
����������
�������

Citation: Merrad, Y.; Habaebi, M.H.;

Toha, S.F.; Islam, M.R.; Gunawan,

T.S.; Mesri, M. Fully Decentralized,

Cost-Effective Energy Demand

Response Management System with

a Smart Contracts-Based Optimal

Power Flow Solution for Smart Grids.

Energies 2022, 15, 4461. https://

doi.org/10.3390/en15124461

Academic Editor: Abu-Siada Ahmed

Received: 23 May 2022

Accepted: 17 June 2022

Published: 19 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Fully Decentralized, Cost-Effective Energy Demand Response
Management System with a Smart Contracts-Based Optimal
Power Flow Solution for Smart Grids
Yaçine Merrad 1, Mohamed Hadi Habaebi 1 , Siti Fauziah Toha 2,* , Md. Rafiqul Islam 1,
Teddy Surya Gunawan 3 and Mokhtaria Mesri 4

1 IoT & Wireless Communication Protocols Laboratory, Department of Electrical & Computer Engineering,
Kulliyyah of Engineering (KOE), International Islamic University Malaysia, Jalan Gombak,
Kuala Lumpur 53100, Malaysia; yacinechoupot@yahoo.fr (Y.M.); habaebi@iium.edu.my (M.H.H.);
rafiq@iium.edu.my (M.R.I.)

2 Department of Mechatronics, Kulliyyah of Engineering (KOE), International Islamic University Malaysia,
Jalan Gombak, Kuala Lumpur 53100, Malaysia

3 Department of Electrical & Computer Engineering, Kulliyyah of Engineering (KOE), International Islamic
University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia; tsgunawan@iium.edu.my

4 Department of Electronics, University Amar Télidji of Laghouat, Laghouat 03000, Algeria;
m.mesri@lagh-univ.dz

* Correspondence: tsfauziah@iium.edu.my

Abstract: Recent advances in control, communication, and management systems, as well as the
widespread use of renewable energy sources in homes, have led to the evolution of traditional power
grids into smart grids, where passive consumers have become so-called prosumers that feed energy
into the grid. On the other hand, the integration of blockchain into the smart grid has enabled the
emergence of decentralized peer-to-peer (P2P) energy trading, where prosumers trade their energy
as tokenized assets. Even though this new paradigm benefits both distribution grid operators and
end users in many ways. Nevertheless, there is a conflict of interest between the two parties, as
on the one hand, prosumers want to maximize their profit, while on the other hand, distribution
system operators (DSOs) seek an optimal power flow (OPF) operating point. Due to the complexity
of formulating and solving OPF problems in the presence of renewable energy sources, researchers
have focused on mathematical modeling and effective solution algorithms for such optimization
problems. However, the control of power generation according to a defined OPF solution is still based
on centralized control and management units owned by the DSO. In this paper, we propose a novel,
fully decentralized architecture for an OPF-based demand response management system that uses
smart contracts to force generators to comply without the need for a central authority or hardware.

Keywords: decentralized; blockchain; optimal power flow; smart grid; smart contracts

1. Introduction

The current tremendous expansion of distributed energy sources and the democratiza-
tion of electricity generation through conventional and renewable sources such as wind
turbines, solar energy, and advances in energy storage capacity [1,2], combined with the
advancement of digital communication and control technologies, have enabled the transi-
tion from traditional grid systems to what is known as a smart grid, in which traditional
consumers have evolved into proactive prosumers that can join a grid branch of the larger
distribution network and contribute to energy demand management within the grid they
have joined, either with traditional fuel-based energy generators or renewable sources [3,4].
In addition, the integration of blockchain into the smart grid and the functionalities of smart
contracts enabled the emergence of peer-to-peer energy trading [5,6], where prosumers can
trade their energy generated and injected into the grid in a decentralized manner. It should

Energies 2022, 15, 4461. https://doi.org/10.3390/en15124461 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15124461
https://doi.org/10.3390/en15124461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2263-0850
https://orcid.org/0000-0002-6248-8393
https://orcid.org/0000-0003-3345-4669
https://doi.org/10.3390/en15124461
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15124461?type=check_update&version=2

Energies 2022, 15, 4461 2 of 27

be noted that the reduction of influence and control by a central authority is paramount in
all blockchain-based applications [7]. Similarly, the decentralization of Blockchain-based
P2P energy trading platforms and the safe reduction of the authority of the DSO is an
aimed target [8,9]. Since prosumers mainly use renewable energy sources, energy and
climate policies promote and support such energy platforms to meet both increasing energy
demand and sustainable climate goals [10,11]. On the other hand, end users can reduce
their electricity costs and gain lucrative benefits, making such platforms a win-win scenario.
In P2P energy trading platforms, prosumers are rewarded accordingly for their delivered
energy through crypto-tokens, which are either fungible or non-fungible [12] and delivered
through appropriately designed smart contracts. In an integrated system, the utility has
complete control over the location and connection of distributed energy resources (DER)
and will seek to optimally manage demand, while in unbundled systems, each prosumer
seeks its own benefit and its goal is to maximize its lucrative profit, according to market
rules. Thus, from this perspective, a prosumer that joins a grid and the grid operator can
potentially have conflicting goals. The DSO analyzes grid operations and grid investments
in terms of peak power flows, while the prosumer sees its revenue in terms of aggregated
energy exchange. Moreover, the flexibility of the smart grid, where new prosumers can
constantly join or leave the grid, poses a challenge to the effective implementation of de-
mand response control and management systems, which require less flexible deployment
of hardware [13]. Moreover, a demand response control and management system deployed
by DSOs would not be considered a decentralized solution and would run counter to the
consortium-based decision-making principle of blockchain applications. One of the most
widely used demand response solutions is the OPF-based control system. The OPF solution
aims to achieve a steady-state operating point in the grid that reduces power generation
costs while satisfying demand and operating constraints [14]. The approach to optimize
the power injection within grids considering thresholds is generally challenging because
it is a nonlinear and non-convex optimization problem. With renewable energy sources
in the grid, the OPF problem becomes even more complicated in both formulation and
solution because the generation capacities of the renewable energy sources, which are part
of the constraints of the problem, are unpredictable [15]. Therefore, many researchers have
addressed the formulation and solution of the OPF problem for hybrid grids and presented
a number of ingenious models [16,17]. Most of the works have focused on presenting
realistic mathematical models or algorithms to solve the OPF problem for hybrid power
sources. However, beyond that, little work has been conducted on how the computed OPF
solution can be used for decentralized power generation control in smart grids. So far,
the established scheme is to use control units (hardware and software), which does not
go in the direction that aims to minimize DSO authority. In this paper, a novel decentral-
ized, transparent, and secure OPF model is used to locally coordinate power generation
in distributed networks while taking into account network constraints, without the need
for a centralized control unit. The paper describes a detailed approach for implementing
the decentralized OPF on a private blockchain smart contracts platform that enables an
immutable and access-controlled transaction system for tokenized power assets. The model
solves the OPF problem of a given grid where all constraints and fixed parameters are set
within an immutable and autonomous smart contract. The only variable parameter is the
load demand, which can be updated in the smart contract by a load monitoring unit, either
periodically [18] or in real time [19] or even using short-term load forecasting [5,20], which
would allow the smart contract to operate without any required outside interaction. The
smart contract solves the OPF problem for a local network. The OPF solution would be
computed by a decentralized, unbiased smart entity and would thus be unchallengeable.
The solution would be stored in the blockchain public ledger, making it safe from tampering.
Prosumers would only receive the energy tokens they are entitled to if they comply with
the OPF solution of the smart contract.

The structure of the article can be outlined as follows: Section 2 highlights the moti-
vation of the presented work, Section 3 investigates the feasibility of an on-chain solution

Energies 2022, 15, 4461 3 of 27

to the OPF problem through a case evaluation of the execution cost of an on-chain solu-
tion for an OPF model for a three-bus network using the linear approximation DC-OPF.
This is to show why such an approach is not realistic. Section 4 describes the proposed
new improved smart contract-based model that can be generalized for any defined OPF
problem with effective execution cost. In Section 5, we compare, discuss, and comment
on the measured execution costs of the models from Sections 3 and 4. Finally, we draw
conclusions in Section 6.

