unimodal functions, their performances in
solving F4, F6, F7, F8, F9, F10, F11, F13, F15, and F16 are relatively inferior. The performance
degradations of PSO and PSOGSA reflect the limitation of both algorithms in tackling
optimization problems with multiple local optima. Meanwhile, APSO shows relatively
better search performance at solving F5, F12, and F14 than PSOWV and MPSOWV.

The excellent optimization performance of the proposed MSPSOTLP is also demon-
strated in the hybrid function category (i.e., F17–F22) by solving all six functions with the
best Fmean values. PSOGSA follows this, producing three second-best Fmean values for F17,
F18, and F21. However, the performance of PSOGSA in solving hybrid functions is not
consistent, as shown by its relatively inferior results in F19 and F22. A similar scenario is
observed from PSO, CSO, and SLPSO, producing mediocre performance in solving most
hybrid functions. Specifically, PSO can solve F20 and F21 with relatively good performance,
but it performs poorly in F17, F18, F19, and F22. Meanwhile, CSO is reported to solve F19
and F22 with competitive performance, but delivers poor results for F17, F18, F20, and F21.
On the other hand, APSO, PSOWV, and MPSOWV are reported to have inferior search
performance in solving all hybrid functions with higher complexity levels.

In the category of composition function (i.e., F23–F30), PSOGSA shows its competitive
performance in dealing with these more complex functions, followed by the proposed MSP-
SOTLP. PSAGSA can solve all eight composite functions with the best Fmean values, while
MSPSOTLP produces two best Fmean (i.e., F25 and F26) and five second-best Fmean (i.e., F23,
F24, F28, F29, and F30). Although PSOGSA performs better than MSPSOTLP when solving
composite functions, PSOGSA performs more inferiorly than MSPSOTLP in three other
problem categories. CSO produces one best Fmean (i.e., F26) and three second-best Fmean (i.e.,
F23, F25, and F27), implying its competitive performance in solving composite functions.
Meanwhile, SLPSO is observed to have relatively good performance in solving F23 and
F25, but mediocre performance in the remaining composite functions.

Overall, the proposed MSPSOTLP has demonstrated the best search accuracy among
all compared PSO variants by producing 18 best Fmean values in solving 30 functions, imply-
ing that the search mechanisms incorporated are sufficiently robust to handle optimization
problems with different levels of complexity as compared to most of its peer algorithms.
This is followed by PSOGSA and CSO, which are reported to have 10 and 5 best Fmean
values, respectively. On the other hand, PSOWV is identified as the worst algorithm by
producing 26 worst Fmean values in solving 30 CEC 2014, implying its limitations in solving
the benchmark functions with simple fitness landscapes.

4.1.5. Non-Parametric Statistical Analyses

Based on the reported Fmean values, Wilcoxon signed rank test [68] is applied to perform
a pairwise comparison between the proposed MSPSOTLP and the selected PSO variants.
The results in terms of R+, R−, p, and h values, are presented in Table 6. Accordingly,
MSPSOTLP performs significantly better than all other PSO variants at a significance level
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of α = 0.05 as indicated by the h value of “+”. Notably, the proposed MSPSOTLP completely
dominates PSO, PSOWV, and PSOWV to solve CEC 2014 benchmark functions based on
the promising R+, R−, p and h values reported.

Table 6. Pairwise comparisons by Wilcoxon signed rank test between MSPSOTLP and each peer algorithm.

MSPSOTLP vs. R+ R− p Value h Value

PSO 465.0 0.0 2.00 × 10−6 +
PSOWV 465.0 0.0 2.00 × 10−6 +
CSO 382.5 82.5 1.91 × 10−3 +
MPSOWV 465.0 0.0 2.00 × 10−6 +
SLPSO 390.0 45.0 1.76 × 10−4 +
PSOGSA 347.5 117.5 1.75 × 10−2 +
APSO 459.0 6.0 3.00 × 10−6 +

The Friedman test [67] is further conducted for multiple comparisons between the
proposed MSPSOTLP and selected PSO variants based on their Fmean values. The results, in
terms of average ranking, chi-square statistics, and p-value, are reported in Table 7. The
Friedman test reports that MSPSOTLP has the best performance by scoring an average
rank of 1.6833, followed by CSPSO, PSOGSA, SLPSO, PSO, APSO, MPSOWV, and PSOWV
with average ranks of 3.0500, 3.0667, 3.7667, 4.4167, 5.6500, 6.6500, and 7.7167, respectively.
The p-value determined by the Friedman test through chi-square statistics is smaller than
the predefined significance level of α = 0.05. Therefore, significant global performance
deviations among all compared algorithms are observed.

Table 7. Average ranking and p-value produced by Friedman test.

Algorithm Ranking Chi-Square Statistics p value

MSPSOTLP 1.6833

144.636111 0.00 × 100

PSOGSA 3.0667
CSO 3.0500
PSO 4.4167
SLPSO 3.7667
APSO 5.6500
MPSOWV 6.6500
PSOWV 7.7167

Given the global performance difference observed from the Friedman test, three post-
hoc statistical analyses [67], known as Bonferroni-Dunn, Holm, and Hochberg, are utilized
to identify other concrete performance differences between the proposed MSPSOTLP
and different PSO variants. The results, in terms of z values, unadjusted p values, and
adjusted p values (APVs), produced by three procedures are reported in Table 8. All post-
hoc procedures confirm the significant performance enhancement of MSPSOTLP against
PSOWV, MPSOWV, APSO, SLPSO, and PSO at α = 0.05. The Hochberg procedure has
higher sensitivity to detect the significant performance difference between MSPSOTLP,
CSO, and PSAGSA. Notably, the Holm procedure can detect the significant performance
improvement of MSPSOTLP against CSO and PSOGSA if the threshold level is adjusted to
α = 0.10.

