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Abstract: In this paper, a method of power system equipment recognition based on image processing
is proposed. Firstly, we carry out wavelet transform on the sound signal of power system equipment
collected from the site, and obtain the wavelet coefficient–time diagram. Then, the similarity of
wavelet coefficients–time images of different equipment and the same equipment in different periods
is calculated, which is used as the basis of the feasibility of image recognition. Finally, we select
the HOG features of the image, and classify the selected features using SVM classifier. The method
proposed in this paper can accurately identify and classify power system equipment through sound
signals, and is different from the traditional method of classifying sound signals directly. The
advantages of image processing can be effectively utilized through image processing to avoid the
limitations of sound signal processing.

Keywords: electric power equipment; voice recognition; HOG feature extraction; SVM classifier;
image processing

1. Introduction

With the gradual development of large-scale, integrated, highly automated and in-
telligent power system equipment, not only are rapid economic benefits introduced, but
also the risk of great loss caused by sudden equipment failure is increased. Therefore, the
comprehensive, timely and accurate monitoring of the power system equipment health
status ensures the stable operation of equipment, reduces the accidental shutdown rate and
has a high investment–income ratio. To this end, researchers carried out systematic research
on temperature, vibration, image and other aspects of various power system equipment, and
obtained effective information characteristics [1–3]. In addition, artificial intelligence [4], deep
learning [5] and neural network [6] have been used to realize fault monitoring of equipment.

According to Kafeel et al. [7], current, sound and vibration are the most commonly
monitored parameters. In Ribeiro et al. [8] a hydro-generator current-monitoring system
is proposed and the fast Fourier transform (FFT) is applied to the Parker transform of the
current. Song et al. [9] used the bin method, the method based on multivariate normal
distribution and the Copula method to compare three Bayesian diagnosis models on ac-
count of SCADA (Supervisory Control And Data Acquisition). Li et al. [10], aiming at the
problems of high-speed and long-distance transmission and greatly increasing data storage
capacity, proposed a method on account of adjustable q-factor wavelet transform mor-
phologic module analysis, including few and scattered Bayesian iterative arithmetic unite
stepping pulse dictionary. Yu et al. [11] try to build a rough set with feature relationships,
then use a distribution reduction arithmetic to dislodge unnecessary features and send
the remaining features to a flexible naive Bayesian sorter for malfunction diagnoses. In
Herp et al. [12], a method is proposed to establish a fault-diagnosis model by learning fault
samples, assuming that the error features picked up from SCADA (Supervisory Control
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And Data Acquisition) data compliance a Gaussian distribution in the characteristic space.
Wang D. [13] present a method for improving wavelet filtering by combining infographics
and Bayesian inference to confirm the best wavelet argument and apply to malfunction di-
agnoses. In Li et al. [14], in the process of fault feature extraction, the importance of different
signals is optimized by particle swarm optimization. Yu et al. [15] propose an error-feature
collection means based on Mean Multigrain Decision Theory Rough Sets (MMGDTRS)
and Non-Naive Bayes Classifier (NNBC). Li et al. [16] present a new first-rank Bayesian
command method for predicting early failure of gear-shaft systems with locally observable
degradation and random failure. A polybasic Bayesian command strategy on account of
Hidden Semi-Markov Model (HSMM) is proposed. In Liu et al. [17], a state-monitoring
method of rolling bearings based on hybrid generalized HMM is introduced, which uses
interval value features to effectively identify and classify the state in the machine process. In
Gan and Jiao [18], a malfunction diagnoses means of wavelet transform gearbox on account
of ameliorated inheritance arithmetic radio frequency sorter is proposed. Li et al. [19] intro-
duced a malfunction diagnoses means for gearboxes on account of deep radio frequency
integration of aural and oscillation signals. Han and Jiang [20] use VMD to acquire eigen-
vectors and send them to RF for fault diagnosis. Qin [21] welded Ensemble Empirical Mode
Decomposition (EEMD) and RF for malfunction diagnoses. Verellen et al. [22], aiming at the
detection of bearing faults in rotating machinery, propose a non-invasive acoustic signal-
monitoring system based on a sparse microphone array. Traditional vibration analysis uses
accelerometers, which are touch sensors that need to be attached to the component under
investigation. Smieja et al. [23] proposed an interesting non-contact vibration monitoring
method in which image processing is used. Cao et al. [24] proposed a pipeline robot fault
diagnosis system based on sound-signal recognition, which transmits the sound signal
collected by the storage sensor to the upper computer for fault diagnosis, and the test has
achieved good results. Suman et al. [25] proposed an acoustic signal mode-determination
algorithm based on adaptive Kalman filtering and MFCC, which can effectively detect
vehicle health status by using acoustic signals to detect vehicle mechanical faults. Rakesh
Kumar et al. [26] established a rainforest species audio signal-recognition model based on
the combination of long short-term memory (LSTM) and convolutional neural network
(CNN). The models are combined to achieve a high-accuracy, low-loss detection method.
Zhuo et al. [27] proposed a program for on-line diagnosis of steel truss structures using
sound signals, and proposed an improved offline database-guided response power and
phase transformation method. Experiments show that this method can achieve accurate
positioning in strong noise environments, and the amount of computation is smaller.