2. Motivation

Blockchain integration in smart grids primarily aims to enable a decentralized P2P
energy trading platform without central authority [21], as is the case with blockchain
cyptocurrencies. This is enabled by smart contracts that enable trustworthy transactions
and agreements between different parties without the need for a central authority, legal
system, or external enforcement mechanism [22]. A smart contract is a self-executing
code that cannot be tampered with or modified during its execution, thus obligating the
interacting parties to abide by the terms agreed upon in the smart contract. However,
smart contracts are not suitable for complex computational tasks because the fees for
executing transactions are high and proportional to the computational resources required
for execution. Therefore, in applications based on smart contracts, the computations on-
chain must be minimized [23]. A study of the code complexity of smart contracts conducted
in [24] found that out of 53,757 contracts analyzed, only a very small fraction of the verified
smart contracts on the Ethereum blockchain (6.9%) actually fall into the Turing Complete
Functions complexity class. Solving the OPF problem of a given power grid through a
smart contract would force network participants to follow the computed solution in a
fully decentralized manner, optimally managing energy demand without the need for a
central authority. However, the OPF problem is particularly complex because it is a non-
convex, nonlinear problem whose solution by numerical methods requires nondeterministic
polynomial time (NP) [25]. Therefore, a chain-based solution to the OPF problem seems
unrealistic. Demand response in the smart grid is mainly based on centralized systems
deployed and owned by the DSO. Such solutions are not only centralized and not in line
with the vision and goal of blockchain-based applications, but also prove to be ineffective.
This is due to the conflicting interests of prosumers and grid operators, as discussed in
Section 1, as well as the flexibility of the smart grid, where new nodes are constantly being
added and leaving the network. As clearly stated in [26], energy demand response remains
an open problem in current smart grids and P2P energy trading platforms, as many bus
voltages exceed the voltage limit applicable to the grid. In this context, we believe that
establishing a Nash game arbitrated by a decentralized smart contract to create competition
among provers proposing solutions to the OPF problem, and accordingly rewarding those
with the optimal proposals, would significantly reduce the on-chain computations while
providing a fully decentralized energy demand management system. In such a system, the
OPF is calculated off-chain, and the proposed solutions are verified and compared in the
smart contract, significantly reducing the required on-chain calculations. Moreover, the
proposed system is designed as a competition: The fewer provers proposed an optimal
solution, the more a particular prover with an optimal solution proposal wins. This prevents
both malicious cooperation between provers and lack of commitment in computing the
OPF solution. This would also encourage and spur the development of more effective OPF
solution algorithms, similar to how mining competition in PoW blockchains has led to
a hashing race and the development of high-performance specialized mining hardware.
This work aims to introduce and develop such a scheme and evaluate its feasibility by
evaluating the execution cost to solve a 14-bus AC-OPF problem.

3. On-Chain-Based Solution for a 3-Bus Network, Using DC-OPF Approximation

Smart contracts are not suitable for computationally intensive problems because
the execution cost of transactions is proportional to their processing complexity [27,28].

Energies 2022, 15, 4461 4 of 27

Moreover, complex code can lead to potential gaps in the source code that can be exploited
by hackers to intentionally bug the system [29]. This is fatal for the blockchain application
that is tailored to the smart contract in question, as flaws in smart contracts cannot be
repaired since the source code cannot be modified once it is deployed. In this section,
we attempt to develop and evaluate the execution cost of an on-chain OPF solution for a
simple three-bus network, using the IEEE three-bus test feeder [30]. In doing so, we use
a simplified approach to the OPF problem, called the DC-OPF [31] model. The goal is
to evaluate how realistic it is to implement an on-chain OPF solution by comparing the
execution cost for a much simpler version. Thus, if the cost for a simple version is already
too high, the approach is not suitable for more complex models.

3.1. DC-OPF Model

Even though the model is called DC, it does not refer to DC high voltage generator
power flow through transmission lines. Actually, the model is indeed an attempt to give
a linear approximation to non-linear AC power network equations. In fact, power flow
between nodes i and j in a power network is represented by Equation (1).

Si,j = V2
i y∗ij −ViV∗j yij, (1)

where Vi and Vj are the voltage at nodes i and j, respectively, and yij is the line admittance
and they are all complex quantities. The (∗) operator refers to the conjugate of a complex
entity. DC-OPF considers line flow constraints, as opposed to the Economic Dispatch,
which is the simplest approximation to the OPF problem and which only considers the grid
as only a single transmission line with no constraints on power flow between two nodes.
How the transmission line is modeled in DC-OPF approximation is illustrated in Figure 1.

Figure 1. Transmission line model in DC-OPF.

The first step in linearizing the power flow equations is to consider only the series
reactance of the line and neglect its ohmic resistances in the transmission line model π
described in Section 3. Accordingly, the line active power flow between point 1 and 2 is
given by Equation (2), as in Figure 1, where V1, V2, δ1, δ2 are the voltage magnitudes and
angles for points 1 and 2, respectively, and X12 is the line reactance:

P12 = V1V2
sin(δ1 − δ2)

X12
, (2)

As one can see, Equation (2) is obviously nonlinear; to linearize it, the following
assumptions are made: Voltages are nominal constants, where:

V1 = V2 = 1 Per Unit (p.u.); sin(δ1 − δ2) = δ1 − δ2
Thus, we obtain Equation (3):

P12 = V1V2
(δ1 − δ2)

X12
= (δ1 − δ2) ∗ bij (3)

These assumptions are only possible for networks that are not heavily loaded. The
more heavily loaded the network, the more important are the phase angles at the nodes of
the network buses. The larger the angle t, the less accurate the approximation sin(t) = t.

Thus, the active power flow on the line is related to the voltage phase angles δ and
the line susceptance bij. The power injected at a given generator bus i, connected to n

Energies 2022, 15, 4461 5 of 27

other buses via n transmission lines, and its relation to the reactive power flow of the
transmission lines is described in Equation (4).

Pi =
n

∑
j=1
j 6=i

Pij =
n

∑
j=1
j 6=i

bij(δi − δj); i ≥ 1, (4)

The matrix notation for Equation (4) is described in Equation (5).

P = Bδ =

P1
...

Pn

 =

b12 + · · ·+ b1n · · · −b1n
...

. . .
...

−bn1 · · · bn1 + · · ·+ bnn−1

δ1

...
δn

, (5)

B is called the bus susceptance matrix for the power network of n connected buses.
B is used to calculate the DC-OPF. Note that all scalar elements of the diagonal matrix
Bii, i ∈ [1, n] are calculated by the formula in Equation (6).

Bii =
n

∑
j=1
j 6=i

bij (6)

As for the non-diagonal elements of B, where i 6= j, they are either null if there is no
line between nodes i and j, otherwise Bij = −bij.

The OPF objective function consists of minimizing the generators’ power injection cost,
subject to the voltage angles of the lines and the maximum power capacity of the generators
and transmission line constraints while fulfilling the load power demand. Having defined
cost functions C(PG) for all generators in the network and the equation for power flow
along each transmission line that defines the relationship between power injections and
voltage angles, deduced through the bus susceptance matrix, the OPF problem in a network
with n generation buses can be formulated as in Equation (7):

F(PG) =
n

∑
i=0

C(PGi), (7)

Equation (7) is subject to the constraints defined in Equation (8).

Bδ = PG − PD,
H1(Pij) =

1
xij
(δi − δj) ≤ Pmax

ij ,

H2(Pij) =
1

xij
(δi − δj) ≥ −Pmax

ij ,

G1(Pi) = PGi ≤ Pmax
G ,

G2(Pi) = PGi ≥ Pmin
G ,

(8)

Generator cost functions define the relationship between power generated and cost. A
study of how generator cost functions are derived can be found in [32]. However, the most
commonly used type of generator cost function is of the quadratic form, as formulated in
Equation (9):

Ci(Pi) = αiP2
i + βiPi + γi, (9)

where αi, βi, γi are scalar constants. The equation of the bus susceptance matrix represents
equality constraints for the OPF objective function, whereas the transmission lines and the
maximum power capacity of the generators are the inequality constraints for the problem.
The Lagrangian multipliers and the Hessian matrix derived from the Lagrangian function
are used to solve the OPF objective function defined by the DC-OPF model for power
networks. A reference bus with a fixed voltage phase angle δre f = 0 must be defined for

Energies 2022, 15, 4461 6 of 27

this purpose. Equation (10) defines the Lagrangian of the DC model OPF problem in a
network of Nb generation buses and M transmission lines.

L =
Nb

∑
i=1

C(PGi) + λi(Bδ− PG − PD) +
Nb

∑
i=1

µiG1(PGi)−
Nb

∑
i=1

µ
′
iG2(PGi)

+
M

∑
k=1

βk H1(PGm)−
M

∑
k=1

β
′
k H2(PGm),

(10)

Considering only the problem equality constraints, the set of linear equations derived
from the Lagrangian function in Equation (10) is as defined in Equation (11).

dL
dPG1

= 0; · · · dL
dPGnb

= 0,

dL
dλ1

= 0; · · · dL
dλnb

= 0,

dL
dδ1

= 0; · · · dL
dδnb

= 0,

(11)

Inequality constraints need to fullfill the Karush Khun Tuker conditions [33]. This
means that for every inequality constraint defined, there are two possibilities. Either the
inequality constraint is satisfied at the boundary condition and actually functions as an
equality constraint, and its Lagrange multiplier is nonzero. If the inequality condition
is inactive, it does not matter; its Lagrange multiplier is zero. In Equation (10), we have
(2Nb + 2M) inequality constraints with two possibilities each, thus, allowing 2(2Nb+2M). Ac-
cordingly, for each combination, the active constraint is considered as an equality constraint
and Equation (11) is updated accordingly. The solution corresponding to a particular com-
bination must satisfy all system constraints and all computed Lagrange multipliers must
be greater than or equal to zero. Otherwise, the respective solution would be considered
invalid.

