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Abstract: Flue gas produced by biomass fuel combustion contains various chlorine-containing
substances and is an important factor causing biomass boiler corrosion. The corrosion processes of
chlorine, hydrogen chloride and water on iron covered with an intact/damaged oxide film were
investigated under the high temperature of 1300 K through reactive molecular dynamics simulation.
The results show that the diffusion processes of oxygen and chlorine are similar and can be divided
into three stages: rapid diffusion, continuous diffusion, and no oxide film (stable). Oxygen diffusion
in Fe2O3 into a pure iron layer is the main cause of gas corrosion in iron/iron oxide systems. A
complete oxide film can hinder iron corrosion by chlorine and hydrogen chloride. Damage in an
oxide film significantly affects oxygen and chlorine diffusion and iron corrosion. However, such
influence is gradually reduced. The integrity of a protective film is the key to alleviating corrosion.
Water facilitates the dissociation of chlorine and hydrogen chloride, and it reacts with iron at high
temperatures to enhance corrosion. This study improves the understanding of the iron oxide/iron
corrosion from chlorine-containing gases from a microscopic perspective and is of great significance
to metal corrosion protection and biomass combustion technologies.

Keywords: chlorine; oxide film; corrosion; water; ReaxFF simulation

1. Introduction

The development of clean energy to replace fossil energy such as coal is the main
trend in the global energy transition. Among all the renewable energy, biomass energy
is considered a promising method in that it can solve both environmental and energy
problems. Biomass energy has the characteristics of environmental friendliness, low cost,
and carbon neutrality. However, the problems of ash accumulation, slagging, and corrosion
in the process of biomass combustion are more serious than in coal-fired boilers. The
various chlorine-containing substances in the flue gas produced by the combustion of
biomass fuel are important factors that cause corrosion of heat exchangers, boiler walls,
and chimneys [1].

Wang et al. [2] used the weight gain method to study the corrosion reaction kinetics
of chlorine on the heating surface during the co-firing process of coal and biomass and
established the kinetic equation of the corrosion reaction. Cantatore et al. [3] established a
model for chloride-ion penetration permeating a crack-free oxide scale by experimental
analysis and density functional theory and provided mechanistic insight into the high-
temperature corrosion of biomass and waste-fired boilers in the environment containing
HCl or KCl. Liu et al. [4] performed a series of 168 h corrosion experiments on a tube
furnace involving Sha Erhu (SEH) ash, Da Nahu (DNH) ash, straw ash, wood chip ash,
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and their mixtures. The results show that DNH ash and wood chip ash are less corrosive
to the samples than high chlorine fuels. Mixtures of DNH ash and straw ash can mitigate
corrosion by forming silicates or aluminosilicates. Chen et al. [5] investigated the chlorine-
induced corrosion behavior of Q235 steel in mixed gas (N2 0.26%; HCl 1.6%; O2 3.2%;
CO2) at 500 and 600 ◦C. Thicker Fe2O3 outer and Fe3O4 inner layers were formed at both
temperatures. A large number of holes appeared in the Fe3O4 layer at 600 ◦C, indicating
the formation of volatile metal chlorides at the metal/oxide interface, which then diffuse
outwards and eventually become oxides in the region of higher oxygen partial pressure.

High-temperature corrosion tests for biomass combustion processes are often time-
consuming, costly, and difficult to operate. By contrast, molecular simulations avoid
these barriers to a certain extent and provide insight into the corrosion mechanism from a
microscopic perspective. Vincent et al. [6] provided a detailed summary of a study about
atomic and nanoscale corrosion. Reactive force field molecular dynamics (ReaxFF-MD)
has been used in recent years for such research [7–15]. Jeon et al. [16] studied the growth
mechanism of oxide on Fe (100), (110), and (111) surfaces under various temperatures
and external electric fields. The results show that ReaxFF-MD successfully simulates the
oxidation mechanism of this system and provides additional information for the existing
experimental data. Liu et al. [17] studied the corrosion behavior of iron in liquid lead by
using the generalized embedded atom and molecular dynamic methods. The result showed
that stripped Fe atoms diffused at a low rate but penetrated into the lead interior. Lead
atoms penetrated into the interior of iron at high proportions but hardly penetrated into
the iron interior. The main diffusion mechanism of Fe atoms in lead is the interstitial and
the first-nearest neighbor (1 NN) hopping mechanism, which improves the understanding
of corrosion. Li et al. [18] studied the lead-induced degradation of passive film of Inconel
690TT alloy in high-temperature and high-pressure water by experiments and density
functional theory. DorMohammadi et al. [19] used ReaxFF-MD to study the initial stage of
iron corrosion in pure water while also applying an external electric field. Farzi et al. [20]
used molecular dynamics to investigate the molecular detail of Fe3C corrosion in a sulfuric
acid solution in the presence and absence of thiophene as an inhibitor.

