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Abstract: Alumina concentration is an important parameter in the production process of aluminum
electrolysis. Due to the complex production environment in the industrial field and the complex
physical and chemical reactions in the aluminum reduction cell, nowadays it is still unable to carry
out online measurement and real-time monitoring. For solving this problem, a soft-sensing model of
alumina concentration based on a deep belief network (DBN) is proposed. However, the soft-sensing
model may have some limitations for different cells and different periodic working conditions such as
local anode effect, pole changing, and bus lifting in the same cell. The empirical mode decomposition
(EMD) and particle swarm optimization (PSO) with the DBN are combined, and an EMD–PSO–DBN
method that can denoize and optimize the model structure is proposed. The simulation results show
that the improved soft-sensing model improves the accuracy and universality of prediction.

Keywords: aluminum electrolysis; alumina concentration; soft-sensing model; empirical model
decomposition; particle swarm optimization

1. Introduction

Early soft-sensor modeling methods are usually developed based on some single
way. Due to the complexity of the actual industrial system, the model established by one
method often has difficulty meeting the requirements of the system prediction accuracy. In
recent years, researchers often integrated different methods according to different research
directions and combined the advantages of each method to establish a hybrid model.
Reference [1] used kernel principal component analysis to select the nonlinear principal
components of the model input data space, and then applied the least-squares support
vector-machine hybrid method to regression modeling to predict the calcination zone
temperature of the rotary kiln. Reference [2] proposed a dynamic soft-sensing modeling
method for silicon content in molten iron based on sparse robust least-squares support
vector-machine (R-S-LS-SVR) and multi-objective genetic parameter optimization, which
solved the problems that the silicon content in molten iron is difficult to detect directly
online and the testing process lagged behind. Reference [3] applied the population-searching
BP neural network algorithm improved by a binomial crossover operator to the process
of two-stage grinding to realize the online soft measurement of grinding the particle size.
References [4,5] applied sequential correlation information and fault-tolerant methods and
achieved double-layer distributed monitoring of large-scale industrial processes. With the
development of computer technology, more and more new methods are applied to soft-
sensing modeling, such as deep learning and transfer learning. Deep learning, as a kind of
data-driven approach, shows its great potential in many fields, such as soft-sensing model [6],
and long short-term memory network [7,8]. Transfer Learning (TL) has increasingly gained
attention since the issue of inconsistency of data distribution is a common barrier in many
general ML applications. In the last three years, TL methods were applied in soft-sensing
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model design [9], such as transductive moving window learner [10,11], Domain Adversarial
Neural Network Regression [12], Domain adaptation transfer learning [13], and some
soft-sensing model for small datasets [14,15].

Alumina concentration is the most important process parameter in the aluminum elec-
trolysis industry, and its real-time measurement and accurate control are the core work
content in aluminum electrolysis production management. At present, due to the high tem-
perature, high magnetic, strong coupling environment and complex process flow, there is no
alumina concentration sensor that meets the requirements in actual production. The alumina
concentration data can only be obtained by on-site sampling and laboratory testing, and it
usually takes several hours from collecting samples, cooling samples and sending them to
the laboratory for testing to obtaining alumina concentration data. Therefore, the soft-sensing
method becomes a scheme to obtain alumina concentration data in real time and is of great
significance to realize stable and efficient operations. Aiming at the problem of soft-sensing
modeling of alumina concentration in aluminum electrolysis industrial production process,
references [16,17] proposed a new online soft-sensing method of alumina concentration
based on the nuclear extreme learning machine (ELM) of the anode voltage and anode
current. The learning rate gives a more accurate estimate of alumina concentration, and the
prediction accuracy of this method can reach about 94%. Reference [18] proposed a deep
belief network (DBN)-based soft-sensing model for alumina concentration and introduced
time series to optimize the input parameters of the model to obtain more accurate results.
Simulations verified the accuracy and validity of the soft-sensor model. Reference [19]
proposed a probabilistic soft-sensor key performance index estimation method to predict
the alumina concentration and used the EM algorithm to deal with the problem of missing
data in the actual operation of aluminum electrolysis. Compared with the BP and LSSVM
method, the experimental results showed that it has higher prediction accuracy.