4.1.6. Performance Analysis of Proposed Improvement Strategies

A further performance analysis is conducted in this subsection to investigate the
contribution brought by each improvement strategy introduced into MSPSOTLP, i.e., mod-
ified initialization scheme (i.e., chaotic map and oppositional based learning), primary
learning phase (i.e., multiswarm concept and construction of social exemplar), and sec-
ondary learning phase (i.e., two search operators with different search characteristic). The
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original PSOWV is chosen as the baseline method to be compared in this subsection. An-
other three variants of MSPSOTLP, i.e., MSPSOTLP-1, MSPSOTLP-2 and MSPSOTLP-3, are
also introduced to analyze the performance gains brought by the modified initialization
scheme, primary learning phase, and secondary learning phase, respectively. Particularly,
MSPSOTLP-1 refers to the PSOWV enhanced with the CSOBL initialization scheme. Mean-
while, MSPSOTLP-2 refers to PSOWV enhanced with the CSOBL initialization scheme
and primary learning phase. Finally, MSPSOTLP-3 refers to PSOWV enhanced with the
CSOBL initialization scheme and secondary learning phase, where its primary phase is
replaced with the original search operator of PSOWV. The performance gain achieved by
each MSPSOTLP variants against the original PSOWV when solving every benchmark
function is measured as ∆G as follow:

∆G =
Fmean(MSPSOTLP variant)− Fmean(PSOWV)

|Fmean(PSOWV)| × 100% (24)

Table 8. Adjusted p values produced by each algorithm through three post-hoc analysis procedures.

MSPSOTLP vs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p

PSOWV 9.54 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

MPSOWV 7.85 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

APSO 6.27 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

SLPSO 4.32 × 100 1.50 × 10−5 1.08 × 10−4 6.20 × 10−3 6.20 × 10−5

PSO 3.29 × 100 9.88 × 10−4 6.91 × 10−3 2.96 × 10−3 2.96 × 10−3

CSO 2.19 × 100 2.87 × 10−2 2.01 × 10−1 5.75 × 10−2 3.07 × 10−2

PSOGSA 2.16 × 100 3.07 × 10−2 2.15 × 10−1 5.75 × 10−2 3.07 × 10−2

Referring to Equation (24), it is evident that a positive value of ∆G can be obtained if
a particular MSPSOTLP variant can solve the benchmark functions with better Fmean value
than that of PSOWV and vice versa.

The simulation results in terms of Fmean and ∆G obtained by PSOWV and all MSP-
SOTLP variants when solving all CEC 2014 benchmark functions are presented in Table 9.
Accordingly, all MSPSOTLP variants have successfully solved the majority of CEC 2014
benchmark functions with different degrees of performance gains. MPSOTLP-1 is observed
to outperform PSOWV in the majority of CEC 2014 benchmark functions except for F1,
F5, F6, F11, F12, F16, F17, F21, F29, and F30. Although the CSOBL can produce an initial
population with better solution quality in terms of fitness and diversity that can lead to
performance gain of algorithm, it is not sufficient to solve the complex problem because
CSOBL is only executed once during the search process. Some interesting findings can be
observed when both variants of MSPSOTLP-2 and MSPSOTLP-3 are used to solve CEC 2014
benchmark functions. Particularly, MSPSOTLP-2 can perform better than MSPSOTLP-3
when solving the unimodal (i.e., F1 to F3), simple multimodal (i.e., F4 to F16) and hybrid
(i.e., F17 to F22) functions. Meanwhile, MSPSOTLP-3 is revealed to be more competitive
than MSPSOTLP-2 in dealing with the most complex composition function. The perfor-
mance differences between MSPSOTLP-2 and MSPSOTLP03 can be justified based on their
inherent search mechanisms. For MSPSOTLP-2, the primary learning phase is incorporated
with multiswarm and social learning concepts used to accelerate the convergence char-
acteristic of the algorithm without compromising its population diversity. When dealing
with optimization functions with less complex fitness landscapes (i.e., unimodal, simple
multimodal, and hybrid functions), the benefits brought by both the multiswarm and social
learning concepts can still suppress the potential negative drawbacks of the historically
best position (i.e., global best position in this case). When the fitness landscapes of the
optimization problems are increased further, such as those in composition functions, the
numbers of local optima in the solution space have increased exponentially. Under this
circumstance, the diversity maintenance scheme introduced in the primary learning phase
of MSPSOTLP-2 is not sufficient to curb the high tendency of historically best positions
to be trapped in these local optima. On the other hand, the secondary learning phase of
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MSPSOTLP-3 can leverage the useful directional information of other non-fittest solutions
to perform searching with greater exploration strengths; thus, it has a higher chance to
escape from the inferior regions of the solution space. Finally, the complete MSPSOTLP
has exhibited the best performance when solving all CEC 2014 benchmark functions with
26 best and 4 s-best Fmean values. The simulation results reported in Table 9 have veri-
fied that each improvement strategy incorporated into MSPSOTLP indeed has different
contributions to enhancing the search performance of the proposed algorithm.

Table 9. Simulation results of Fmean and ∆P obtained by PSOWV and all MSPSOTLP variants when
solving CEC 2014 benchmark functions.