Most studies focused on metal corrosion in a single corrosive gas or liquid or the
growth mechanism of metal oxides, which is the initial stage of metal corrosion. In this
work, the reaction molecular dynamic method is used to study the role of intact/damaged
oxide film and water in the iron chloride corrosion process. In this paper, three stages of
oxygen and chlorine diffusion are obtained by focusing on the law of element diffusion
and the structural changes of the model in the corrosion process. The corrosion law of
chlorine-containing gas on iron/iron oxide is analyzed from the microscopic point of view,
and the dominant effect of oxygen diffusion on chlorine diffusion and iron corrosion is
revealed. One of the purposes of this paper is to explore the protection of the metal oxide
film against chlorine corrosion. The iron oxide film formed by natural oxidation is usually
sparse, so we add a gap in the model to simulate the state of the damaged oxide film and
analyze the effect of oxide film density on corrosion protection. It is beneficial for the
discussion of subsequent metal corrosion protection measures. Moreover, water vapor is
added to the mixed gas of the model, and it is confirmed that the water vapor in the flue
gas has a promoting effect on iron corrosion. This paper provides theoretical support for
effectively alleviating the corrosion problem, which is of great significance for promoting
the popularization and utilization of biomass energy and effectively inhibiting the corrosion
of the heating surface of biomass boilers.

2. Simulation Methods and Details
2.1. ReaxFF-MD Simulation

The reaction’s molecular dynamics (MD) simulation is based on the reaction field
(ReaxFF) developed by van Duin et al. [21]. In contrast to the field model used in non-
reactive MD simulations, ReaxFF allows the modeling of chemical reactions, including
the breaking and formation of chemical bonds. Moreover, ReaxFF implicitly processes
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chemical bonds, unlike quantum mechanics calculations, which are expensive to com-
pute. Thus, ReaxFF significantly improves computational efficiency and bridges the gap
between nonreactive MD and computational quantum chemistry. Therefore, the simulation
of the reaction’s molecular dynamics is suitable for studying complex systems, such as
metal–electrolyte interfaces.

Similar to the nonreactive force field, ReaxFF divides the system energy into various
parts (Equation (1)).

Esystem = Ebond + Eover + Eunder + Eval + Epen + Etors + Econj
+EvdWaals + ECoulomb

(1)

where Ebond is the bond energy; Eover and Eunder are the correction terms of over coordination
and undercoordination, respectively; Eval is the bond angle term; Epen is the extra energy
loss of the two double bond systems; Etors is the torsion angle term; Econj is the conjugate
energy; EvdWaals is the van der Waals force term; and ECoumolb is the coulomb force term.
All but the last two are considered dependent on the bond order and local environment.
See the work of van Duin et al. [21] and Chenoweth et al. [22] for a detailed description
of ReaxFF.

2.2. Simulation Details

Figure 1 shows the schematic of the corrosion model established in this work. Model A
contains only chlorine, hydrogen chloride, and iron oxide to verify the corrosion resistance
of Fe2O3 to such gases (Figure 1A). Model B is pure iron covered with a Fe2O3 film, wherein
the right film has holes (Figure 1B), to simulate the corrosion of the metal wall’s surface by
chlorine and hydrogen chloride during biomass combustion. Model C is used to simulate
the corrosion of the Fe2O3/Fe system by aqueous mixed gas (Figure 1C). A total of 756 iron
atoms are present on both sides of models B and C. The number of Fe2O3 on the right side
of model B is 24, and that of Fe2O3 films is 40. See Table 1 for additional details.
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Figure 1. Simulation models (A–C).

Table 1. Details of the simulation systems.