3.2. Implementation for a 3-Bus DC-OPF Problem

To control a power grid in a decentralized manner using a smart contract, a smart
contract must be developed and deployed for a specific grid. First, a reference bus must
be selected. To ensure decentralization and fairness, the selection for the reference bus
should be cyclic. However to simplify the implementation, we fixed the reference bus to
bus 1 for the network illustrated in Figure 2. In a power system, all parameters are fixed
except the load, which varies. The load can be monitored in real time or periodically and
updated to the controlling smart contract or can even be pre-implemented in the smart
contract using forecasted data. The implementation was done using hourly updating of
the load. Off-chain load monitoring unit calls the smart contract periodically to update
the load. Before the load is changed, the most recently computed OPF solution is shared
on the ledger biding each generator to its optimal power flow generation requirements.
The OPF solution is linked to its corresponding date in Hour/Day/Month/Year format,
where the hour is in the format 0 to 23, the day is in the format 0 to 6, and the month is
in the format 0 to 11. The date is updated internally, on-chain in the smart contract each
time the load monitoring unit updates the load demand of the network every hour by
calling the UpdateCurrentDate function. Each time the function is called, the hour field
of the smart contract’s date structure is incremented. The updated date hour consists of
the remainder of dividing the incremented hour value by 24, so that when 24 is reached
the hour field is reset to 0 and the day field is incremented accordingly; the updated day
consists of the remainder of dividing the incremented day field by 7, so that when 7 is
reached the day field is reset to 0 and the month field is incremented. In the same way, the
month field is reset to 0 when it reaches 12, and the year field is incremented. This serves
as a non-contestable time stamp issued by an impartial party. How this is implemented in
the concerned smart contract is illustrated in pseudocode in Algorithm 1.

Energies 2022, 15, 4461 7 of 27

Algorithm 1 OPF Solver Smart contract: Update DC-OPF Buses Load Demand

1: Fixed Pl1
2: Fixed Pl2
3: Fixed Pl3
4: Structure: Date
5: Uint: Hour
6: Uint: Day
7: Uint: Month
8: Uint: Year
9: End Structure

10: Date: CurrentDate
11: Address: LoadMonitoringUnit
12: Constructor()
13: CurrentDate.Hour← hh/* set to contract deployment hour */
14: CurrentDate.Day← dd/* set to contract deployment day */
15: CurrentDate.Day← mm/* set to contract deployment month */
16: CurrentDate.Day← yy/* set to contract deployment year */
17: End Constructor
18: Procedure UpdateCurrentDate()
19: CurrentDate.Hour← (CurrentDate.Hour + 1)% 24
20: IfCurrentDate.Hour == 0 Then
21: CurrentDate.Day← (CurrentDate.Day + 1)% 7
22: If CurrentDate.Day==0 Then
23: CurrentDate.Month←CurrentDate.(Month + 1)% 12
24: If CurrentDate.Month==0Then
25: CurrentDate.Year← CurrentDate.Year + 1
26: End If
27: End If
28: End If
29: End Procedure
30: Procedure UpdateBusesLoadDemand(Fixed Pl1, Fixed Pl2, Fixed Pl3)
31: Pl1 ← Pl1
32: Pl1 ← Pl2
33: Pl1 ← Pl3
34: UpdateCurrentDate()
35: End Procedure

The example aimed to be solved is a three-buses network with a load and generation
line on each bus connected in a ring topology, as shown in Figure 2. The generation cost
function for all generators in the network is of the quadratic form, as in Equation (9).

The generation cost functions’ parameter for each generator and their generation
capacity, as well as the network parameters, are defined in Tables 1 and 2, respectively.

Table 1. Generators cost coefficients and generation capacity.

Unit Bus
Cost Coefficients Pgmin Pgmax

a b c (MW)

G3 3 118.8206 37.8896 0.01433 5.0 20.0
G2 2 218.3350 18.1000 0.00612 10.0 150.0
G1 1 142.7348 10.6940 0.00463 20.0 200.0

Energies 2022, 15, 4461 8 of 27

Table 2. Transmission lines parameters.

Line Resistance Reactance (P.u.) Flow Limit (MW)

1–2 0.0 0.20 55.0
1–3 0.0 0.40 55.0
2–3 0.0 0.25 55.0

Figure 2. Three-bus power network.

The network bus susceptance matrix B is defined in Equation (12).B×11 B×12 B×13
B×21 B×22 B×23
B×31 B×32 B×33

 =

1/x12 + 1/x13 −1/x12 1/x13

−1/x12 1/x12 + 1/x23 −1/x23

−1/x13 −1/x23 1/x13 + 1/x23

 (12)

The Lagrange function for the system is given in Equation (13).

L =
Nb

∑
i=1

(ai + biPGi + ciP2
Gi) +

Nb

∑
i=1

λi(
Nb

∑
j=1

βijγj − PGi + Pij +
M

∑
k=1

µi(PGi − Pmax
G)) (13)

From Equation (13), we deduce Equation (14), where the partial derivative of the
Lagrangian function with respect to each variable is null.

dL
dµ1

= 0; · · · dL
dµnb

= 0,

dL
dµ
′
1
= 0; · · · dL

dµ
′
nb

= 0,

dL
dβ1

= 0; · · · dL
dβnb

= 0,

dL
dβ
′
1
= 0; · · · dL

dβ
′
nb

= 0,

(14)

From Equation (14), we derive 24 linear equations with 24 variables. Since the load on
each bus is the only variable parameter in the network, the goal is to come up with a system

Energies 2022, 15, 4461 9 of 27

of linear equations, as described in the matrix in Equation (15), where the coefficients are
functions of the buses load power demand. Coe f00(Pl1, Pl2, Pl3) · · · Coe f0 24(Pl1, Pl2, Pl3) Cst1

...
. . .

...
...

Coe f24 0(Pl1, Pl2, Pl3) · · · Coe f24 24(Pl1, Pl2, Pl3) Cst24

, (15)

where Pl1, Pl2, Pl3 are then sent to the smart contract every hour and the coefficients of
the matrix are set accordingly in the smart contract. As explained earlier, each Lagrange
multiplier can assume one of two states with respect to the inequality constraints, either as
an equality constraint or as neglected. Since there are 12 inequality constraints, this leads
to 212 = 5096 possibilities. However, the system has a unique solution. The system of
linear equations in Equation (15) is solved for each possibility by looping through them
until coming up with a valid solution, as described in the flowchart in Figure 3. Solutions
for which a multiplier is negative or which do not satisfy the system constraints are not
considered valid.

Figure 3. Solving the DC-OPF problem.

To solve each of the possible systems of linear equations, each matrix must be row-
reduced so that all diagonal coefficients Coe fii are ones, and the rest are zeros, to obtain a
matrix of the form of Equation (16).1 · · · 0 Rcst1

...
. . .

...
...

0 · · · 1 Rcst24

, (16)

The solution to the linear system of equations, which is the solution to our OPF
objective function, is then S = {S1,S23}, which represents the PG at each generator
as well as the angular displacement at each end of the transmission line, as well as all the
Lagrange multipliers, simply saying Si = Rcsti . The main function, which loops through

Energies 2022, 15, 4461 10 of 27

all the linear systems of equations corresponding to each of the possible combinations of
inequality constraints, is described in the pseudocode in Algorithm 2.

Algorithm 2 OPF Solver Smart contract: Solving DC-OPF matrix (main function)

1: Procedure UpdateMatrixCoeff(Fixed[][] Coeff)
2: Uint[12] Sum /* a local array of 12 uint elements, where all indexes

are initialized to 0 */
3: Uint i← 0
4: Uint j← 0
5: While !(∀ s in Sum, s==1) Do
6: While i ≤ 11 Do
7: If Sum[i]==0
8: DeleteRow(i + 12, Coeff) /* Delete row corresponding to

the inequality constraint multiplier that is not considered */
9: End If

10: While j ≤ 12 Do
/* Set to zero columns corresponding to the
inequality constraint multiplier that are not considered */

11: Coeff[i][j + 11]← Coeff[i][j + 11] * Sum[i]
12: j← j + 1
13: End While
14: i← i + 1
15: End While
16: Increment(Sum)
17: Bool Solved← Solve(Coeff)
18: If Solved Then
19: Break /* Break from the loop, system already solved */
20: End If
21: End While
22: End Procedure

The function internally calls auxiliary functions that are used to update the matrix
coefficient of the linear system of equations that corresponds to the chosen combination
of inequality constraints. These are described in the pseudocode in Algorithm 3. The
Lagrange multipliers for inequality constraints correspond to the elements in the columns
from 12 to 24 in the DC-OPF matrix defined in the smart contract and the rows from 12
to 24 corresponding to the partial Lagrange derivative with respect to the multipliers for
inequality constraints.