Func
Fmean (∆G)

PSOWV MSPSOTLP-1 MSPSOTLP-2 MSPSOTLP-3 MSPSOTLP

F1 4.70× 108 (−) 8.08× 108 (−71.93%) 8.42× 106 (98.21%) 1.37× 108(70.83%) 5.61× 103 (100.00%)
F2 6.94× 1010 (−) 1.47× 1010 (78.79%) 2.70× 107 (99.96%) 4.95× 109 (92.87%) 0.00× 100 (100.00%)
F3 3.18× 105 (−) 8.56× 104 (73.09%) 1.10× 104 (96.53%) 4.09× 104 (87.13%) 2.18× 10−11 (100.00%)
F4 8.66× 103 (−) 6.80× 103 (21.52%) 1.48× 102 (98.29%) 2.43× 102 (97.20%) 1.44× 10−2 (100.00%)
F5 2.09× 101 (−) 2.10× 101 (−0.60%) 2.09× 101 (0.04%) 2.08× 101 (0.43%) 2.01× 101 (3.83%)
F6 3.83× 101 (−) 4.34× 101 (−13.26%) 2.45× 101 (35.92%) 2.78× 101 (27.39%) 3.25× 100 (91.51%)
F7 5.61× 102 (−) 2.23× 102 (60.17%) 1.19× 100 (99.79%) 3.68× 100 (99.34%) 0.00× 100 (100.00%)
F8 3.87× 102 (−) 2.49× 102 (35.67%) 4.13× 101 (89.34%) 1.53× 102 (60.36%) 1.15× 101 (97.03%)
F9 4.85× 102 (−) 3.16× 102 (34.90%) 9.96× 101 (79.47%) 1.67× 102 (65.50%) 1.20× 101 (97.53%)
F10 7.66× 103 (−) 6.85× 103 (10.55%) 2.12× 103 (72.36%) 4.47× 103 (41.70%) 1.52× 102 (98.02%)
F11 7.56× 103 (−) 8.54× 103 (−12.92%) 3.60× 103 (52.35%) 4.82× 103 (36.24%) 2.42× 103 (67.99%)
F12 2.70× 100 (−) 3.61× 100 (−33.67%) 2.15× 100 (20.26%) 2.15× 100 (20.48%) 1.62× 100 (40.00%)
F13 6.12× 100 (−) 5.14× 100 (16.06%) 2.64× 10−1 (95.68%) 7.40× 10−1 (87.91%) 1.29× 10−1 (97.89%)
F14 1.46× 102 (−) 1.40× 102 (3.96%) 9.63× 10−1 (99.34%) 2.98× 10−1 (99.80%) 1.93× 10−1 (99.87%)
F15 3.58× 106 (−) 3.64× 104 (98.98%) 1.89× 101 (100.00%) 9.12× 101 (100.00%) 2.30× 100 (100.00%)
F16 1.34× 101 (−) 1.37× 101 (−2.00%) 1.31× 101 (2.56%) 1.36× 101 (−1.63%) 7.60× 100 (43.28%)
F17 1.77× 107 (−) 5.56× 107 (−100.00%) 8.27× 105 (95.33%) 6.08× 105 (95.56%) 2.10× 103 (99.99%)
F18 5.88× 108 (−) 4.07× 108 (30.77%) 2.59× 104 (100.00%) 7.51× 105 (99.87%) 1.22× 102 (100.00%)
F19 3.64× 102 (−) 1.44× 102 (60.49%) 1.06× 101 (97.09%) 2.26× 101 (93.80%) 4.08× 100 (98.88%)
F20 2.78× 105 (−) 2.54× 105 (8.77%) 1.98× 104 (92.88%) 5.06× 103 (98.18%) 7.96× 101 (99.97%)
F21 6.03× 106 (−) 1.22× 107 (−100.00%) 1.21× 105 (97.99%) 7.86× 105 (86.97%) 8.02× 102 (99.99%)
F22 1.08× 103 (−) 8.96× 102 (17.07%) 3.15× 102 (70.81%) 4.25× 102 (60.65%) 3.52× 101 (96.74%)
F23 6.74× 102 (−) 2.00× 102 (70.33%) 3.15× 102 (53.21%) 2.00× 102 (70.33%) 3.15× 102 (53.26%)
F24 4.66× 102 (−) 2.00× 102 (57.08%) 2.12× 102 (54.45%) 2.00× 102 (57.08%) 2.24× 102 (51.93%)
F25 2.59× 102 (−) 2.00× 102 (22.78%) 2.07× 102 (19.92%) 2.00× 102 (22.78%) 2.00× 102 (22.78%)
F26 1.06× 102 (−) 1.04× 102 (1.80%) 1.01× 102 (5.19%) 1.01× 102 (5.13%) 1.00× 102 (5.66%)
F27 1.28× 103 (−) 2.00× 102 (84.38%) 7.58× 102 (40.76%) 2.00× 102 (84.38%) 3.94× 102 (69.22%)
F28 1.82× 103 (−) 2.00× 102 (89.01%) 8.98× 102 (50.65%) 2.00× 102 (89.01%) 8.55× 102 (53.02%)
F29 1.04× 107 (−) 3.21× 107 (−100.00%) 1.47× 103 (99.99%) 5.95× 104 (99.43%) 8.60× 102 (99.99%)
F30 3.79× 105 (−) 8.38× 105 (−100.00%) 2.54× 103 (99.33%) 9.93× 104 (73.80%) 1.72× 103 (99.55%)