Model N(Fe) N(Fe2O3) N(Cl2) N(HCl) N(H2O) Size of the Simulated Box

A - 40 + 40 + 40 64 64 - 25.37 Å × 9.82 Å × 66.42 Å
B 756 + 756 40 + 24 128 128 - 25.37 Å × 9.82 Å × 147.48 Å
C 756 + 756 40 + 40 128 128 128 25.37 Å × 9.82 Å × 168.94 Å

The temperature in the biomass boiler or biowaste incinerator is set at 300–1100 ◦C
according to the different properties of the furnace body material and fuel [23]. In this study,
the simulated temperature is 1300 K, the simulated time step is 0.25 fs, the number of steps
is 2 × 106, and the total duration is 0.5 ns. Periodic boundary conditions are applied along
the x, y, and z-directions. The temperature is controlled with a Nose–Hoover thermostat.
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3. Results and Discussion
3.1. Anti-Corrosion Verification of Iron Oxide

For the corrosion of iron oxide by chlorine, the oxygen element in the iron oxide
must be removed first so that the iron oxide produces enough defects, and then iron oxide
combines with chlorine to form corrosion. There are two main ways to remove oxygen.
One way is to make the iron oxide system absorb enough energy so that oxygen atoms on
the surface form oxygen and escape, which is very slow and random. The other way is to
make the protonated oxygen combine with another proton to form water molecules that
evaporate away immediately. Chlorine corrosion can only deoxidize through the former
way, while hydrogen chloride can effectively remove oxygen atoms through two combined
ways, thus bonding iron with chlorine.

Figure 2 shows the structure of model A (0.5 ns) at the end of the simulation. The
results show that chlorine hardly reacts with iron oxide, but some oxygen atoms in the
iron oxide on the hydrogen chloride side begin to detach. The removal process of oxygen
in iron oxide by hydrogen chloride is shown in Figure 3. The hydrogen dissociated from
hydrogen chloride is combined with the oxygen on the surface of the iron oxide; the
protonated oxygen continues to move outward, with an increased probability of collision
with hydrogen, and the protonated oxygen escapes from the surface of the iron oxide
surface after combining with another hydrogen ion to form a water molecule.
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3.2. Role of Intact/Damaged Oxide Film in Chlorine Corrosion

Model A shows that Fe2O3 is more resistant to chlorine corrosion. However, the
simulation results change significantly when the iron oxide film covers the surface of pure
iron. Normally, the iron oxide rust on the iron surface is a loose and porous structure.
Therefore, a gap is designed in the iron oxide layer on the right side of model B to simulate
the effect of rust voids on corrosion protection. Figure 4 shows that the Fe2O3 film will
gradually mix with the iron atomic layer to form FexOy mixtures, which will eventually
be corroded by chlorine gas and hydrogen chloride. A gap is evident on the right side of
the film, which is corroded earlier. The gap gradually expands, and thus the Fe2O3 film
structure rapidly changes and is eventually completely corroded.
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Figure 5 shows the distribution of iron atom numbers at the beginning and end
(t = 0.5 ns) of the simulation of model B. At the beginning of the simulation, the Fe2O3 layer
on the right side of model B has a gap defect, so the number of iron atoms is slightly less
than that on the left side. After the simulation, the numbers of corroded iron atoms on both
sides are 97 (left) and 71 (right). Among them, the numbers of iron atoms moved by the
Fe2O3 layers on both sides are 80 (left) and 48 (right). Therefore, only 17 (left) and 23 (right)
iron atoms come from the iron’s atom layer; that is, 2.25% and 3.04% of the iron atoms on
both sides, respectively, were corroded (calculated from 756 iron atoms on each side, as
shown in Table 1). For such simulation results, we believe that due to the gap defect on the
right side, chlorine and hydrogen chloride can directly react with iron atoms through the
gap of the Fe2O3 layer, so the side with the gap has a higher probability of iron corrosion.
In addition, further analysis of the oxygen and chlorine diffusion behavior is required.