In this paper, the audio-signal monitoring of power equipment is studied deeply. At
present, most sound-signal-processing technologies are based on the receiving frequency
range of human ear mechanism. The existing technologies lead to many high- and low-
frequency sound signals beyond the range of the human ear not being effectively utilized,
resulting in the loss of a large number of effective signal data. However, even if the
whole-frequency-band signal-extraction method is adopted, the characteristics of signals
are difficult to separate from each other, and the extraction is difficult. The essential reason
for these problems is that the coverage of sound signals is extremely wide, so the difficulty
of recognition is greatly increased [28]. It can be seen that the traditional sound signal-
processing technology has considerable limitations. In order to solve this problem, we
took another analytical way of thinking: no longer the traditional method, but the audio-
processing problem transferred to the field of image processing. As a result, this paper
proposes a power equipment based on wavelet transform voice-fault identification analysis
method, in which the access to the audio signal by DWT abstracts the wavelet coefficient of
sound. The time-frequency diagram and wavelet coefficient diagram of sound signal are
output, and the method of machine learning [29] is applied to analyze sound information
from the perspective of image texture. In this method, the whole frequency band of sound
signal is extracted without any filtering, and then the sound signal is translated into image
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processing, which can effectively avoid the loss of information data and make use of the
advantages of image recognition for classification.

2. Audio Signal Analysis Based on Wavelet Transform

The overall structure of the research idea is shown in Figure 1. This paper studies the
feature extraction method of six kinds of power equipment sounds collected by a 96-channel
handheld audio imager. Firstly, we can analyze the audio pre-processing method based on
Wavelet and Hamming window, and then we can obtain the audio pre-processing device
with different image segmentation coefficients based on Wavelet and Hamming window,
and then we can obtain the audio pre-processing device with different image segmentation
coefficients; finally, based on this result, we use HOG + SVM method to classify and predict
different devices, and find that it has a high recognition rate.

• Preprocessing: the digital strainer is used to preemphasize the audio signal, determine
the frame length and frame shift of each sound signal, and the Hamming window
is used to filter the sound signal by framing and windowing to obtain multi-frame
sound signals;

• Wavelet analysis: by obtaining separate sound signal samples of power equipment
through preprocessing operation, we can analyze the characteristics of the sound
signal, select an appropriate wavelet function to carry out wavelet transform on the
sound signal, and obtain the time wavelet coefficient diagram of each audio signal
sample;

• Image processing: considering that the wavelet coefficient image obtained in the
above steps contains a large number of image features, this study first uses SSIM
(Structural Similarity) image processing method to calculate the similarity between
wavelet coefficient images of sound signals of different devices and the same device,
so as to verify the feasibility of image classification.

• HOG + SVM: extract the hog feature of the obtained wavelet coefficient image, and
substitute the extracted feature into the SVM classifier for multi-classification training,
so as to achieve the purpose of classification and prediction of the existing image.