Energies 2022, 15, 4461 11 of 27

Algorithm 3 OPF Solver Smart contract: Update DC-OPF matrix coefficients (helper func-
tions)

1: Fixed[][]: OPFmatrixCoeff
2: /* The following helper function used to increment a twelve bits binary number,

representing all the inequality constraints possibilities, either
considered as equality constraint or not considered */

3: Procedure Increment(Uint sum[])
4: Uint j← 1
5: Uint carry← 0
6: sum[0]← (sum[0] + 1)% 2
7: carry← (sum[0] + 1)/2
8: While carry !=0 ||j==11 Do
9: sum[j]← (sum[j] + carry)% 2

10: carry←(sum[j] + carry)/2
11: j← j + 1
12: End While
13: End Procedure
14: /* The following helper function used to delete a row from a matrix

given its index, it serves to delete rows corresponding to inequality
constraints multipliers that are not considered */

15: Procedure DeleteRow(Uint index, Fixed[][] Matrix)
16: Uint j← 0
17: Uint j← 0
18: While i ≤Matrix.length() Do
19: i← i + 1
20: While j ≤Matrix[0].length() Do
21: Matrix[i][j]←Matrix[i + 1][j]
22: j← j + 1
23: End While
24: Matrix.pop()
25: End While
26: End Procedure

The solve function, called at each iteration of the loop in the main function, solves
the system of linear equations passed to it as a matrix, using an auxiliary function that
row-reduces the passed matrix. This function is described in Algorithm 4, while the solve
function is described in Algorithm 5. After the system is solved, an updated solution
corresponding to a given total load power demand is stored in the OPF smart contract
and is thus available in the public ledger of the blockchain. The solution is linked in a
structure to the corresponding date of the load. When a smart meter associated with a
particular generator on the grid requests an energy token from the smart contract assigned
to reward prosumers, the smart contract must first verify that the generation matches
the particular OPF solution by invoking the OPF Solver smart contract. If the generation
does not match the most recent OPF solution, the corresponding token reward will not be
granted. In such a situation, the respective prosumer or generator owner would see their
energy contribution wasted. Prosumers and microgrid owners are thus forced to comply
with the OPF solution without the need for a central authority or deployed hardware. This
is illustrated in Figure 4.

Energies 2022, 15, 4461 12 of 27

Algorithm 4 OPF Solver Smart contract: Solve a system of linear equations using row-
reduction algorithm

1: Procedure (Fixed[][] Coeff)
2: Uint N← B.length
3: Uint i← 0
4: Uint j← 0
5: Fixed[N][N-1] A /* Variables coefficient matrix*/
6: Fixed[N] B /* Constants vector*/
7: While i ≤ N Do
8: B[i]← Coeff[i][N]
9: While j ≤ N-1 Do

10: A[i][j]← Coeff[i][j]
11: j← j + 1
12: End While
13: i← i + 1
14: End While
15: i← 0
16: While i ≤ N Do

/* Find pivot */
17: Uint max← i
18: Uint k← i + 1
19: While i ≤ N Do
20: If abs(A[k][i]) ≤ A[max][i]
21: max = k
22: End If

/* swap row in matrix */
23: A[i]← A[max]
24: A[max]← temp

/* swap corresponding values in constants matrix B */
25: Fixed t← B[i]
26: B[i]← A[max]
27: B[max]← temp

/* pivot within A and B */
28: j← i + 1
29: While j ≤ N Do
30: Fixed factor←A[j][i]/A[i][i]
31: B[j]← B[j] − (Factor * B[i])
32: n← i
33: While n ≤ N Do
34: A[j][n]← A[j][n] − (Factor * A[i][n])
35: n← n + 1
36: End While
37: j← j + 1
38: End While
39: k← k + 1
40: End While
41: i← i + 1
42: End While
43: End Procedure

Energies 2022, 15, 4461 13 of 27

Algorithm 5 OPF Solver Smart contract: Solve row reduced DC-OPF system of linear
equations

1: Structure: Solution
2: Fixed: VoltageMagnitude
3: Fixed: VoltagePhaseAngle
4: Fixed: TimeStamp
5: End Structure
6: Address[3]: GenerationBuses
7: Mapping: Address→ Solution: DC_OPF_Solution
8: Procedure Solve(Fixed[][] A, Fixed[] B) Returns (Bool)
9: Uint N← B.length

10: Bool SystemSolved← False
11: Fixed [N] Solution
12: i← N-1
13: While i ≥ N
14: Fixedsolution← 0
15: j← i + 1
16: While j ≤ N
17: sum← sum + (A[i][j] * Solution[j])
18: j← i + 1
19: End While
20: solution[i]← (B[i]-sum)/A[i][i]
21: i←← i-1
22: End While
23: If (In solution, all Lagrange multipliers are positive and all constraints

are satisfied) Then
24: Solution S
25: SystemSolved← True
26: i← 0
27: While i ≤ 3
28: S.VoltageMagnitude← solution[i]
29: S.VoltagePhaseAngle← solution[i + 3]
30: S.TimeStamp← CurrentDate
31: i← i + 1
32: End While
33: End If
34: Return SystemSolved
35: End Procedure

Figure 4. Flowchart illustrating how parties in the smart grid that do not comply with the OPF
solution are not rewarded for their energy contribution.

Energies 2022, 15, 4461 14 of 27

The used example was solved for a daily (24 h) load distribution using day-ahead
market load forecasting presented in [34] and depicted in Table 3.

Table 3. Hourly load power demand for 24 h.

Hour
PD (MW)

Hour
PD (MW)

D1 D2 & D3 Total D1 D2 & D3 Total

1 132.66 44.22 221.1 13 153.06 51.02 255.1
2 122.4 40.8 204.0 14 149.64 49.88 249.4
3 115.62 38.54 192.7 15 147.96 49.32 246.6
4 112.2 37.4 187.0 16 147.96 49.32 246.6
5 108.84 36.28 181.4 17 154.74 51.58 257.9
6 110.52 36.84 184.2 18 170.04 56.68 283.4
7 112.2 37.4 187.0 19 163.26 54.42 272.1
8 119.04 39.68 198.4 20 161.52 53.84 269.2
9 136.02 45.34 226.7 21 159.84 53.28 266.4

10 149.64 49.88 249.4 22 165.42 52.14 260.7
11 153.06 51.02 255.1 23 147.96 49.32 246.6
12 154.74 51.58 257.9 24 137.76 45.92 229.6

The DC-OPF solution for the formulated problem for each hour of the day is presented
in Table 4. It is of note that in Table 4 the (∗) operator is used to denote an optimal entity
and not the conjugate of the complex one.

Table 4. Three-bus example, DC-OPF solution.

Hour P∗
G1 P∗

G2 P∗
G3 δ∗

2 δ∗
3

01 200.0 16.1 5.0 −0.0799 −0.1095
02 189.0 10.0 5.0 −0.0808 −0.1048
03 177.7 10.0 5.0 −0.0752 −0.0979
04 172.0 10.0 5.0 −0.0724 −0.0944
05 166.4 10.0 5.0 −0.0696 −0.0910
06 169.2 10.0 5.0 −0.0710 −0.0927
07 172.0 10.0 5.0 −0.0724 −0.0944
08 183.4 10.0 5.0 −0.0780 −0.1014
09 200.0 21.7 5.0 −0.0741 −0.1077
10 200.0 44.4 5.0 −0.0506 −0.1002
11 200.0 50.1 5.0 −0.0447 −0.0983
12 200.0 52.9 5.0 −0.0418 −0.0974
13 200.0 50.1 5.0 −0.0447 −0.0983
14 200.0 44.4 5.0 −0.0506 −0.1002
15 200.0 41.6 5.0 −0.0535 −0.1011
16 200.0 41.6 5.0 −0.0535 −0.1011
17 200.0 52.9 5.0 −0.0418 −0.0974
18 200.0 78.4 5.0 −0.0154 −0.0890
19 200.0 67.1 5.0 −0.0271 −0.0927
20 200.0 64.2 5.0 −0.0301 −0.0937
21 200.0 61.4 5.0 −0.0330 −0.0946
22 200.0 55.7 5.0 −0.0389 −0.0965
23 200.0 41.6 5.0 −0.0535 −0.1011
24 200.0 24.6 5.0 −0.0711 −0.1067

3.3. Execution Cost Results

Performing smart contract transactions in an Ethereum network requires a gas fee
to be paid for each transaction. Gas refers to an abstract unit referring to the amount of
Ethers (ETH) that need to be paid in accordance with the computational effort required to
execute certain operations on the Ethereum network, this is because Ethereum transaction
execution requires computational resource. Thus, issuing a transaction requires a fee to be

Energies 2022, 15, 4461 15 of 27

paid proportional to the transaction execution complexity. Another concept that is relevant
to Ethereum transactions is the gas limit. When developing an Ethereum application that
uses smart contracts, the cost of executing transactions is estimated using development
tools such as Remix IDE and then a gas limit is set. Because smart contracts are deployed on
the blockchain, they are immutable. Therefore, errors in smart contracts that have already
been deployed cannot be fixed. Setting a gas limit prevents the smart contract from entering
infinite loops that could be triggered by hackers who could exploit loopholes in the smart
contract source code. Gas cost and gas limits in Ethereum applications are illustrated in the
flowchart in Figure 5.