For the problem of the core parameter of the alumina concentration in the production
process of the aluminum electrolysis industry, which cannot be monitored in real time, a
soft-sensing method of alumina concentration based on deep belief network is proposed in
this paper. However, in the case of periodic operating conditions in the actual production
process, there is some noise in the process data, and the soft-sensing model has certain struc-
tural limitations. It is often considered that the DBN can be conveniently combined with
other optimization methods, such as SA–DBN, PSO–DBN and SSA–DBN [20]. Therefore,
an empirical mode decomposition method and a particle swarm optimization algorithm
are combined to optimize the soft-sensing model of alumina concentration. In some the-
oretical applications, the empirical mode decomposition is a data-processing method for
non-stationary and nonlinear time series [21], which can decompose complex series into
components with different characteristic scales, so as to isolate the interaction between
different components and reduce data noise. It is often combined with different neural
networks and applied to soft-sensing models such as short-term traffic flow prediction [22],
short-term wind power prediction [23]. Particle swarm optimization algorithm is often used
to find the optimal parameters, and is widely employed in vehicle speed prediction [24],
short-term power load prediction [25], etc.

The rest of this paper is organized as follows. The second section analyzes the core
parameters and different operating conditions in the aluminum electrolysis industry. The
third section introduces the EMD algorithm and PSO algorithm, and combines them with
DBN to design an improved alumina concentration soft-sensing model. The fourth section
introduces the data acquisition process and gives a simulation example of the improved
soft-sensing model of the alumina concentration in the aluminum electrolysis industry. The
fifth section summarizes some conclusions and gives some future work.

2. Analysis of Aluminum Electrolysis Process

The purpose of aluminum electrolysis industrial production is to produce aluminum.
In the production of modern aluminum electrolysis industry, the main method of smelting
aluminum is the Hall–Héroult method [26]. Aluminum electrolysis is operated in alu-
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minum reduction cells, as shown in Figure 1, which is the profile of modern aluminum
electrolysis. In the production process of aluminum electrolysis industry, the raw material
used for electrolysis is alumina, the electrolyte is molten cryolite, and carbon anode is used.
Electrolysis is generally operated at 940~960 ◦C, and the result of electrolysis is molten
aluminum on the cathode and CO2 on the anode. In the aluminum reduction cell, the core
reaction equation is:

2Al2O3(dissolved) + 3C(s) = 4Al(l)+ 3CO2(g) (1)
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2.1. Core Parameter Analysis

There are many important process parameters that affect the plant’s steady operation
to a certain extent. Therefore, monitoring the relevant core process parameters is helpful
to judge the operating conditions. The concentration of alumina in the electrolyte of
aluminum electrolysis cell is an important performance parameter, and its control range
is generally from 1.5% to 3.5%. When the concentration of alumina is too high, it leads
to alumina precipitation, the material balance in the cell is easy to be broken, and the
stability of the aluminum liquid is reduced. Finally, it affects the production process of the
whole aluminum electrolysis industry. When the alumina concentration is too low, the cell
resistance in the electrolytic cell increases rapidly, and the cell voltage of the electrolytic
cell changes significantly. The anode effect is prone to occur in the electrolytic cell, which
leads to the unstable state of the electrolytic cell in the industrial production of aluminum
electrolysis and affects the stable operation of production.

The main goal of aluminum electrolysis production process is to control the feeding
and anode–cathode distance (ACD), which ensures that the alumina concentration in the
electrolyte is controlled within a reasonable range and ensures the stable operation in the
electrolytic cell [26]. However, due to the complex field environment with high temperature,
strong magnetism and strong coupling in the aluminum electrolysis industry and the
complex physical and chemical reactions in the cell, it is difficult to achieve an online
real-time measurement of the alumina concentration. Therefore, the application of soft-
sensor technology in the industrial production process of aluminum electrolysis is of great
industrial application value.