The diffusion of oxygen and chlorine is a remarkable phenomenon. It is found that
the diffusion processes of oxygen and chlorine are similar and can be divided into three
stages: rapid diffusion, continuous diffusion, and no oxide film (stable), corresponding
to the reduction of the oxide film, the decomposition of the oxide film, and the corrosion
of pure iron, respectively. In order to quantitatively analyze the diffusion of elements,
the diffusion distances of oxygen and chlorine relative to their respective starting lines
are averaged. The starting line of oxygen is the boundary line between Fe2O3 and iron,
whereas the starting line of chlorine is the boundary line between Fe2O3 and gas. Only the
atoms passing through the reference line are analyzed (the direction shown in Figure 4).
Initially, chlorine and hydrogen chloride continuously collided with the Fe2O3 surface, but
the reaction was difficult. By contrast, the oxygen in the Fe2O3 quickly diffuses into pure
iron. Figure 6 shows that 0–50 ps is the rapid diffusion stage of elements. The average
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diffusion distance of oxygen reaches 6 Å(O_L) or 4.24 Å(O_R). Oxygen continues to spread
at a high rate after the rapid diffusion stage and stabilizes after approximately 300 ps. Due
to the presence of the gap on the right side of the oxide film, the oxygen concentration is
lower. Accordingly, the overall diffusion distance of oxygen on the right side is slightly
lower than that on the left side but tends to be consistent in the later stage.
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As oxygen in the Fe2O3 diffuses into the interior of the pure iron, the structure of the
Fe2O3 layer changes. The chlorine dissociated by the chlorine gas and hydrogen chloride
replaces oxygen to bond with iron. The amount and rate of Cl diffusion into iron are
significantly smaller than those of oxygen due to the Fe2O3 layer inhibition. The average
spreading distances at 0–50 ps are 1.2 Å(Cl_L) and 2.33 Å(Cl_R). Sufficient oxygen transfer
is needed to cause defects in the Fe2O3 layer near the side of the gas and react with chlorine
and hydrogen chloride. The average diffusion distance of Cl increases at an extremely
slow rate after 50 ps until the end of the simulation. The hole in the oxide film makes the
diffusion distance of the right Cl always higher than that of the left side. However, the
diffusion distances tend to be the same in the later stage because of the disappearance of
the oxide film.

In this work, the corrosion degree is described by the number of corroded iron atoms
and contains two parts: from the Fe and Fe2O3 layers. The corrosion degree starts to
develop in the rapid diffusion stage of the element. However, a certain delay relative to the
diffusion of oxygen and chlorine (Figure 6, approximately 20–40 ps, 40–80% of the rapid
diffusion stage) can be observed because oxygen diffusion is required to reach a certain
amount for the reaction between chlorine and FexOy. On the right side, the oxidation time
is incomplete, and the corrosion start time is early; that is, the delay time is relatively short.
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The number of corroded iron atoms on the left side is nearly linear, while the growth rate
on the right side gradually decreases. At 300 ps, Fe_L and Fe_R are 43 and 57, and the
numbers of molecules on both sides of the Fe2O3 film are 40 and 24 (Table 1). The left
oxide film is nearly obscured (completely changed into FexOy mixture), and the right one is
completely corroded. When the simulation entered the late stage (>300 ps), the oxide film
on the left side was gradually corroded; therefore, the protective effect on the iron atomic
layer was greatly reduced. Since the oxide film on the right side has a gap defect and the
delay time is lower than that on the left side, the destruction of the complete oxide film on
the left side has a greater impact on the number of corroded iron atoms in the late stage.
In addition, the number of iron atoms on the left and right sides is different. This is the
reason why the increasing trend of the number of corroded iron atoms on the left side is
more severe than that on the right side in the late stage. It can also be explained well from
the simulation results in Figure 4.

In the slow diffusion stage of Cl (t > 50 ps), the number of corroded Fe atoms increases
at a fast rate. This finding indicates that the diffusion ability of Cl to iron oxide is poor. The
increase in the diffusion distance is mainly due to the gas–solid interface movement caused
by iron corrosion. After the delay time, the chlorine diffusion also represents the iron
oxide/iron corrosion. In addition, Fe_R is always larger than Fe_L at 0–400 ps. Moreover,
Fe_R has more parts from the iron layer than Fe_L even though it is surpassed in the later
stage. This manifestation indicates that the Fe2O3 film with a gap has poor protection. In
the biomass combustion process, the oxide film produced on the metal wall often contains
various defects, such as cracks and holes, and thus has little protection.