Figure 1. The overall idea of the experimental process. The figure includes the power equipment
sound-field-acquisition module, the sound signal preprocessing module, the wavelet transform
output image module and the image-processing module.
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2.1. Sound Signal Preprocessing

The voice signals collected by the sound imager may have problems such as aliasing,
high-order harmonic distortion and high frequency. Before analyzing the sound signals of
field equipment, we carry out pre-weighting, framing, windowing and other preprocessing
operations so that the signals procured by pursuant voice processing are more consistent
and smooth as far as possible, allowing us to afford high-quingity parameters for signal
parameter collection and further sound signal processing quality. The specific steps of
sound signal preprocessing are as follows:

• Slice. In order to unify the duration of the sound sample, the sound signal of the
whole section of audio is segmented into 1 s as a sound sample;

• Pre-emphasis. In order to flatten the spectrum of the sound signal, the spectrum
can be calculated with the same structural return loss in the low-frequency to high-
frequency band, and the sound signal of each sample is pre-emphasized. Pre-emphasis
processing means that the sound signal passes through a high clear strainer:

H(z) = 1− µz−1 (1)

where in 0.9 < µ < 1.0, is taken as 0.97 in this paper.
• Normalization. Normalize the spectrum of the preprocessed sound signal to reduce

the difference in the frequency range of different types of sound:

X =
X−min(X)

max(X)−min(X)
(2)

• Framing and windowing. The sound signal is stable in a short time. The short-time
length is generally 10–30 ms. In order to facilitate feature analysis, the sound signal
needs to be processed in frames. For purpose of ensuring the smooth conversion
between two adjacent frames, the frame signal needs to be superimposed, and then
each frame is multiplied by a window function of a certain length for windowing and
filtering. In this paper, Hamming window is adopted, and the window function is
shown in Formula (3):

0.54− 0.46 cos
(

2πn
N − 1

)
(0 ≤ n ≤ N − 1) (3)

2.2. Feature Extraction of Audio Signal Based on Wavelet Transform

Wavelet transform is an important time-frequency analysis approach that combines
the time-domain characteristics and frequency-domain characteristics of signals.

2.2.1. Definition of Wavelet Function

The application of wavelet analysis in signal and picture compression is a crucial side
of the application of wavelet analysis. It has the characteristics of high compression ratio
and fast compression speed. After compression, it can not only keep the traits of the signal
and image unvaried, but also resist the interference in transmission. The definition formula
is as follows:

W f (a, b) =
1√
a ∑+∞

−∞ f (x)φ
(

x− b
a

)
dx (4)

Take the function φ(x) of the basic wavelet as the displacement b, and make the inner
product with the signal f (x) to be analyzed under different scales a, with the transformation
of a, b the wavelet transform has the traits of multi-resolution.
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2.2.2. Wavelet Sequence

ψ(t) ∈ L2(R), ψ(t) is called a basic wavelet and mother wavelet, where L2(R) refers
to the mean square integrable space. Wavelet must meet:

∑∞
−∞ ψ(t)dt = 0 (5)

This is also the meaning of “wavelet”. After scaling and translating the generating
function, the wavelet sequence can be obtained:

ψ(a, b)(t) =
1√
a

ψ

(
t− b

a

)
(6)

(a, b ∈ R, a 6= 0) a, b where a, b is the expansion factor and translation factor, respectively.

2.3. SSIM-Based Image Processing Method
2.3.1. Definition

Unartificial images have a sehr hoch configuration, especially in the case of spatial
similarity, there is a high associations between the pixels of the image. Such associations
port crucial information about the configuration of objects in the optical scenario. What we
are talking about is finding a more straight method to contradistinguish the configuration
of a fuzzy image with that of a reference image.

Structural similarity is a measure of how similar two images are. The SSIM value is
between 0 and 1, and the larger its value, the smaller the difference between the images.
The definition of SSIM is as in Equation (1) Structural similarity. From the standpoint of
image formation, configurational information is defined as a reflection scene that is isolated
of brightness and contrast, and the image is modeled by three different factors: brightness,
contrast and structure.

Function definition:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (7)

where α, β, γ > 0.
The measure of similarity can be realized by the SSIM measuring system, which can

be constituted of three comparison elements of brightness, contrast and structure. Next, we
define three contrast functions:

Brightness contrast function:

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(8)

Contrast function:

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(9)

Structural contrast function:

s(x, y) =
σxy + c3

σxy + c3
(10)

For the above formula, µx, µy, stand for the whole pixels of the picture; σx, σy, stand
for the criterion differences of picture pixel value; σxy stand for the convariance of x, y;
c1, c2, c3 stand for constants. This is for the purpose of eliminating system fault when the
denominator is 0. In practical application, α = β = γ = 1, c3 = 0.5c2.