When the cell condition is normal and stable and the change of ACD does not change
the shape of the anode bottom, there is a qualitative relationship between cell resistance
(apparent), alumina concentration, and ACD [26] as shown in Figure 2. It can be seen from
the figure that under the condition of a certain ACD, the relationship between alumina
concentration and cell resistance presents a concave curve, and there is an extreme point
in the medium alumina concentration area. The theoretical estimation shows that the
difference in the set value of ACD mainly affects the height of the relationship curve
between the cell resistance and the alumina concentration but has little effect on the shape
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of the relationship curve [27]. Therefore, the control system can acquire the level of alumina
concentration in industrial production by tracking the change of cell resistance in the
process of alumina concentration change when ignoring the change of polar distance. The
sampling value of the cell resistance can be calculated by the ratio of the cell voltage to
the cell current. Considering the actual acquisition of the process data, the bipolar voltage
(part of the cell voltage) and the anode current (part of the cell current) are chosen as the
auxiliary variables of the alumina concentration.
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2.2. Analysis of Different Operating Conditions

In the production process of the aluminum electrolysis industry, some operations are
repeated periodically. The analysis of several special conditions is given below.

2.2.1. Anode Effect

Anode effect is a special phenomenon when carbon anode is used in electrolysis.
Under the conditions of the cryolite alumina melt electrolysis and carbon anode used, the
anodic effect occurs only when the concentration of aluminum oxide in the electrolyte
decreases to a certain limit.

The appearance characteristics of the anode effect are described as follows.

(1) Bright with special sounds and creaks, sparks occur around the anode.
(2) Bubbles on the anode and electrolyte interface no longer precipitate, and electrolyte

stops boiling.
(3) Fluorocarbon gases are emitted, except for CO and CO2.
(4) In the industrial electrolytic cell, the voltage rises when the anode effect occurs

(generally 30–50 V, individual up to 120 V), and the low-voltage bulb in parallel
with the electrolytic cell is shining. Under high-voltage and high-current density, the
electrolyte and anode are overheated, and under constant-voltage supply, the series
current of the electrolytic cell decreases sharply when the anode effect occurs.

The field characteristics in the cell under anode effect are as follows.

(1) Reduction in alumina concentration in electrolyte.
(2) The concentration of the F− ion near the carbon anode increased, while the concentra-

tion of the oxygen-containing ion decreased.
(3) The carbon anode potential increased to the F− ion discharge potential, and the carbon

fluoride gas was precipitated, the anode surface was covered by a gas film.

Based on the above analysis, it can be seen that the occurrence of the anode effect
in the industrial electrolytic cell production conditions is a very complex process. In the
process of the anode effect occurrence, the process of taking corresponding measures to



Processes 2022, 10, 2537 5 of 16

extinguish the anode effect and the process of extinguishing the anode effect returning to
normal production, there may be varying degrees of noise in the collected data.

2.2.2. Anode Changing

The anode used in the prebaked cell is sent to the electrolysis process after forming,
roasting, and assembling the anode rod according to the specified size in the anode factory.
After each anode is used for a certain number of days, it is necessary to replace the residual
anode and reinstall the new anode, which is the anode changing. The anode changing
operates in accordance with a certain cycle. The anode changing process is shown in
Figure 3.
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Before the anode replacement, the cell controller will be notified and enter the moni-
toring program of the anode changing. In the process of anode changing, the cell voltage
rises slightly when the residual anode is removed. Under the monitoring program of anode
changing, the cell controller monitors the change of the cell voltage.