4.2. Performance Evaluation of MSPSOTLP in Training ANN Models
4.2.1. Classification Datasets for Training ANN Models

Apart from general optimization performance, the capability of the proposed MSP-
SOTLP in training ANN models for data classification tasks is also evaluated using six-
teen standard datasets extracted from the University of California Irvine (UCI) machine
learning repository [71]. The sixteen datasets selected for performance evaluation include
Iris, Liver Disorder, Blood Transfusion, Statlog Heart, Hepatitis, Wine, Breast Cancer, Seeds,
Australian Credit Approval, Haberman’s Survival, New Thyroid, Glass, Balance Scale,
Dermatology, Landsat and Bank Note. The properties of each dataset are summarized in Ta-
ble 10. Each selected dataset is separated into two parts, known as 70% of training samples
and 30% of testing samples. Specifically, the training samples are used by MSPSOTLP and
other PSO variants to optimize the parameters of ANN models (i.e., weights, biases, and
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activation function). In contrast, the testing samples are used to evaluate the generalization
performance of ANN models trained by all compared algorithms.

Table 10. Properties of datasets selected for ANN model training.

No. Dataset # Attributes # Classes # Samples

DS1 Iris 4 3 150
DS2 Liver Disorder 6 2 345
DS3 Blood Transfusion 4 2 748
DS4 Statlog Heart 13 2 270
DS5 Hepatitis 19 2 80
DS6 Wine 13 3 178
DS7 Breast Cancer 9 2 277
DS8 Seeds 7 3 210
DS9 Australian Credit Approval 14 2 690
DS10 Haberman’s Survival 3 2 306
DS11 New Thyroid 5 3 215
DS12 Glass 9 6 214
DS13 Balance Scale 4 3 625
DS14 Dermatology 34 6 338
DS15 Landsat 36 6 4435
DS16 Bank Note 4 2 1372

4.2.2. Performance Metrics for ANN Training

Classification accuracy RC is a popular performance metric used to measure the
classification performance of an ANN model. Suppose that R̃ refers to the number of
correctly classified data samples by the ANN model, while R represents the total number
of data samples in each dataset. The RC value is calculated as follow:

RC =
R̃
R
× 100% (25)

An ANN model with a larger value of RC is more desirable because it can produce
better results in terms of classification accuracy. In addition, the ANN model produces a
larger RC value when solving the testing samples s also considered to have better gener-
alization performance due to its excellent capability to accurately classify unseen data in
different classes with its understanding of the existing data. Furthermore, the standard
deviation SD values are also recorded to observe the consistency of ANN models trained
by compared PSO variants in solving classification datasets.

4.2.3. Parameter Settings for ANN Training

Similar to the global optimization, the performance of the ANN model trained by the
proposed MSPSOTLP in solving sixteen datasets extracted from the UCI machine learning
repository is compared with the seven PSO variants reported in Section 4.1.3. The param-
eters of all compared algorithms are configured as reported in Table 3 as recommended
in their original literature. The same values of N = 100 and Γmax = 10, 000× D are also
configured for all compared PSO variants in solving ANN training problems, where the
value of D is calculated based on Equation (7). The ANN model to be trained in this study
is constructed by an input layer, a hidden layer, and an output layer. The number of input
and output neurons of each ANN model are configured based on the number of attributes
and classes of a given dataset, respectively, as presented in Table 8. Meanwhile, the number
of neurons in the hidden layer is 15. Similarly, all compared algorithms in training ANN
model are simulated using Matlab 2019b on a personal computer with Intel ® Core i7-7500
CPU @ 2.70GHz.
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4.2.4. Performance Comparison in Training ANN Models

The RC and SD values produced by the ANN models optimized by all compared PSO
variants when classifying the training and testing samples are presented in Tables 11 and 12,
respectively. Similarly, the best and second best RC values produced by the compared
methods in each dataset are indicated in boldface and underlined, respectively. The
comparative studies between the ANN models trained by MSPSOTLP and other PSO
variants are summarized in #BRC and w/t/l as similar to those in Table 5. Specifically, #BRC

records the number of best RC values produced by each algorithm in training the ANN
models for 16 datasets extracted from UCI machine learning repository.

Table 11. The RC and SD values produced by ANN models trained by the proposed MSPSOTLP and
other PSO variants when solving the training samples.

Dataset Criteria MSPSOTLP PSO PSOWV CSO MPSOWV SLPSO PSOGSA APSO

DS1 RC 99.58 94.58 67.42 79.08 98.67 77.00 90.92 19.83
SD 4.39 × 10−1 2.25 × 100 1.11 × 101 6.30 × 100 3.73 × 10−1 2.20 × 100 9.84 × 100 4.01 × 101

DS2 RC 72.72 73.44 52.68 58.55 69.60 57.03 73.26 58.59
SD 2.45 × 10−1 5.37 × 10−1 5.30 × 100 1.05 × 100 9.12 × 10−1 2.67 × 100 2.09 × 10−1 2.43 × 100

DS3 RC 80.59 80.55 78.63 78.93 79.45 78.93 81.29 78.90
SD 5.29 × 10−2 4.83 × 10−1 2.70 × 100 0.00 × 100 3.34 × 10−1 0.00 × 100 1.67 × 10−1 0.00 × 100

DS4 RC 96.20 94.07 69.82 80.56 91.90 77.69 92.18 52.45
SD 8.11 × 10−1 2.09 × 100 7.87 × 100 2.12 × 100 5.35 × 10−1 2.41 × 100 1.17 × 100 1.86 × 101