The gas cost of the on-chain OPF solution using the proposed system was evaluated
using Remix IDE for the defined three-bus problem. The gas cost for execution was
evaluated according to the value of the gas unit on 15 May 2020, which was 27.95 Gwei,
as in [35], and the value of the Ethereum unit in dollars for the same day [36]. The hourly
fluctuation of the gas price in dollars for the day is shown in Figure 6, accordingly the
hourly gas cost of the on-chain OPF solution for the same selected date is shown in Figure 7.

Figure 5. Gas consumption for Ethereum transaction execution.

Figure 6. Hourly gas price fluctuation in US Dollars for 15 May 2022.

Energies 2022, 15, 4461 16 of 27

Figure 7. On-chain DC-OPF solution, execution cost in US Dollars, according to gas price fluctuation
on 15 May 2022.

4. Enhanced Decentralized OPF Solving, Generalized for any Problem Formulated

As can be seen from the evaluation performed in the previous section, which showed
very high execution costs for a simplified version of the OPF problem for a simple network,
averaging about USD 9 per hour, such an approach is not conceivable for a much more
complex problem such as the AC-OPF problem, which is non-convex and non-linear, and
even less so for an even more complex problem that considers renewable energy sources
with unpredictable generation capacity. The optimal solution is proposed by prover nodes
in a decentralized and permission-less manner. Interested provers, can apply by depositing
a defined amount of money into the smart contract, they are then notified by smart contract
through an event when the bus loads are updated by the assigned unit. Provers solve
the OPF problem off-chain, then send the solution they calculated, which represents the
optimal combination of net power generated at each bus. Initially, the provers need to send
their calculated solution in an encrypted form. They can only reveal their proposed solution
after all eligible candidates have successfully committed their encrypted solution. After all
of the proposed solutions are reveled and verified if they do correspond to the committed
sent encryption by the smart contract, the smart contract then verifies if each proposed
solution satisfies the problem constraints, then only the solutions giving the cheapest
generation cost are considered. To clarify more, we assume M provers have successfully
staked the defined required amount A to be eligible to propose a solution to the OPF
problem. If N, N � M provers form the M candidtates have proposed identical solutions
satisfying the problem constraints and which is less expensive in term of generation cost
than the solutions proposed by the rest of the M− N provers. Then, the N provers will
gain (M−N)∗A

N as a reward, where the rest of the M− N provers lose their staked money,
similar to a card betting game, as illustrated in Figure 8. In this case, the M total number of
provers all propose an identical solution; it is adopted to control the generators if satisfying
the problem constraints. In such a scenario, all the provers gain a symbolic reward to
encourage them to continue solving the OPF problem.

Energies 2022, 15, 4461 17 of 27

Figure 8. Proposed OPF solution scheme explained using a card betting game.

Since the provers proposed solution are only revealed after they are all committed
to the blockchain, this gives rise to a Nash game scenario. To illustrate the game scenario
applicable to the proposed platform, we assume two prover candidates proposing an OPF
solution. The illustration with only two candidates can be extrapolated to n provers. In this
game scenario, the two provers conspire to both propose identical non-optimal solution
and gain the symbolic reward so that there is no loser. The two provers have two game
strategies they can play. Either comply to the conspiracy and commit the agreed upon
solution, or betray the second player and propose an optimal solution. We define the
symbolic gain if both payers propose an identical solution to be 5, whereas the staked
amount by each player to be 50. The gain for each player according to his played strategy
is illustrated in Table 5.

Table 5. The gain for each player according to their played strategy.

Player1
Player2 Prpose Optimal Solution

Collude(Betray)
Propose optimal solution

(Betray) (+5,+5) (+50,−50)

Collude (−50,+50) (+5,+5)

From Table 5, it can be seen that the total gain for each player when proposing an
optimal solution is +55, whereas it is −45 if proposing a non-optimal one, which makes the
proposed scheme immune against collusion. Such a system is suitable for any defined and
formulated OPF problem where the OPF is calculated by impartial third parties who solve
the OPF problem for remunerative purposes. Provers invest in developing the solution
algorithms and performing the computations to find the most optimal solution and win
the jackpot, similar to how miners invest in hashing power to be the first to solve the
mining puzzle and win the mining reward. Since the OPF is computed off-chain and
only the proposed solutions are compared and verified on-chain, this proposed system
implies that much less heavy computation is performed on-chain without compromising
the decentralization of the system.

4.1. Implementation for a 14-Bus AC-OPF Problem

In the AC model, transmission lines are represented by the π model. This model
is the most commonly used representation of transmission lines in power networks and

Energies 2022, 15, 4461 18 of 27

is adopted by most AC-OPF simulation platforms, such as Matlab. The π model for the
transmission line between two nodes i and j is shown in Figure 9.

Figure 9. Transmission line π model.

In the π model, a transmission line consists of a series impedance Rij + jXij connected

at the nodes i and j, and two equal shunt susceptances yshi
= yshj

= j
Bij
2 . The line is mostly

defined by its series admittance yij =
1

Rij+jXij
rather than its series impedance. Accordingly,

as in the DC model, the OPF objective function aims to minimize the generation cost
function F(PG), where F(PG) = ∑n

i=0 C(PG). Thus, the objective function of the model
AC-OPF is MinF(PG) and is subject to the constraints: AC flow, line current, generation
active power, generation reactive power, voltage magnitude, and voltage angle defined in
Equations (17)–(22), respectively.

S̄G − S̄L = diag(V̄)Ȳ∗busȲ
∗

|Ȳline,i→jV̄| ≤ Iline,max,
(17)

|Ȳline,i→jV̄| ≤ Iline,max

|Ȳline,j→V̄| ≤ Iline,max,
(18)

0 ≤ PG − PG,max, (19)

−QG,max ≤ QG −QG,max, (20)

Vmin ≤ V ≤ Vmax, (21)

δmin ≤ δ ≤ δmax, (22)

The (∗) operator denotes the conjugate of a complex entity, the bar (−) used above
an entity is to express that it is a complex one; min, max indices are used to denote the
maximum allowed value for an entity. In a network of N buses and M transmission lines, V
is a vector of size N of voltages at each bus of the network. The diag() operator is a vector
to the diagonal matrix converter. In our case, diag(V) returns an N × N diagonal matrix,
where all non-diagonal elements starting from the left-upper to right-bottom are zeros and
the diagonal elements are successively elements of the vector V. Iline is a vector of size M
of the currents at each transmission of the network. Yline is an M× N matrix corresponding
to the line admittance matrix of the network, it links the bus voltages vector V to the lines
current flow vector Iline, where Iline = VYline. Because, the current flowing from a node
i to a node j is different from the one flowing from node j to node i, there must be two
different line admittance matrices Yline1 , and Yline2 . Accordingly, there are two Iline vectors,
Iline1 = {I1→2, I2→3, ...IM→M}, Iline2 = {I1←2, I2←3, ...IM←M}, where Iline1 = VYline1 and
Iline2 = VYline2 . A row k in the line admittance matrix corresponds to the transmission
line with current Ik, which is the kth element in the linked line current flow vector Iline,
given that row k corresponds to line i → j, the ith element in the row Ylineki

= yshi
+ yij,

whereas the jth element in the row Ylinekj
= −yij, the rest of the row elements are all null.