2.2.3. Aluminum Tapping

The aluminum liquid produced by electrolysis is deposited at the bottom of the furnace,
which needs to be extracted regularly and sent to the cast factory for casting. Small and
medium-sized electrolytic cells usually produce aluminum once in 2~3 days, and large
prebaked cells are once a day. The aluminum production process is shown in Figure 4.

Before the aluminum production operation, the cell controller will be notified and
enters the aluminum monitoring program. A series of conventional operations such as
feeding and aluminum tapping will cause certain noise and fluctuation in process data.
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3. Principle of Improved Method

In the process of complex aluminum electrolysis industrial production, different
operation conditions have different effects: On the one hand, there is noise in the parameter
data of the industrial production process; on the other hand, a specific soft-sensing model
of alumina concentration has certain structural limitations. In order to solve this problem,
a soft-sensing model of alumina concentration based on EMD–PSO–DBN which combines
the EMD algorithm with the PSO algorithm and the DBN soft-sensing model is designed
and predict the alumina concentration under the background of the aluminum electrolysis
industrial production.

3.1. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a data-processing method for non-stationary
and nonlinear time series, which was proposed in [28]. Recently, EMD-based multi-
algorithm combination model [29] was developed. The essence of EMD is to decompose
the original sequence into several intrinsic mode functions (IMFs) and residual components.
Each IMF component contains local characteristic signals at different time characteristic
scales of the original signal. At any time, any signal is composed of several IMFs, and the
residual component can reflect the slow change of the original signal.

The main calculation process of EMD is as follows:

(1) Calculate the maximum and minimum values of the original time series x(t) and use
the cubic spline curve to fit the upper and lower envelopes of the maximum and
minimum values, respectively; the average value of the upper and lower extreme
value envelopes is the mean line of the original time series.

(2) Subtract the mean line from the original time series to check whether the remaining
items are stationary and satisfy the IMF condition. Each IMF should satisfy the
following two conditions: the numbers of local extreme points and zero-crossing
points of the function are equal or at most one difference within the entire data
sequence. For any point, the average envelope of local maximum (upper envelope)
and local minimum (lower envelope) is 0. If the remaining items do not meet the
IMF conditions, repeat the above process until the IMF components that meet the
conditions are selected.

Let the mean value of the upper and lower envelopes be m(t), calculate
h(t) = x(t) − m(t), and determine whether h(t) satisfies the IMF condition. If not,
consider h(t) as a new x(t) and repeat the above operation.

hk(t) = hk − 1(t) − m(t) (2)
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where the hk(t)—the k-th calculation results in subtract m(t); m(t)—the mean value of the
upper and lower envelopes of the original time series x(t).

Until hk(t) satisfies the IMF condition, the first IMF is obtained, that is c1(t) and the
residual component r1(t) of the signal. (c1(t) = hk(t))

r1(t) = x(t) − c1(t) (3)

where c1(t)—the first component of the original time series x(t); r1(t)—Residual component
of signal, equal to the first remaining component of the subtracted the first component from
the original sequence.

(3) The above Equation (3) subtracts the selected IMF components from the original
sequence and repeats the above process for the remaining sequences until all the IMF
components are selected.

(4) When the original sequence cannot continue to decompose more IMF components
and becomes a monotonic function, the final residual part is the trend term of the
entire sequence, which is commonly expressed by RES.

RES = rn − 1(t) − cn(t) (4)

where RES—the final residual component.
By EMD method, the original time series x(t) can be expressed as Formula (5).

x(t) =
n

∑
i = 1

IMFi + RES (5)

where IMFi—the i-th IMF component.