2.3.2. Application of SSIM

In image mass evaluation, obtaining the SSIM index of a certain part is better than
all. First, the statistical features of images are generally disproportionally distributed i
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then room; second, image deformation varies with the room; third, under standard visual
interval, people can centre around one area of the image, therefore the separate processing
of a certain part is more in line with the scope of human vision; fourth, the local quality
detection can obtain the mapping matrix of image spatial quality changes, and the results
can be used for other applications.

Therefore, in the formula above, µx, σx, σxy both add an 8 × 2 square window and
traverse the whole image by every pixels. At every procedure of the computation, µx,
σx, σxy and SSIM values ground on the pixels in the window. Finally, an SSIM index
mapping matrix is procured, which is composed of certain part SSIM indexes. However,
plain-add window will lead to terrible “blocking” impression of the mapping matrix.
To resolve the conundrum, we use the 11 × 11 meristic Gaussian weighing function
W = {wi|i = 1, 2, · · ·, N } as the weighing window, with a par differences of 1.5, and

∑N
i=1 wi = 1 (11)

Then the approximated value of µx, σx, σxy is voiced as:

µx = ∑N
i=1 wixi (12)

σx =
(
∑N

i=1 wi(xi − µx)
2
) 1

2 (13)

σxy = ∑N
i=1 wi(xi − µx)

(
yi − µy

)
(14)

Using this windowing means, the mapping matrix can show the capabilities of certain
part isotropy, and then use the evenness SSIM index as the evaluation quality of the
entire image:

MSSIM(x, y) =
1

MN ∑M
1 ∑N

1 SSIM(xi, yi) (15)

In the above, x, y are images, xi, yi are the locations of certain part SSIM index in the
mapping, M, N are the number of local windows.

2.4. HOG Feature Extraction Algorithm

Histogram of Oriented Gradient (HOG) feature is a kind of descriptor that uses
computer vision and image processing technology to detect object features. Image features
are extracted by calculating and statistical histogram of directional gradient in a specific
area of the image. The incorporation of Hog feature extraction and SVM classifier has been
diffusely applied in the field of image identification.

Feature Extraction Process

(1) Detection window: Hog cut apart the image through window and block. Math-
ematically process the pixel values of an area in an image in units of cells. Here, we first
introduce the concepts of window, block and cell and the relationship between them.

• Window: divide the image into multiple identical windows according to a certain size
and slide;

• Block: divide each window into several same blocks according to a certain size
and slide;

• Cell: each window is divided into multiple identical cells according to a certain size,
which belong to the feature extraction unit and remain stationary.

(2) Normalized images: Normalization includes gamma and color room normalization.
Normalizing the whole image can effectively reduce the influence of lighting conditions.
Normalization can also avoid the large proportion of certain part external exposure contri-
bution in picture grain intensity. Standard Gamma compression formula:

l(x, y) = l(x, y)γ (16)
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γ takes values based on the effect.
(3) Calculated gradient: Firstly, the gradient value in the horizontal and vertical

coordinate orientation is calculated, and the gradient orientation is calculated according to
the calculated gradient value. The formula is as follows:

Gx(x, y) = H(x + 1, y)− H(x− 1, y) (17)

Gy(x, y) = H(x, y + 1)− H(x, y− 1) (18)

For the two formulas Gx(x, y), Gy(x, y), H(x, y) separately stand for the aclinic gradi-
ent, perpendicular gradient and pixel value at a specific pixel point of the collected image.
The gradient value of amplitude and gradient orientation at pixel (x, y) are:

G(x, y) =
√

Gx(x, y)2+Gy(x, y)2 (19)

α(x, y) = tan−1
(

Gy(x, y)
Gx(x, y)

)
(20)

(4) Constructing gradient column diagram: The orientation division is determined by
bins (number of divisions). Generally, bins takes 9, and the gradient orientation is cut apart
into 9 intervals.