Ybus is an N × N matrix, representing the bus admittance matrix. Diagonal element Ybusii
of the matrix corresponding to a row i, are the sum of the shunt susceptance at bus i
and the sum of all series admittance of all the lines connected to bus i. For non-diagonal

Energies 2022, 15, 4461 19 of 27

elements Ybusij ,i 6=j, they are either null if there is no connecting line between bus i and bus
j, otherwise Ybusij

= −yij. S represents a vector of size N of the total net apparent power
at each bus of the network. Given the Yline,i→j matrix, S = SG − SL, where SG and SL are
both vectors of size N. SG is the total net generation power vector and SL is the net load
demand power vector. S has two components. A real component representing the active
power flow PG − PL = Re(SG − SL), and an imaginary one representing the reactive power
flow QG − QL = Im(SG − SL). PG, QG, PL, QL, are the vectors of size N of the active and
reactive power generation at each bus and the active and reactive load demand power at
each bus as well, respectively. Both the active and reactive power at the given node i are
represented in Equation (23), with respect to both the bus active and reactive load demand
power, respectively.

PGi =
N

∑
j=1
|Vi||Vj|(Gijcos(θk − θ j) + Bkjsin(θi − θ j)) + PLi,

QGi =
N

∑
j=1
|Vi||Vj|(Gijsin(θk − θ j)− Bkjcos(θi − θ j)) + QLi

(23)

Gij and Bij represent the real and imaginary parts of Yij in the admittance matrix Y
that should be preset in the smart contract. Therefore, for each bus, provers must specify
the voltage magnitude and phase at the bus, and the voltage magnitudes and phases at
each bus connected to that bus. PGi and QGi are accordingly calculated within the smart
contract using sin and cos functions available in the smart contract in [37]. Thus, provers
should only upload for each bus the respective bus voltage magnitudes and phase angles
corresponding to the bus, both the power active and reactive generation, in Equation (23).
The pseudocode in Algorithm 6 illustrates how the interested prover candidates apply to
solve the OPF problem by depositing the required amount. As demonstrated applications
are no more accepted once the preset number of maximum applications is reached.

Algorithm 6 OPF Smart Contract: Apply

1: Uint: SmartContractBalance
2: Uint: DepositRequiredAmount
3: Uint: TotalNumberOfPermittedProvers
4: Uint: NumberOfProvers← 0
5: Address:[] OPFproverCandidates
6: Mapping: Address→ Uint: ProversBalance
7: Procedure Payable Apply()
8: Uint: NumberOfProvers← NumberOfProvers + 1
9: If msg.value � DepositRequiredAmount

10: Revert()
11: Else If NumberOfProvers≤ TotalNumberOfPermittedProvers
12: ProverBlance[msg.sender]← ProverBlance[msg.sender] + msg.value
13: OPFproverCandidates.Push(msg.value)
14: SmartContractBalance← SmartContractBalance + msg.value
15: Else
16: Revert()
17: End If
18: End Procedure

Before provers start uploading their proposed solution to the smart contract, the
network buses’ load demand is updated by the assigned unit on an hourly basis, the smart
contract date is also updated on the same occasion, similar to the model described in the
previous section. This is illustrated in pseudocode in Algorithm 7. It is of note that in order
to not make the pseudocodes excessively long, only active generation and demand power
are considered in the presented pseudocodes. However, the system constraints related

Energies 2022, 15, 4461 20 of 27

to buses reactive power are considered during the implementation used to evaluate the
execution cost of the model.

Algorithm 7 OPF Smart Contract: UpdateBusesLoadPowerDemand

1: Address: LoadMonitoringUnit
2: Fixed[14]: BusesLoadPowerDemand
3: Fixed[14][14]: BusAdmittanceMatrixReal
4: Fixed[14][14]: BusAdmittanceMatrixImag
5: Procedure UpdateBusesLoadPowerDemand(Fixed[14] BusesLoadP)
6: If msg.sender != LoadMonitoringUnit Then
7: Revert()
8: Else
9: For all L in BusesLoadP Do

10: BusesLoadPowerDemand.Push(L)
11: End For
12: UpdateCurrentDate()
13: Emit Event: NotifyProverCandidates()
14: End If
15: End Procedure

As explained earlier, the provers first upload an encrypted solution, which they cannot
reveal until all provers have uploaded an encrypted solution. Once this is done, the smart
contract sends out an event to notify the provers to reveal their solution, which is then
checked to see if it matches the corresponding encrypted message sent earlier. This is
explained in pseudocode in Algorithm 8.

After each prover discloses their proposed solution, it is checked to see if it satisfies
the problem constraints. If it does, the corresponding generation cost is calculated and
assigned to the respective prover. This is described in the pseudocode of the Algorithm 9.

Finally, all valid solutions are compared based on their calculated generation costs,
and then the prover that proposed the optimal solution is rewarded, as described in the
pseudocode in Algorithm 10. The entity relationship diagram for the proposed smart
contract-based solution is shown in the following Figure 10.

Figure 10. Entity-relationship diagram for the enhanced OPF solution model.

Energies 2022, 15, 4461 21 of 27

Algorithm 8 OPF Smart Contract: Send encrypted solution/reveal solution

1: Structure: BusGeneratedPowerFlowEquationParameters
2: Fixed[] ConnectedBusesPhaseAngles
3: Fixed[] ConnectedBusesVoltageMagnitude
4: Fixed BusPhaseAngle
5: Fixed BusVoltageMagnitude
6: End Structure:
7: Uint EncryptedSolutionsCommited← 0
8: Uint SolutionsRevealed← 0
9: Mapping: Address→ BusGeneratedPowerFlow-

EquationParameters[]: ProverPoposedSolution
10: Fixed[14][14]: BusAdmittanceMatrixImagComponents
11: Mapping: Address→ Bytes32: ProverEncryptedSolution
12: Procedure SendEncryptedSolution(Bytes32 EncryptedSolution)
13: If ProversBalance[msg.sender]� DepositRequiredAmount Then
14: Revert()
15: Else If EncryptedSolutionCommited= TotalNumberOfPermittedProvers
16: Emit Event: NotifyProversToRevealSolution
17: Else
18: ProverEncryptedSolution(msg.sender)← EncryptedSolution
19: EncryptedSolutionsCommited← EncryptedSolutionsCommited + 1
20: End If
21: End Procedure
22: Procedure Reveal-OPF-Solution(BusGeneratedPower-

FlowEquationParameters[] Eq)
23: Uint a← EncryptedSolutionsCommited
24: Uint b←TotalNumberOfPermittedProvers
25: Uint c← ProversBalance[msg.sender]
26: Uint d← DepositRequiredAmount
27: If a � b ‖ c� d Then
28: Revert()
29: Else If SolutionsRevealed ≥ b
30: ProversSolutionsCost()
31: RewardOPFsolvers()
32:
33: Else
34: Bytes32 c← ProverEncryptedSolution(msg.sender)
35: Bytes32 d←keccak256(abi.encode(Eq))
36: If c != d Then
37: Revert()
38: Else
39: ProverPoposedSolution(msg.sender)← Eq
40: SolutionsRevealed← SolutionsRevealed + 1
41: End If
42: End If
43: End Procedure

Energies 2022, 15, 4461 22 of 27

Algorithm 9 OPF Smart Contract: ProversSolutionCost

1: Mapping: Address→ Bool: ProverSolutionIsOptimal
Distances

2: Mapping: Address→ Fixed: ProposedSolutionCost
Distances

3: Procedure ProverSolutionsCost()
4: Fixed: GenerationCost← 0
5: For Each P in OPFproverCandidates do
6: Uint: i← 0
7: Uint: j← 0
8: Fixed θi ← ProverProposedSolution[i].BusPhaseAngle
9: Fixed Vi ← ProverProposedSolution[i].BusVoltageMagnitude

10: Fixed[] θj ← ProverProposedSolution[i].ConnectedBusesPhaseAngles
11: Fixed[] Vj ← ProverProposedSolution[i].ConnectedBusesVoltageMagnitudes
12: Fixed Pgi ← 0
13: Fixed Gij ← BusAdmittancesMatrixReal[i][j]
14: Fixed Bij ← BusAdmittancesMatrixImag[i][j]
15: Fixed Pdi ← BusesLoadPowerDemand[i]
16: while i ≤ 14 do
17: while j ≤ 14 do
18: Pgi ← Pgi + (Vj ∗Vj(Gij ∗ cos(θi − θj)− Bijsin(θi − θj)) + Pdi)
19: GenerationCost← GenerationCost + GenerationCostFunction(Pgi)
20: j← j + 1
21: End while
22: i← i + 1
23: End while
24: ProposedSolutionCost(P)← GenerationCost
25: End For
26: End Procedure

4.2. Execution Cost Results

The proposed scheme was used to solve the AC-OPF problem for a 14-bus. The
model used was an IEEE 14-bus system. All network parameters can be found in [38]. The
execution cost of the proposed system was evaluated using the Remix IDE development
tool. It enables the execution of the developed smart contract and logs the execution cost
of the smart contract functions in gas abstraction. Although this provides insight into the
execution cost of the smart contract functions, testing the model in a deployed private
blockchain network would provide a more accurate assessment, as the development tools
do not account for non-deterministic technical variables. Three evaluations were performed
with 20, 50, and 100 provers, and a single optimal solution was proposed. The obtained
results in term of execution cost in US dollars, according to gas price fluctuation on 15 May
2022, are illustrated in Figure 11.