3.2. Optimized the Number of Hidden Layer Nodes by Particle Swarm Optimization

Particle swarm optimization (PSO) is an optimization algorithm developed based on
the research of bird predation behavior [30]. Firstly, a particle swarm is randomly initialized,
and each particle may be the optimal solution of the solution space. And then calculate
the fitness function of each particle, update the particle attributes by comparing the fitness
value with the extreme point. Finally, push the particle toward the individual iterates in
the direction of the optimal value and the group optimal value until the global optimal
value is reached. At present, particle swarm optimization is widely used in many practical
problems, including multi-objective optimization [31], signal processing, and neural network
training [32]. Based on the design of the DBN soft-sensing model, this paper introduces the
PSO algorithm, which combines the PSO with the DBN network. It has the advantages of
the PSO algorithm’s fast convergence speed, high robustness, strong global search ability,
and does not require the characteristic information of the problem itself.

For the PSO algorithm optimization problem, the solution to be solved corresponds
to the particles in the biological population. Firstly, it needs to initialize a particle in the
solution space and a random particle in the search space, which constitute a population
X = {X1, X2, · · ·Xa}. The specific position is Xi = {xi1, xi2 · · ·Xin}. The solution space
corresponds to the position of each particle, and the fitness of each particle in the particle
swarm is solved by the set objective function. Then, each particle is iteratively solved on
its location, and the velocity Vi = {vi1, vi2 · · · vin} is constantly updated to search for new
solutions. In the process of solving, the PSO algorithm continuously optimizes and adjusts
according to two extreme values: the individual extreme value corresponds to Pid, and the
global extreme value corresponds to Pgd. After the above two extremums are found, the
particles iterative speed and position can be represented with the following two formulas
(6) and (7), respectively.

vk+1
id = wvk

id + c1r1

(
pk

id − xk
id

)
+ c2r2

(
pk

gd − xk
gd

)
(6)
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xk+1
id = vk+1

id + xk
id (7)

where vk+1
id —the speed of the i-th particle in the d-dimension after the k + 1-th itera-

tion; xk+1
id —the position of the i-th particle in the d-dimension after the k + 1-th iteration;

w-weight; c1, c2—the acceleration constants; r1, r2—the random number range [0,1].
The particle velocity should keep a certain constraint on the upper and lower limits to

ensure that the particle swarm algorithm can be within the effective speed, as shown in the
following formula.

vk+1
id =

{
vmax vk+1

id > vmax

−vmin vk+1
id < − vmin

(8)

where vmax—the upper limit of particle velocity; vmin—the lower limit of particle velocity.
The particle fitness (mean variance) is

fitness =
1
n

n

∑
i = 1

c

∑
j = 1

(
Yij − yij

)2 (9)

where n—the sample number; c—the number of neural network outputs; Yij—j the expected
values of sample i; yij—j the actual values of sample i.

The inertia factor w in the PSO algorithm has a great influence on the performance
of the algorithm. In the iterative process, the calculation process is easy to fall into the
local extremum point. In order to overcome this difficulty, the nonlinear inertia weight
is introduced:

w(t) = wmin + (wmax − wmin)exp

[
−k
(

t
tmax

)2
]

(10)

where wmax—the maximum value of inertia weight; wmin—the minimum value of inertia
weight; t—the iterative times; tmax—the maximum iterations.

From the above analysis, it can be seen that there are three major parts that play a
decisive role in the adjustment of velocity and position in the particle iteration process,
namely, the original velocity vid of the particle, the optimal position pgd − xk

gd of the

population, and the optimal position distance pid − xk
id.

There are three important parameters in the particle swarm optimization algorithm,
namely w, c1 and c2. w keeps the particles in the motion inertia, and c1 and c2 are the
weights when the particles accelerate to the individual and global optimal position. If w = 0,
the speed of the particle swarm has no memory; the particle swarm converges to the global
optimal position, and it cannot search the optimal solution. If c1 = 0, the particle swarm has
no cognitive ability, the convergence speed is accelerated, and it is easy to fall into the local
minimum problem. If c2 = 0, the particle swarm has no group ability, which is equivalent
to the particle swarm in independent search, and it is difficult to find the optimal solution.