(5) Cell-normalized gradient histogram in the block: the increasing range of gradient
intensity is greatly affected by local illumination and foreground–background contrast, so
normalization is needed.

(6) Generate hog feature vector: finally, combine all blocks to generate feature vector.

2.5. Support Vector Machines (SVM)

The supervised learning model of support vector machine and its related learning
algorithm are widely used in machine learning. It can be used in classification of data
and analysis of regression. When given the condition of a set of training specimens, each
sample is labeled as one of two different varieties, and the SVM drill algorithm set up a
model, deals the new specimens to a certain variety, and constructs an improbability binary
linear classifier. The SVM training model represents all specimens as mappings of points in
space, and divides the specimens with a wide and obvious gap. The new specimens are
then mapped into the same room and their categories predicted.

3. Experimental Result

Firstly, select the working sound of six types of equipment under a fixed working
condition collected from the power plant, the sampling frequency is 16,000 Hz, and the
fixed 1 s is the cycle for segmentation; The sound sample data set information of six types
of equipment is shown in Table 1:

Table 1. sound samples.

Sample Type Number of Samples Total Number of Samples

Oil supply pump 200

1200

Connecting shaft 200
Condensate pump 200

Coal mill 200
Induced draft fan 200

Circulating water pump 200

After segmentation, the 40 s audio signal of one of the six devices is selected for
wavelet transform to obtain the time wavelet coefficient diagram, as shown in the following
figures.

From the above image results in Figure 2, it can be seen that there are great differences
in time wavelet coefficient images between different devices, and the image features are
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obvious. Based on this result, we intercept the other four 40 s sound data of each device
and output their time wavelet coefficient diagrams. According to the obtained images, we
found that the similarity of wavelet coefficient images of a device in different periods is
very high, but the feature distinction between different devices is still obvious. Therefore,
we took out three images of each device for intra-class and inter-class similarity comparison,
and the results are shown below.

Figure 2. Sample image. The abscissa represents time and the ordinate represents wavelet coefficients.

It can be seen from the Figure 3 that the signal similarity of the same equipment in
different periods is generally higher than that between different equipment. Based on the
above similarity-matching results, we divide the time wavelet coefficient graphs obtained
by each equipment into five different time periods into two groups, one group of four
graphs as the training set and the other group of one graph as the test set. In this way, a
total of 24 training samples and 6 test samples of 6 types of samples are obtained. The test
samples are predicted and classified by using hog feature-extraction algorithm and SVM
multi-classification training. The results are shown in Table 2 and Figure 4 below.

Figure 3. Scatter diagram of image similarity. The abscissa represents the number of sample groups,
and the ordinate represents the sample similarity.
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Table 2. Classification accuracy of raw data.

Sample Type Single Class Accuracy Overall Accuracy

Oil supply pump 80%

90%

Connecting shaft 100%
Condensate pump 100%

Coal mill 80%
Induced draft fan 100%

Circulating water pump 80%

Figure 4. Original sound classification of equipment. The abscissa represents time, and the ordinate
represents wavelet coefficients.

In the field of power production, it is difficult to completely eliminate the noise
interference in the extraction process of power equipment sound. Therefore, we add
Gaussian white noise to the original power equipment sound signal as interference to verify
the accuracy and feasibility of this method. Through experiments, we find that when 10 dB
Gaussian white noise is added, the characteristics of the time wavelet coefficient diagram of
each equipment are not obvious, so it is difficult to distinguish the equipment, When 20 dB
Gaussian white noise is added, the characteristics of each equipment in the time wavelet
coefficient diagram appear again. Therefore, we process and classify the sound signal
added with 20 dB Gaussian white noise. The results are shown in Table 3 and Figure 5
below.

Table 3. Add white noise data classification accuracy.