Energies 2022, 15, 4461 23 of 27

Figure 11. Execution cost of AC-OPF solution, cost in US dollars, depending on gas price fluctuation
on 15 May 2022, using the proposed scheme.

Algorithm 10 OPF Smart Contract: RewardOPFsolver

1: OPF-BusesEquationParameters[] OptimalSolution
2: Procedure RewardOPFsolver()
3: Address P←OPFproverCandidates[0]
4: Uint OptimalCost← ProposedSolutionCost(P)
5: Uint i← 1
6: While i ≤ OPFproverCandidates.length() Do
7: P← OPFproverCandidates[i]
8: If ProposedSolutionCost (P)� OptimalCost Then
9: OptimalCost←ProposedSolutionCost(P)

10: End If
11: i← i + 1
12: End While
13: i← 0
14: Uint NumberOfWinners← 0
15: While i ≤ OPFproverCandidates.length() Do
16: P← OPFproverCandidates[i]
17: If ProposedSolutionCost(P) == OptimalCost Then
18: OptimalSolution← ProverProposedSolution(P)
19: ProverSolutionIsOptimal(P)←True
20: NumberOfWinners← NumberOfWinners + 1
21: Else
22: ProverSolutionIsOptimal(P)← False
23: End If
24: i← i + 1
25: End While
26: PriceMoney← SmartContractBalance/NumberOfWiners
27: i← 0
28: While i ≤ OPFproverCandidates.length() Do
29: P← OPFproverCandidates[i]
30: If ProposedSolutionIsOptimal(P) = True Then
31: P.transfer(PriceMoney)
32: ProversDepositBlance(P)← 0
33: Else
34: ProversDepositBlance(P)← 0
35: End If
36: i← i + 1
37: SmartContractBalance← 0
38: End While
39: End Procedure

Energies 2022, 15, 4461 24 of 27

5. Discussion

From the execution cost results for the two schemes presented in Sections 3 and 4,
shown in Figure 12, it can be seen that the extended generalized scheme presented in
Section 4 provides a much cheaper execution for a much more complex problem compared
to the scheme presented in Section 3, without compromising the decentralization of the
system. It can also be seen that the execution cost is much more stable over the daytime
hours when using the enhanced model, while the execution cost shows a much more
fluctuating pattern when solving the OPF problem on-chain. This is due to the fact that
OPF is an NP problem and the number of iterations required to solve a given OPF problem
is not deterministic. However, it can be seen that increasing the number of provers in the
second scheme increases the execution cost, since the smart contract must loop through
all provers and verify and compare all proposed results to determine the provers with
the optimal solution. The number of provers allowed to participate in an OPF solution
loop must be carefully selected before it is defined and fixed in the smart contract. On the
other hand, this solution can still be considered expensive, as the operation can reach a few
dollars per hour for very complex problems. However, we believe that this is still a better
solution than a centralized solution that requires the use of hardware. Such an approach
has two drawbacks. First, it does not go in the direction of keeping P2P energy trading
platforms as decentralized as possible, and second, it is not necessarily a cheaper solution
because it requires the use of technical staff for ongoing maintenance and monitoring in
addition to the high deployment costs, which are one-time fixed investment costs. Figure 13
shows the minimum hourly wage for various industrialized countries [39].

Figure 12. Comparison of execution costs between on-chain OPF solutions for a 3-bus DC-OPF
problem and the solution for a 14-bus AC-OPF problem using the enhanced proposed model.

Energies 2022, 15, 4461 25 of 27

Figure 13. Hourly minimum wage for different industrialized countries (2022).

6. Conclusions

In this paper, we present a blockchain-based demand-side management for smart
grids and P2P energy trading platforms using an OPF control system based on smart
contracts. In the proposed system, no centralized entities are entrusted with generation
control of the various energy sources in the grid, and no control hardware deployed by the
DSO is required. Rather, the various generators and owners of energy sources are forced by
a decentralized consortium to comply with the calculated OPF solution, and those who
do not comply would see their energy contribution wasted. The first approach, where
the OPF is fully calculated by a smart contract, showed very high execution costs for a
simplified linear approach to the OPF problem, which led us to conclude that although this
is a fully decentralized solution, it is not realistic due to the complexity of the OPF problem.
Therefore, a different approach was taken in which the OPF problem is not computed
on-chain. Instead, different solutions proposed by different provers are compared and
verified through a smart contract, considering only the valid and cost-optimal proposals
and rewarding those who proposed them. The proposed system was designed as a Nash
game. The fewer provers proposed an optimal solution, the more a particular prover
with an optimal solution proposal wins. This prevents both collusion among provers
and laziness in computing the OPF solution, as they risk losing their invested money
if their proposal is not optimal compared to the others. This system was evaluated for
solving a non-convex, non-linear AC-OPF problem for a 14-bus network and showed
reasonable execution costs that increased with the number of participating provers. Apart
from being a decentralized solution with no central authority controlling the power flow,
the proposed system can even be considered as a lower cost solution considering the high
cost of hardware deployment and staff wages for continuous maintenance and monitoring
in most industrialized countries.

Author Contributions: Conceptualization, Y.M. and M.H.H.; methodology, Y.M., M.H.H. and M.R.I.;
software, Y.M.; validation, T.S.G., M.H.H. and M.R.I.; investigation, Y.M. and M.H.H.; resources, S.F.T.
and M.M.; writing—original draft preparation, Y.M.; writing—review and editing, M.H.H. and M.R.I.;
visualization, R.A.; supervision, M.H.H., M.R.I. and T.S.G.; project administration, M.M.; funding
acquisition, S.F.T. All authors have read and agreed to the published version of the manuscript.

Energies 2022, 15, 4461 26 of 27

Funding: This material is based upon work supported by the Air Force Office of Scientific Research
under award number FA2386-21-1-4046. The research work was conducted at the IoT and wireless
communication protocols laboratory, International Islamic University Malaysia (IIUM). Yacine Merrad
is grateful to IIUM Tuition Fee Waiver program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, Z.; Liu, F.; Ma, Z.; Chen, Y.; Jia, M.; Wei, W.; Wu, Q. Distributed generalized nash equilibrium seeking for energy sharing

games in prosumers. IEEE Trans. Power Syst. 2021, 36, 3973–3986. [CrossRef]
2. Sotkiewicz, P.M.; Vignolo, J.M. Towards a cost causation-based tariff for distribution networks with DG. IEEE Trans. Power Syst.

2007, 22, 1051–1060. [CrossRef]
3. Rinaldi, G.; Menon, P.P.; Edwards, C.; Ferrara, A. Higher order sliding mode observers in power grids with traditional and

renewable sources. IEEE Control. Syst. Lett. 2019, 4, 223–228. [CrossRef]
4. Wu, X.; Conejo, A.J. Distribution Market Including Prosumers: An Equilibrium Analysis. IEEE Trans. Smart Grid 2022. [CrossRef]
5. Merrad, Y.; Habaebi, M.H.; Islam, M.R.; Gunawan, T.S.; Elsheikh, E.A.; Suliman, F.M.; Mesri, M. Machine Learning-Blockchain

Based Autonomic Peer-to-Peer Energy Trading System. Appl. Sci. 2022, 12, 3507. [CrossRef]
6. Junlakarn, S.; Kokchang, P.; Audomvongseree, K. Drivers and Challenges of Peer-to-Peer Energy Trading Development in

Thailand. Energies 2022, 15, 1229. [CrossRef]
7. Shabani, M. Blockchain-based platforms for genomic data sharing: A decentralized approach in response to the governance

problems? J. Am. Med. Inform. Assoc. 2019, 26, 76–80. [CrossRef]
8. Han, D.; Zhang, C.; Ping, J.; Yan, Z. Smart contract architecture for decentralized energy trading and management based on

blockchains. Energy 2020, 199, 117417. [CrossRef]
9. Gajić, D.B.; Petrović, V.B.; Horvat, N.; Dragan, D.; Stanisavljević, A.; Katić, V.; Popović, J. A Distributed Ledger-Based Automated