The specific process of the PSO to optimize the DBN model is shown in Figure 5.
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3.3. Design of Soft-Sensing Model

Although the alumina soft-sensor model based on the DBN can achieve accurate
estimation of alumina concentration to a certain extent, due to the structural characteristics
of the DBN, the number of hidden layer nodes in RBM has a certain impact on the training
speed and prediction accuracy of the network. The number of hidden layer nodes of
the different DBN models is often determined by experience and experimental methods.
Therefore, the PSO optimization algorithm is introduced to optimize the number of the
RBM hidden layer nodes in each layer of the DBN structure. It can not only improve the
accuracy of the soft-sensor model, but also improve the universality of the model under
different working conditions.

The training of EMD–PSO–DBN is actually the soft-sensor modeling of PSO–DBN
with different decomposition modes after the EMD decomposition of the sample data, and
the structure of the DBN network is optimized by using the PSO algorithm. The empirical
mode decomposition principle in the previous chapter is combined with the PSO-optimized
DBN model to complete the soft-sensor training process of EMD–PSO–DBN. The flow chart
of soft-sensor model design based on EMD–PSO–DBN is shown in Figure 6.
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4. Experiment and Results

In order to verify the effectiveness and accuracy of the improved soft-sensing model
of the alumina concentration, the verification analysis is carried out with the production
process data of the aluminum electrolysis industry of the Zunyi Aluminum Factory. The
data acquisition process, experimental simulation results, and result analysis are as follows.

4.1. Data Acquisition

According to the above analysis, it is necessary to collect the main variable data of
the alumina concentration and the auxiliary variable data of the corresponding two-pole
voltage and anode current. The experimental data is collected from the A side of the
No. 2875 electrolytic cell in the Zunyi Aluminum Factory. There are 24 anode rods on the A
side, and each anode rod is equipped with an anode rod measuring device to collect the
voltage data and current data. A picture of the anode rod measuring device is shown in
Figure 7.
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The anode rod measuring device uses the RS485 communication mode to communicate
with the host computer to complete the data transmission, and the data are also displayed
in the field screen. The data collected in real time are shown in Figure 8.
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At present, due to the high temperature, high magnetic, strong coupling environment
and complex process flow, there is no alumina concentration sensor that meets the require-
ments in actual production. The alumina concentration data can only be obtained by on-site
sampling and laboratory testing, as shown in Figure 9. The whole measurement process
includes drill sampling holes, sampling, cooling the samples, bagging, and sending the
samples to the laboratory for assay and analysis.
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After data collection and data preprocessing, 600 sets of complete data are selected for
analysis, including 500 sets of data for training and 100 sets of data for testing.

4.2. Simulation Experiment

Firstly, the original sequence is decomposed by the EMD method, a total of 7 IMF
components and a RES-trend component are obtained, as shown in Figure 10. It can be
seen from Figure 10 that the frequency of each IMF component decreases sequentially from
high to low. According to the frequency of each IMF component, the IMF1, IMF2, and IMF3
are classified as high-frequency components, and the IMF4, IMF5, IMF6, and IMF7 are
classified as low-frequency components. The high-frequency, low-frequency and RES-trend
component are established, respectively, based on the PSO–DBN soft-sensing model, and
finally the high-frequency, low-frequency and RES-trend component are superimposed to
obtain the final alumina concentration prediction value.
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Figure 10. The result of EMD decomposition.

The soft-sensing models based on PSO–DBN are established for high-frequency, low-
frequency and RES-trend component, respectively, and finally the RES prediction results
of the high-frequency, low-frequency and trend component are reconstructed. The soft-
sensing model prediction results of the IMF1, IMF2, IMF3 and IMF4 components are shown
in Figure 11, and the prediction results of the IMF5, IMF6, IMF7 and REF components are
shown in Figure 12. It can be seen from Figures 11 and 12 that the overall trend-prediction
effect for the change of the characteristic components and trend component at different
times is relatively good, especially for the prediction of the low-frequency components,
which is almost consistent with the actual data after decomposition, but the prediction
effect for the high-frequency components is general.