Our molecular dynamics simulation results are in trend with some experimental
results. Król et al. [24] placed the St41K (Fe 98.868; Cr0.02; P 0.01; Si 0.02; Mn 0.87; Ni 0.01;
Mo 0.001; Al, 0.043; S 0.008; C 0.15) boiler steel sample in the environment of a boiler furnace
for 1152 h at 1023–1173 K to observe the chlorine corrosion phenomenon. The experimental
results are shown in Figure 7. Figure 7a shows that the surface of the sample is covered
with a layer of porous corrosion products. The outer porous surface of the St41K boiler steel
is mainly composed of sulfur and chlorine-containing iron oxides. Approximately 200 µm
of a pure iron oxide intermediate layer with a distinct crystal structure can be observed
between the corrosion layer and the metal surface (Figure 7b). The presence of chlorine
in pt1, pt2, and pt3 indicates that chlorine diffuses into the metal through the corrosion
product layer (Figure 7c). The experimental results of Król et al. can be verified with model
B. We can also summarize the corrosion diffusion behavior of chlorine in this system.
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In summary, the corrosion of iron oxide/iron system by chlorine can be divided into
two processes (Figure 8): (1) the oxygen diffusion from iron oxide to iron, which changes
the structure of the iron oxide; (2) the reaction of chlorine on the surface of iron oxide
or the direct reaction with iron through the iron oxide film. Both processes occur nearly
simultaneously. However, process 2 lasts longer because the oxide film has far fewer
molecules than the gas.
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3.3. Role of Water

Biomass fuel has a large amount of water, and its material composition contains
hydrogen, so its flue gas often contains a large amount of water vapor. The corrosion
process of the system in an aqueous atmosphere is studied. Figure 9 shows the corrosion of
the iron/iron oxide system over time with aqueous chlorine and hydrogen chloride. The
conditions on both sides are basically the same due to the symmetry.
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The amount of oxygen that diffuses into the iron layer is higher in model C than
in model B (dry chlorine and hydrogen chloride corrosion). The statistics results show
that the number of oxygen atoms on the gas side at the end of the simulation is less than
the initial time. This finding indicates that a large amount of water reacts with iron after
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the destruction of the iron oxide layer. Water makes chlorine and hydrogen chloride
dissociable, thereby providing a high density of chlorine, and water can react with iron at
high temperatures. Accordingly, the reaction at the gas–solid interface begins early, and the
reaction rate is fast. Figure 10 shows the distribution of iron atoms in model C. The number
of corroded iron atoms on the left side is 116, of which 36 from the iron atomic layer (756)
is approximately 4.76%. The right side is approximately 4.50%, which is similar to the left
side. Therefore, the corrosion ratio of the Fe layer in model C is 4.63%.
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Table 2 summarizes the corrosion amount of the iron layer in the models, excluding
the part from iron oxide. A total of 17 iron atoms are corroded from the iron atomic layer.
When the oxide film is damaged, or the mixed gas contains water, the corrosion will be
further enhanced, and the corrosion amount is 23 and 71 (36 + 35), respectively. It follows
that the presence of water in chlorine and hydrogen chloride mixed gas will aggravate the
corrosion of iron atoms.

Table 2. Corroded iron atoms of models.

Model Factor Corroded Iron Atoms (Fe Layer) Proportion

A – – –

B
Oxide film 17 2.25%

Cracked oxide film 23 3.04%
C Water 71 4.63%

4. Conclusions

ReaxFF-MD was used to simulate the corrosion of an iron oxide-coated iron matrix
by chlorine and hydrogen chloride mixed gas under the high temperature of 1300 K. The
difference between the complete iron oxide film and notched film in the corrosion process
and the role of water in the corrosion process were studied.

Ferric oxide is stable and is resistant to corrosion by chlorine and hydrogen chloride.
When iron oxide is coated on the surface of pure iron, oxygen atoms easily diffuse into pure
iron, and the corrosion resistance is greatly weakened. Finally, the corrosion number of the
pure iron layer is about 2.25%. Therefore, the iron oxide film can only hinder iron corrosion
by chlorine and hydrogen chloride to a certain extent. When the oxide film is damaged or
contains water in the mixed gas, corrosion is further enhanced, and the corrosion amount
is about 3.04% and 4.63%, respectively.

The diffusion processes of oxygen and chlorine are similar and can be divided into
three stages: rapid diffusion, continuous diffusion, and no oxide film (stable). The diffusion
distance of oxygen is always greater than that of chlorine. The damage to the right oxide
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film makes the diffusion distance of oxygen slightly lower than that of the left one (complete
oxide film). The diffusion distance of chlorine is higher than that of the left one, but the
difference gradually decreases in the later stage. The iron oxide/iron corrosion is delayed
relative to elemental diffusion, which is approximately 40–80% of the rapid diffusion stage.
The delay time on the side of the complete oxide film is relatively long. The diffusion
distance of chlorine mainly comes from the deviation of the gas–solid interface caused by
corroded iron.
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