Sample Type Single Class Accuracy Overall Accuracy

Oil supply pump 80%

87%

Connecting shaft 100%
Condensate pump 100%

Coal mill 60%
Induced draft fan 100%

Circulating water pump 80%

It can be seen from the experimental results that when white Gaussian noise is affiliated
to the sound signal of the equipment, the features of the images of some equipment
become more difficult to distinguish, and the recognition accuracy of the image is slightly
decreased, but the overall recognition accuracy is high, and the classification effect is
obvious. By adding white Gaussian noise of different decibels, it is not difficult to find
that noises of different decibels have different degrees of influence on the sound signal
of the equipment, which is intuitively reflected in the wavelet coefficient–time diagram,
making it more difficult to distinguish image features and equipment identification and
classification. Compared with the traditional power equipment sound-recognition method,
the advantages of the image processing-based power equipment sound-recognition method
proposed in this paper lie in the use of the full frequency range of the sound signal and the
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more delicate feature expression. For example, a sound-recognition algorithm for substation
equipment based on harmonic characteristics and vector quantization was proposed by
Dong et al. [30]. The sampled sound signal of power equipment takes the 27th harmonic
within 0–1300 Hz as the feature vector, so there will be a lot of noise. The sound data is not
used, and the sound features are difficult to express in detail and comprehensively, which
will have a certain impact on the accuracy of the results.

Figure 5. Equipment classification after adding 20 dB Gaussian white noise. The abscissa represents
time, and the ordinate represents wavelet coefficients.

4. Conclusions

In this paper, aiming at the sound of six types of thermal power plant power system
equipment collected from the scene, the wavelet coefficient–time map of the equipment
is obtained through wavelet transformation, and the audio signal is translated into image
processing. SSIM algorithm is used to calculate the same at different times and for different
equipment, and the image similarity between them can draw a clear difference in terms
of image characteristics, which can be used in the classification. Based on this judgment,
the obtained images were classified by HOG + SVM fusion method, and 10 dB and 20 dB
Gaussian white noise were added to the audio signal, respectively. It was found that noises
of different decibels had different degrees of influence on the sound signal of the equipment,
and the difficulty of distinguishing the features of the wavelet coefficient–time graph would
be improved. Under the influence of 10 dB noise, the characteristic of the wavelet coefficient–
time diagram of the equipment is not obvious and difficult to distinguish, but under the
influence of 20 dB noise, the difficulty of distinguishing the characteristic of the wavelet
coefficient–time diagram of equipment is increased, but the classification effect is good.
The experimental results show that the recognition method of sound translation image
processing, which is different from the traditional sound-recognition method, has better
practical feasibility. The limitation of this paper is that the number of available audio samples
is limited, and there is not enough data for training samples. Moreover, only the image
obtained by wavelet transform is considered, and whether the image obtained by other
methods has better feature distinguishability has not been studied deeply. In the future, we
can explore more methods to express characteristic images of sound signals, and continue to
study the optimal method of sound signal recognition based on image processing.

Author Contributions: Conceptualization, K.B.; methodology, K.B. and Z.C.; software, Z.C.; vali-
dation, Y.Z. (Yong Zhou); formal analysis, Y.Z. (Yong Zhou); resources, W.B.; data curation, W.B.;
writing—original draft prepara-tion, Z.C.; writing—review and editing, K.B.; visualization, N.Z.;
supervision, Y.Z. (Yongjie Zhai); project adminis-tration, Y.Z. (Yongjie Zhai); funding acquisition, Y.Z.
(Yongjie Zhai). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Energies 2022, 15, 4449 11 of 12

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, L.; Liu, S.; Li, Y.; Zhong, M.; Li, Y. Distributed fault detection and isolation for power system. Int. J. Robust Nonlinear

Control 2021, 32, 2143–2158. [CrossRef]
2. Bakhtadze, N.; Yadikin, I. Analysis and Prediction of Electric Power System’s Stability Based on Virtual State Estimators.

Mathematics 2021, 9, 3194. [CrossRef]
3. Peng, J.; Yang, P.; Liu, Z.; Sun, G. Double-Fed Wind Power System Adaptive Sensing Control and Condition Monitoring. J. Sens.

2021, 2021, 5753947. [CrossRef]
4. Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal

Process. 2018, 108, 33–47. [CrossRef]
5. Yang, Z.; Diao, C.; Li, B. A Robust Hybrid Deep Learning Model for Spatiotemporal Image Fusion. Remote Sens. 2021, 13, 5005.