Marketplace for the Decentralized Trading of Renewable Energy in Smart Grids. Energies 2022, 15, 2121. [CrossRef]
10. Department of Energy and Climate Change (DECC). Community Energy Strategy: Full Report; DECC: London, UK, 2014.
11. Afzal, M.; Huang, Q.; Amin, W.; Umer, K.; Raza, A.; Naeem, M. Blockchain enabled distributed demand side management in

community energy system with smart homes. IEEE Access 2020, 8, 37428–37439. [CrossRef]
12. Karandikar, N.; Chakravorty, A.; Rong, C. Blockchain based transaction system with fungible and non-fungible tokens for a

community-based energy infrastructure. Sensors 2021, 21, 3822. [CrossRef] [PubMed]
13. Jayachandran, M.; Rao, K.P.; Gatla, R.K.; Kalaivani, C.; Kalaiarasy, C.; Logasabarirajan, C. Operational concerns and solutions in

smart electricity distribution systems. Util. Policy 2022, 74, 101329. [CrossRef]
14. Wang, Z.; Anderson, C.L. A progressive period optimal power flow for systems with high penetration of variable renewable

energy sources. Energies 2021, 14, 2815. [CrossRef]
15. Riaz, M.; Hanif, A.; Masood, H.; Khan, M.A.; Afaq, K.; Kang, B.G.; Nam, Y. An Optimal Power Flow Solution of a System

Integrated with Renewable Sources Using a Hybrid Optimizer. Sustainability 2021, 13, 13382. [CrossRef]
16. Nusair, K.; Alasali, F. Optimal power flow management system for a power network with stochastic renewable energy resources

using golden ratio optimization method. Energies 2020, 13, 3671. [CrossRef]
17. Hassan, M.H.; Kamel, S.; Selim, A.; Khurshaid, T.; Domínguez-García, J.L. A modified Rao-2 algorithm for optimal power flow

incorporating renewable energy sources. Mathematics 2021, 9, 1532. [CrossRef]
18. Jamil, M.; Mittal, S. Hourly load shifting approach for demand side management in smart grid using grasshopper optimisation

algorithm. IET Gener. Transm. Distrib. 2020, 14, 808–815. [CrossRef]
19. Vale, Z.; Faria, P.; Abrishambaf, O.; Gomes, L.; Pinto, T. MARTINE—A Platform for Real-Time Energy Management in Smart

Grids. Energies 2021, 14, 1820. [CrossRef]
20. Ahmad, A.; Javaid, N.; Mateen, A.; Awais, M.; Khan, Z.A. Short-term load forecasting in smart grids: An intelligent modular

approach. Energies 2019, 12, 164. [CrossRef]
21. Esmat, A.; de Vos, M.; Ghiassi-Farrokhfal, Y.; Palensky, P.; Epema, D. A novel decentralized platform for peer-to-peer energy

trading market with blockchain technology. Appl. Energy 2021, 282, 116123. [CrossRef]
22. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and

platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [CrossRef]
23. Khan, S.N.; Loukil, F.; Ghedira-Guegan, C.; Benkhelifa, E.; Bani-Hani, A. Blockchain smart contracts: Applications, challenges,

and future trends. Peer-Peer Netw. Appl. 2021, 14, 2901–2925. [CrossRef] [PubMed]
24. Jansen, M.; Hdhili, F.; Gouiaa, R.; Qasem, Z. Do smart contract languages need to be turing complete? In Proceedings of the

InInternational Congress on Blockchain and Applications, Avila, Spain, 26–28 June 2019; pp. 19–26.
25. Yang, Z.; Zhong, H.; Xia, Q.; Kang, C. Fundamental review of the OPF problem: Challenges, solutions, and state-of-the-art

algorithms. J. Energy Eng. 2018, 144, 04017075.

http://doi.org/10.1109/TPWRS.2021.3058675
http://dx.doi.org/10.1109/TPWRS.2007.901284
http://dx.doi.org/10.1109/LCSYS.2019.2923605
http://dx.doi.org/10.1109/TSG.2022.3151338
http://dx.doi.org/10.3390/app12073507
http://dx.doi.org/10.3390/en15031229
http://dx.doi.org/10.1093/jamia/ocy149
http://dx.doi.org/10.1016/j.energy.2020.117417
http://dx.doi.org/10.3390/en15062121
http://dx.doi.org/10.1109/ACCESS.2020.2975233
http://dx.doi.org/10.3390/s21113822
http://www.ncbi.nlm.nih.gov/pubmed/34073110
http://dx.doi.org/10.1016/j.jup.2021.101329
http://dx.doi.org/10.3390/en14102815
http://dx.doi.org/10.3390/su132313382
http://dx.doi.org/10.3390/en13143671
http://dx.doi.org/10.3390/math9131532
http://dx.doi.org/10.1049/iet-gtd.2019.0566
http://dx.doi.org/10.3390/en14071820
http://dx.doi.org/10.3390/en12010164
http://dx.doi.org/10.1016/j.apenergy.2020.116123
http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1007/s12083-021-01127-0
http://www.ncbi.nlm.nih.gov/pubmed/33897937

Energies 2022, 15, 4461 27 of 27

26. Javed, H.; Muqeet, H.A.; Irfan, M. Recent Trends, Challenges and Future Aspects of P2P Energy Trading platforms in Electrical-
based Networks Considering Blockchain Technology: A Roadmap Towards Environmental Sustainability. Front. Energy Res. 2022,
10, 134. [CrossRef]

27. Wang, G.; Wang, S.; Bagaria, V.; Tse, D.; Viswanath, P. Prism removes consensus bottleneck for smart contracts. In Proceedings of
the 2020 Crypto Valley Conference on Blockchain Technology (CVCBT), Rotkreuz, Switzerland, 11–12 June 2020; pp. 68–77.

28. Du, Y.; Wang, Z.; Leung, V. Blockchain-enabled edge intelligence for IoT: Background, emerging trends and open issues. Future
Int. 2021, 13, 48. [CrossRef]

29. Xing, C.; Chen, Z.; Chen, L.; Guo, X.; Zheng, Z.; Li, J. A new scheme of vulnerability analysis in smart contract with machine
learning. Wirel. Netw. 2020, 8, 1–10. [CrossRef]

30. Christie, R. Power Systems Test Case Archive. August 1993. Available online: http://www.ee.washington.edu/research/pstca/
pf30/pg_tca30bus.htm (accessed on 16 June 2022).

31. Ergun, H.; Dave, J.; Van Hertem, D.; Geth, F. Optimal power flow for AC–DC grids: Formulation, convex relaxation, linear
approximation, and implementation. IEEE Trans. Power Syst. 2019, 34, 2980–2990. [CrossRef]

32. Durvasulu, V.; Hansen, T.M. Market-based generator cost functions for power system test cases. IET-Cyber-Phys. Syst. Theory
Appl. 2018, 3, 194–205. [CrossRef]

33. Gordon, G.; Tibshirani, R. Karush-kuhn-tucker conditions. Optimization 2012, 10, 725.
34. Shahidehpour, M.; Yamin, H.; Li, Z. Market Overview in Electric Power Systems; Wiley-IEEE Press: Hoboken, NJ, USA, 2002;

pp. 1–20.
35. Ethereum Average Gas Price. Available online: https://ycharts.com/indicators/ethereum_average_gas_price (accessed on 16

June 2022).
36. Ethereum Price. Available online: https://ycharts.com/indicators/ethereum_price (accessed on 16 June 2022).
37. Sikora, Basic Trigonometry Functions Smart Contract. Available online: https://github.com/Sikorkaio/sikorka/blob/master/

contracts/trigonometry.sol (accessed on 16 June 2022).
38. Christi, R. Power Systems Test Case Archive. August 1993. Available online: http://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.

htm (accessed on 16 June 2022).
39. Minimum Wage by Country. 2022. Available online:https://worldpopulationreview.com/country-rankings/minimum-wage-by-

country (accessed on 16 June 2022).

http://dx.doi.org/10.3389/fenrg.2022.810395
http://dx.doi.org/10.3390/fi13020048
http://dx.doi.org/10.1007/s11276-020-02379-z
http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm
http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm
http://dx.doi.org/10.1109/TPWRS.2019.2897835
http://dx.doi.org/10.1049/iet-cps.2018.5046
https://ycharts.com/indicators/ethereum_average_gas_price
https://ycharts.com/indicators/ethereum_price
https://github.com/Sikorkaio/sikorka/blob/master/contracts/trigonometry.sol
https://github.com/Sikorkaio/sikorka/blob/master/contracts/trigonometry.sol
http://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm
http://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm
https://worldpopulationreview.com/country-rankings/minimum-wage-by-country
https://worldpopulationreview.com/country-rankings/minimum-wage-by-country

	Introduction
	Motivation
	On-Chain-Based Solution for a 3-Bus Network, Using DC-OPF Approximation
	DC-OPF Model
	Implementation for a 3-Bus DC-OPF Problem
	Execution Cost Results

	Enhanced Decentralized OPF Solving, Generalized for any Problem Formulated
	Implementation for a 14-Bus AC-OPF Problem
	Execution Cost Results

	Discussion
	Conclusions
	References