DS5 RC 96.41 94.53 62.19 75.94 95.00 80.31 92.81 60.94
SD 1.81 × 100 1.80 × 100 9.55 × 100 0.00 × 100 1.80 × 100 3.61 × 100 9.02 × 10−1 1.18 × 101

DS6 RC 100.00 94.09 59.58 82.32 99.79 66.41 99.51 28.80
SD 0.00 × 100 1.08 × 100 2.22 × 101 3.33 × 100 4.07 × 10−1 4.30 × 100 4.07 × 10−1 4.64 × 101

DS7 RC 82.48 83.29 67.34 74.32 79.69 74.73 79.55 69.73
SD 3.82 × 10−1 6.88 × 10−1 2.31 × 100 9.38 × 10−1 4.50 × 10−1 6.88 × 10−1 2.74 × 100 4.82 × 100

DS8 RC 97.50 87.62 60.30 75.77 96.37 77.20 93.10 69.05
SD 1.04 × 100 7.35 × 100 2.03 × 101 2.81 × 100 3.44 × 10−1 4.81 × 100 9.09 × 10−1 4.70 × 101

DS9 RC 89.67 89.40 73.55 82.63 88.97 83.97 89.10 88.46
SD 2.96 × 10−1 1.41 × 100 7.60 × 100 1.73 × 100 4.56 × 10−1 2.20 × 100 3.14 × 10−1 1.56 × 101

DS10 RC 75.14 75.43 70.94 72.33 75.14 72.04 75.71 72.20
SD 2.32 × 10−1 2.36 × 10−1 3.89 × 100 8.16 × 10−1 2.36 × 10−1 4.08 × 10−1 1.08 × 100 0.00 × 100

DS11 RC 98.55 93.20 80.35 92.85 95.87 85.23 94.48 71.28
SD 1.29 × 100 1.01 × 101 5.53 × 100 3.20 × 100 1.34 × 100 6.40 × 100 6.71 × 10−1 1.11 × 101

DS12 RC 54.39 45.73 13.22 15.97 41.17 13.74 49.06 45.61
SD 1.04 × 101 1.32 × 101 1.14 × 101 4.39 × 100 2.06 × 101 2.05 × 100 1.88 × 100 1.49 × 101

DS13 RC 91.18 86.96 65.06 80.78 89.42 81.46 89.82 77.00
SD 1.50 × 100 2.31 × 100 4.63 × 100 1.93 × 100 1.15 × 10−1 4.05 × 100 7.02 × 10−1 2.70 × 101

DS14 RC 29.02 28.50 24.34 27.20 29.02 24.86 27.94 21.33
SD 9.90 × 10−3 3.03 × 100 2.29 × 100 2.13 × 100 4.35 × 10−15 6.06 × 10−1 3.03 × 100 6.06 × 10−1

DS15 RC 76.63 71.16 33.35 52.30 75.57 35.53 69.50 33.74
SD 3.67 × 10−1 1.30 × 100 3.48 × 101 2.20 × 100 8.15 × 100 1.10 × 10−1 8.03 × 100 2.55 × 101

DS16 RC 100.00 98.48 73.96 96.07 99.46 92.71 99.68 63.37
SD 0.00 × 100 1.90 × 10−1 6.01 × 100 6.59 × 10−1 0.00 × 100 8.71 × 100 1.58 × 10−1 1.46 × 101

#BRC 12 2 0 0 1 0 2 0
w/t/l - 13/0/3 16/0/0 16/0/0 14/2/0 16/0/0 13/0/3 16/0/0

According to Table 11, ANN models trained by the proposed MSPSOTLP are reported
to have the best performance for being able to solve 12 out of 16 sets of training samples
with the best RC values. Specifically, MSPSOTLP emerges as the best training algorithm
for ANN models in dealing with datasets of Iris, Statlog Hearts, Hepatitis, Wine, Seeds,
Australian Credit Approval, New Thyroid, Glass, Balance Scale, Dermatology, Landsat, and
Bank Note. It is also noteworthy that the proposed MSPSOTLP is the only algorithm that
has successfully trained ANN models with 100% of RC values to classify the training sets
of Wine and Bank Note. The ANN models trained by PSO and PSAGSA can occasionally
deliver good performances by producing two best RC values in solving training samples.
Although the RC values produced by ANN models trained by the proposed MSPSOSLP
in classifying training samples of Liver Disorder, Blood Transfusion, Breast Cancer, and
Haberman’s Survival are slightly lower than PSO and PSOGSA, the performance differences
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between these algorithms are marginal and not more than 1%. On the other hand, the ANN
models trained by MSPSOTLP are reported to have more notable performance differences
than PSO and PSOGSA in terms of RC values when classifying the training samples of
Iris, Statlog Heart, Hepatitis, Seeds, New Thyroid, Glass, and Landsat. The ANN models
trained by PSOWV are reported to have the most inferior performance by producing eight
worst and seven second-worst RC values when solving all 16 classification datasets except
for Landsat.

Table 12. The RC and SD values produced by ANN models trained by the proposed MSPSOTLP and
other PSO variants when solving the testing samples.