The evaluation indexes of the comparison between the predicted value and the actual
value of the corresponding components of the soft-sensing model of PSO–DBN corre-
sponding to each IMF component and REF trend component are shown in Table 1, and the
number of hidden layer nodes optimized by the PSO algorithm is given too.

The predicted values of the soft-sensing model established by each IMF component
are reconstructed to obtain the final predicted value of the alumina concentration. The
comparison between the predicted value and the actual value is shown in Figure 13.
Compared with the soft-sensing model of the alumina concentration based on the DBN,
it can be seen that the predicted value of the improved soft-sensing model is closer to the
actual value, which improves the prediction accuracy of the model.
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Table 1. Evaluation indexes of soft-sensing models for IMF components.

Components Number of
Hidden Layers MAE RMSE R2

IMF1 24–28 0.0536 0.0677 0.6877
IMF2 50–31 0.0301 0.0426 0.5932
IMF3 36–45 0.0182 0.0238 0.9039
IMF4 19–20 0.0103 0.0122 0.9844
IMF5 33–35 0.0063 0.0080 0.9548
IMF6 41–53 0.0017 0.0021 0.9981
IMF7 36–20 0.0072 0.0083 0.9979
REF 21–23 0.0005 0.0005 0.9950
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Figure 13. Comparison of prediction and actual value of soft-sensing model for the alumina concentration.

Table 2 shows the data of the corresponding evaluation indexes of the two models.
The goodness of fit of the two soft-sensing models of the alumina concentration is above
0.9, which indicates that the models can accurately follow the change trend of the alumina
concentration. The MAE and RMSE values of the EMD–PSO–DBN soft-sensing model are
lower than those of the DBN soft-sensing model of alumina concentration, which confirms
that the prediction accuracy of soft-sensing model based on EMD–PSO–DBN is higher than
the DBN soft-sensing model and proves that the designed method is more suitable for
soft-sensing of the alumina concentration.

Table 2. Comparison of soft-sensing model in the test set.

Methods MAE RMSE R2

DBN 0.0219 0.0306 0.9950
EMD–PSO–DBN 0.0184 0.0259 0.9881

5. Conclusions

In this work, under multiple working conditions of complex industrial production pro-
cess, a soft-sensing model of the industrial process based on EMD–PSO–DBN is proposed
to solve the problem of data noise and the limitation of the DBN soft-measurement model.
First, the complex current sequence is decomposed into the IMF components with eight
feature scales by using the EMD algorithm, so as to isolate the mutual influence of different
components and achieve the purpose of removing noise. Then, in different electrolytic cells
or different operating conditions of the same electrolytic cell, the PSO algorithm is com-
bined with the DBN model to optimize the structure of the number of hidden layer nodes of
the soft-sensing model to improve the accuracy and universality of the soft-sensing model.
The proposed method is applied to the soft measurement of the alumina concentration in
the electrolytic aluminum production process; the results show that the soft-sensing model
based on EMD–PSO–DBN can effectively eliminate the influence of noise and optimize the
structure of the soft-sensing model. Because the prediction accuracy of soft-sensing model
based on EMD–PSO–DBN is higher than the DBN soft-sensing model, it is more suitable
for soft sensing of the alumina concentration in the aluminum electrolysis process.

At present, some achievements have been made in the research on the soft sensing of
the alumina concentration, but there are still some limitations. The current research mainly
focuses on the average alumina concentration of the whole cell, while for large aluminum
reduction cells, the significance of the distributed alumina concentration measurement is
greater than the average alumina concentration. Therefore, the future work is to estab-
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lish a distributed alumina concentration soft-sensing model for the distributed current to
realize the accurate prediction of the distributed alumina concentration. By combining
the intelligent control methods, its purpose is to realize the precise control of the alumina
concentration in the whole cell and the refined management of the aluminum reduction cell.
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