[CrossRef]
6. Cao, P.; Zhang, S.; Tang, J. Preprocessing-Free Gear Fault Diagnosis Using Small Datasets With Deep Convolutional Neural

Network-Based Transfer Learning. IEEE Access 2018, 6, 26241–26253. [CrossRef]
7. Kafeel, A.; Aziz, S.; Awais, M.; Khan, M.A.; Afaq, K.; Idris, S.A.; Mostafa, S.M. An Expert System for Rotating Machine Fault

Detection Using Vibration Signal Analysis. Sensors 2021, 21, 7587. [CrossRef]
8. Ribeiro, L.C.; Bonaldi, E.L.; de Oliveira, L.E.L.; da Silva, L.E.B.; Salomon, C.P.; Santana, W.C.; Silva, J.G.B.; Lambert-Torres, G.

Equipment for Predictive Maintenance in Hydrogenerators. AASRI Procedia 2014, 7, 75–80. [CrossRef]
9. Song, Z.; Zhang, Z.; Jiang, Y.; Zhu, J. Wind turbine health state monitoring based on a Bayesian data-driven approach. Renew.

Energy 2018, 125, 172–181. [CrossRef]
10. Li, Q.; Hu, W.; Peng, E.; Liang, S.Y. Multichannel Signals Reconstruction Based on Tunable Q-Factor Wavelet Transform-

Morphological Component Analysis and Sparse Bayesian Iteration for Rotating Machines. Entropy 2018, 20, 263. [CrossRef]
11. Yu, J.; Bai, M.; Wang, G.; Shi, X. Fault diagnosis of planetary gearbox with incomplete information using assignment reduction

and flexible naive Bayesian classifier. J. Mech. Sci. Technol. 2018, 32, 37–47. [CrossRef]
12. Herp, J.; Ramezani, M.H.; Bach-Andersen, M.; Pedersen, N.L.; Nadimi, E.S. Bayesian state prediction of wind turbine bearing

failure. Renew. Energy 2018, 116, 164–172. [CrossRef]
13. Wang, D. An extension of the infograms to novel Bayesian inference for bearing fault feature identification. Mech. Syst. Signal

Process. 2016, 80, 19–30. [CrossRef]
14. Li, K.; Zhang, Q.; Wang, K.; Chen, P.; Wang, H. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter

and Diagnostic Bayesian Network. Sensors 2016, 16, 76. [CrossRef]
15. Yu, J.; Ding, B.; He, Y. Rolling bearing fault diagnosis based on mean multigranulation decision-theoretic rough set and non-naive

Bayesian classifier. J. Mech. Sci. Technol. 2018, 32, 5201–5211. [CrossRef]
16. Li, X.; Makis, V.; Zuo, H.; Cai, J. Optimal Bayesian control policy for gear shaft fault detection using hidden semi-Markov model.

Comput. Ind. Eng. 2018, 119, 21–35. [CrossRef]
17. Liu, J.; Hu, Y.; Wu, B.; Wang, Y.; Xie, F.; Wang, X. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring

Approach for Rolling Bearings. Sensors 2017, 17, 1143. [CrossRef] [PubMed]
18. Gan, H.; Jiao, B. Fault Diagnosis of Wind Turbine’s Gearbox Based on Improved GA Random Forest Classifier. DEStech Trans.

Eng. Technol. Res. 2018 , 206–210. [CrossRef]
19. Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D.; Vásquez, R.E. Gearbox fault diagnosis based on deep random forest

fusion of acoustic and vibratory signals. Mech. Syst. Signal Process. 2016, 76, 283–293. [CrossRef]
20. Han, T.; Jiang, D. Rolling Bearing Fault Diagnostic Method Based on VMD-AR Model and Random Forest Classifier. Shock Vib.

2016, 2016, 5132046.
21. Qin, X.; Li, Q.; Dong, X.; Lv, S. The Fault Diagnosis of Rolling Bearing Based on Ensemble Empirical Mode Decomposition and

Random Forest. Shock Vib. 2017, 2017, 2623081. [CrossRef]
22. Verellen, T.; Verbelen, F.; Stockman, K.; Steckel, J. Beamforming Applied to Ultrasound Analysis in Detection of Bearing Defects.

Sensors 2021, 21, 6803. [CrossRef] [PubMed]
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