Dataset Criteria MSPSOTLP PSO PSOWV CSO MPSOWV SLPSO PSOGSA APSO

DS1 RC 100.00 99.67 56.67 88.33 97.33 92.33 87.67 16.67
SD 0.00 × 100 1.49 × 100 3.16 × 101 2.23 × 101 0.00 × 100 0.00 × 100 3.35 × 101 4.88 × 101

DS2 RC 50.00 47.68 35.80 40.73 47.83 37.10 49.28 55.22
SD 7.64 × 10−1 6.48 × 10−1 1.51 × 101 7.67 × 100 1.45 × 100 1.35 × 101 5.23 × 100 3.89 × 100

DS3 RC 58.53 58.53 60.67 63.80 65.33 65.47 49.73 63.13
SD 2.81 × 10−1 1.19 × 101 1.27 × 101 2.40 × 100 4.37 × 100 7.70 × 10−1 4.23 × 100 2.31 × 100

DS4 RC 80.37 75.93 61.30 75.00 77.22 72.78 73.15 42.04
SD 1.56 × 100 3.85 × 100 2.38 × 101 2.14 × 100 1.07 × 100 3.21 × 100 3.85 × 100 1.57 × 101

DS5 RC 72.50 60.00 51.88 55.63 60.63 60.63 53.13 46.88
SD 3.23 × 100 3.61 × 100 7.22 × 100 1.30 × 101 9.55 × 100 1.08 × 101 0.00 × 100 1.44 × 101

DS6 RC 90.28 76.94 34.44 61.11 82.50 42.78 83.06 16.11
SD 1.46 × 100 3.21 × 100 1.58 × 101 8.93 × 100 2.78 × 100 1.79 × 101 6.99 × 100 4.01 × 101

DS7 RC 73.82 72.55 59.46 65.09 70.73 66.36 66.91 69.27
SD 9.39 × 10−1 1.05 × 100 7.57 × 100 3.15 × 100 1.05 × 100 4.81 × 100 2.78 × 100 4.58 × 100

DS8 RC 100.00 78.33 30.24 32.86 96.19 40.24 74.29 54.76
SD 7.53 × 10−1 5.22 × 101 3.23 × 101 5.23 × 101 3.71 × 101 2.75 × 100 4.76 × 100 4.81 × 101

DS9 RC 84.57 82.39 67.75 76.38 82.54 87.31 87.05 86.86
SD 6.87 × 10−1 2.54 × 100 0.00 × 100 3.16 × 100 2.09× 100 2.09 × 100 3.83 × 100 1.51 × 101

DS10 RC 78.69 78.03 68.85 73.12 78.53 76.39 67.38 78.53
SD 0.00 × 100 0.00 × 100 4.41 × 101 1.64 × 100 0.00 × 100 5.91 × 100 1.46 × 101 1.89 × 100

DS11 RC 84.19 67.21 38.84 48.37 54.19 42.79 47.67 40.47
SD 1.05 × 101 4.65 × 100 3.55 × 100 4.65 × 100 1.28 × 101 8.70 × 10−15 8.06 × 100 4.03 × 100

DS12 RC 46.51 44.19 8.14 14.19 29.07 15.58 29.07 25.58
SD 6.39 × 100 5.85 × 100 2.01 × 101 5.37 × 100 6.15 × 100 7.48 × 100 9.30 × 100 7.48 × 100

DS13 RC 88.72 85.84 54.80 82.08 87.36 80.24 86.88 80.80
SD 1.22 × 100 2.01 × 100 8.09 × 100 3.23 × 100 1.67 × 100 7.26 × 100 4.62 × 10−1 3.80 × 101

DS14 RC 65.83 65.97 57.78 62.64 65.14 59.17 62.78 54.17
SD 9.71 × 10−1 4.88 × 100 7.13 × 100 6.56 × 100 1.39 × 100 4.01 × 100 2.41 × 100 0.00 × 100

DS15 RC 80.47 72.66 12.22 25.78 78.19 10.67 63.84 21.76
SD 1.49 × 100 1.14 × 101 9.85 × 100 2.22 × 100 3.03 × 101 7.81 × 100 3.06 × 101 3.41 × 101

DS16 RC 92.15 90.18 33.98 4.9 81.35 55.99 86.28 31.68
SD 3.30 × 100 2.64 × 100 0 × 100 3.39 × 100 1.48 × 101 3.45 × 100 1.16 × 101 3.16 × 101

#BRC 12 1 0 0 1 1 0 1
w/t/l - 14/1/1 15/0/1 15/0/1 15/0/1 14/0/2 15/0/1 13/0/3

In addition to training samples, 30% of datasets are extracted as testing samples to
evaluate the generalization performances of ANN models optimized by all compared PSO
variants. According to Table 12, ANN models trained by the proposed MSPSOTLP are
reported to have the best generalization performance for being able to produce 12 best and
2 s-best RC values when classifying the testing samples of 16 selected datasets. Specifically,
ANN models trained by MSPSOTLP successfully produce the best RC in solving the testing
samples of Iris, Statlog Heart, Hepatitis, Wine, Breast Cancer, Seeds, Haberman’s Survival,
New Thyroid, Glass, Balance Scale, Landsat, and Bank Note. Moreover, MSPSOTLP is also
reported to be the only algorithm that can train ANN models to solve the testing samples
of Iris and Seeds with 100% of RC. On the other hand, the ANN models trained by PSO,
MPSOWV, SLPSO, and APSO are reported to produce the best RC values when classifying
the testing samples of Dermatology, Blood Transfusion, Australian Credit Approval, and
Liver Disorder, respectively. Although ANN models trained by MSPSOTLP are observed to
produce relatively inferior RC values in solving the testing samples of these four datasets,
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some performance differences are insignificant. On the contrary, ANN models trained by
MSPSOTLP produce much better RC values than PSO, MPSOWV, SLPSO, and APSO in
solving the testing samples of certain datasets, such as Hepatitis, Wine, Seeds, New Thyroid,
etc. The ANN models trained by PSOWV perform the worst by producing seven lowest
RC values (i.e., testing samples of Liver Disorder, Breast Cancer, Seeds, Australian Credit
Approval, New Thyroid, Glass, and Balance Scale) and eight second-worst RC values (i.e.,
testing samples of Iris, Statlog Heart, Hepatitis, Wine, Haberman’s Survival, Dermatology,
Landsat, and Bank Note).

4.2.5. Non-Parametric Statistical Analyses

Similar to those reported in Section 4.1.5, the Wilcoxon signed rank test [68] is applied
to perform a pairwise comparison between the proposed MSPSOTLP and the selected PSO
variants based on the reported RC values. The R+, R−, p, and h values produced by ANN
models trained by the compared algorithms in classifying the training and testing samples
are presented in Tables 13 and 14, respectively. From Table 13, ANN models trained by
the proposed MSPSOTLP have significantly better performance than those of other PSO
variants at a significance level of α = 0.05, as indicated by the h value of “+”. Notably, the
ANN model optimized by the proposed MSPSOTLP can completely dominate those of
PSOWV, CSO, SLPSO, and APSO when solving the training samples of selected datasets.
Similarly, ANN models trained by MSPSOTLP are observed to perform significantly better
than other PSO variants in solving all testing samples of datasets chosen, as indicated by
the h values of “+” in Table 14. These pairwise comparison results imply the excellent
generalization ability of ANN model trained by MSPSOTLP due to its ability to handle
unseen data of testing samples effectively.

Table 13. Wilcoxon signed rank test as a pairwise comparison between the ANN models optimized
by MSPSOTLP and each PSO variant when classifying the training samples.

MSPSOTLP vs. R+ R− p Value h Value

PSO 122.0 14.0 3.36 × 10−3 +
PSOWV 136.0 0.0 3.05 × 10−5 +
CSO 136.0 0.0 3.05 × 10−5 +
MPSOWV 119.0 1.0 1.22 × 10−4 +
SLPSO 136.0 0.0 3.05 × 10−5 +
PSOGSA 122.0 14.0 3.36 × 10−3 +
APSO 136.0 0.0 3.05 × 10−5 +

Table 14. Wilcoxon signed rank test as pairwise comparison between the ANN models optimized by
MSPSOTLP and each PSO variant when classifying the testing samples.

MSPSOTLP vs. R+ R− p Value h Value

PSO 134.0 2.0 9.16 × 10−5 +
PSOWV 135.0 1.0 6.10 × 10−5 +
CSO 134.0 2.0 9.16 × 10−5 +
MPSOWV 125.0 11.0 1.68 × 10−3 +
SLPSO 130.0 6.0 4.27 × 10−4 +
PSOGSA 133.0 3.0 1.53 × 10−4 +
APSO 125.0 11.0 1.68 × 10−3 +

Apart from pairwise comparison, multiple comparisons among the ANN models
trained by all compared algorithms are also conducted by Friedman Test [67]. The average
ranking values produced by the ANN models trained by all compared algorithms in
solving training and testing samples are reported in Tables 15 and 16, respectively. Table 15
shows that the ANN models trained by MSPSOTLP score the best average ranking when
classifying the training datasets, followed by PSOGSA, PSO, MPSOWV, CSO, SLPSO,
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APSO, and PSOWV. Although Table 7 reports that MPSOWV has a relatively poor ranking
in solving CEC 2014 benchmark functions, it performs relatively well in training ANN
models in solving training samples. Conversely, CSO does not perform well in training the
ANN model despite producing relatively competitive performance in solving CEC 2014
benchmark functions. Table 16 reveals that the ANN model trained by MSPSOTLP has the
best average ranking value in classifying the testing samples, followed by MPSOWV, PSO,
PSOGSA, SLPSO, CSO, APSO, and PSOWV. Similarly, MPSOWV shows its competitive
performance in training the ANN model, despite having inferior performance in solving
CEC 2014 benchmark functions. Although the ANN model trained by PSOGSA has the
second-best average ranking in solving training samples, as reported in Table 15, it does
not perform well in solving testing samples, as reported in Table 16, implying the tendency
of PSAGSA to produce the ANN models that suffer with overfitting issues and have poor
generalization performance to handle unseen data.

Table 15. The average ranking values of ANN models are trained by all compared algorithms in
solving training samples.

Algorithm Ranking Chi-Square Statistics p Value

MSPSOTLP 1.4688

94.875000 0.00 × 100

PSOGSA 2.8125
PSO 2.8750
MPSOWV 2.9062
CPSO 5.5312
SLPSO 5.9062
APSO 6.9375
PSOWV 7.5625

Table 16. The average ranking values of ANN models are trained by all compared algorithms in
solving testing samples.

Algorithm Ranking Chi-Square Statistics p value

MSPSOTLP 1.6250

59.864583 0.00 × 100

MPSOWV 2.9688
PSO 3.3750
PSOGSA 4.4688
SLPSO 5.2188
CSO 5.3125
APSO 5.7188
PSOWV 7.3125

Referring to the p values reported in Tables 15 and 16, significant global performance
differences among the ANN models trained by all compared algorithms to solve training
and testing samples are observed at a significance level of α = 0.05. The concrete differences
between the ANN models trained by MSPSOTLP and other PSO variants in classifying
the training and testing samples are further analyzed using the Bonferroni-Dunn, Holm,
and Hochberg procedures, as shown in Tables 17 and 18, respectively. According to the
APVs for solving training samples, as reported in Table 17, all post-hoc procedures confirm
the significant performance improvement of ANN models trained by MSPSOTLP against
those of PSOWV, APSO, SLPSO, and CPSO at α = 0.05. On the other hand, all post-hoc
procedures can detect the significant performance improvement of ANN models trained by
MSPSOTLP against those of PSOWV, APSO, CSO, SLPSO, and PSOGSA in solving testing
samples, as indicated by the APVs values in Table 18.
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Table 17. Adjusted p values produced by trained ANN models in solving training samples through
three post-hoc analysis procedures.

MSPSOTLP vs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p

PSOWV 7.04 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

APSO 6.31 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

SLPSO 5.12 × 100 0.00 × 100 2.00 × 10−6 1.00 × 10−5 1.00 × 10−5

CSO 4.69 × 100 3.00 × 10−6 1.70 × 10−5 1.10 × 10−5 1.10 × 10−5

MPSOWV 1.66 × 100 9.69 × 10−2 6.79 × 10−1 2.91 × 10−1 1.21 × 10−1

PSO 1.62 × 100 1.04 × 10−1 7.31 × 10−1 2.91 × 10−1 1.21 × 10−1

PSOGSA 1.55 × 100 1.21 × 10−1 8.45 × 10−1 2.91 × 10−1 1.21 × 10−1

Table 18. Adjusted p values produced by trained ANN models in solving testing samples through
three post-hoc analysis procedures.

MSPSOTLP vs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p

PSOWV 6.57 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

APSO 4.73 × 100 0.00 × 100 1.60 × 10−5 1.40 × 10−5 1.40 × 10−5

CSO 4.26 × 100 2.10 × 10−5 1.44 × 10−4 1.03 × 10−4 1.03 × 10−4

SLPSO 4.15 × 100 3.30 × 10−5 2.33 × 10−4 1.33 × 10−4 1.33 × 10−4

PSOGSA 3.28 × 100 1.03 × 10−3 7.17 × 10−3 3.07 × 10−3 3.07 × 10−3

PSO 2.02 × 100 4.33 × 10−2 3.03 × 10−1 8.66 × 10−1 8.66 × 10−1

MPSOWV 1.55 × 100 1.21 × 10−1 8.45 × 10−1 1.21 × 10−1 1.21 × 10−1

5. Conclusions

This study proposes a new PSO variant known as multi-swarm-based particle swarm
optimization with two-level learning phases (MSPSOTLP) to address the potential draw-
backs of PSOWV. Three significant modifications are introduced into the proposed MSP-
SOTLP to ensure that proper balancing of the exploration and exploitation searches of the
algorithm can be achieved in handling more challenging optimization problems, including
the training process of the ANN model. A new population initialization scheme, the CSOBL
initialization scheme, is incorporated to replace the conventional random initialization
scheme in generating initial solutions with better diversity and broader coverage in the
solution space. Both multiswarm and social learning concepts are incorporated into the pri-
mary learning phase of MSPSOTLP to guide the search process of particles more effectively
without losing population diversity by leveraging the directional information contributed
by other non-fittest particles in the population. Additionally, a secondary learning phase is
introduced with the adoption of two search operators with different levels of exploration
and exploitation strengths, aiming to address the limitations of a single search operator
adopted by many existing PSO variants. Extensive simulation studies report that the
proposed MSPSOTLP outperforms the selected seven PSO variants in solving benchmark
problems from CEC 2014 by producing 18 best mean fitness values out of 30 functions.
Moreover, the training process of the ANN model is also formulated as an optimization
problem, where the objective is to produce the optimal values of weights and biases and
the selection of activation functions. The proposed MSPSOTLP is reported to have the best
overall performance in training ANN models to solve classification datasets extracted from
the UCI machine learning repository.

While MSPSOTLP has demonstrated competitive performances to solve the CEC 2014
benchmark functions and train ANN model for classifying UCI machine learning datasets,
the proposed work still has room for improvement in terms of its search mechanisms and
potential real-world applications. First, the main population of MSPSOTLP is divided
by the reference-point-based population division scheme into a predefined number of
subswarms during the primary learning phase. It is nontrivial to determine the optimal
subswarm numbers for optimization problems with different types of fitness landscapes.
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Second, the solution update process of MSPSOTLP is performed by comparing the fitness
values of current and new particles. It is noteworthy that such a greedy selection scheme
tends to suppress the survival of novel particles that might have temporary poor perfor-
mances at the earlier stage of search process, but can contribute for long-term success if
given sufficient iteration numbers. Third, the performance of the ANN optimized by MSP-
SOTLP is currently evaluated using the datasets obtained from a public database. Despite
exhibiting promising classification accuracy in most selected datasets, the feasibility of
the proposed method to solve more challenging real-world classification and regression
problems remains unexplored. Some potential future works are then suggested to address
these aforementioned limitations. First, the population division scheme of MSPSOTLBP
can be further enhanced such that the optimal subswarm numbers can be determined
adaptively based on the types of fitness landscapes encountered by the population. Second,
other criteria, such as the fitness improvement rate and population diversity, should be con-
sidered by MSPSOTLP during the solution update process to preserve the novel particles
that can bring long-term success for the algorithm. Finally, it is worth it to investigate the
feasibility of ANN optimized by MSPSOTLP to address challenging issues encountered in
the intelligent condition monitoring of complex industrial systems [2], such as the remain-
ing useful life prediction of gear pumps [72], the time series prognosis of fuel cells [73], and
predictive maintenance of renewable energy systems [74].
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