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Abstract: The pH treatment unit is widely used in various processes, such as wastewater treatment,
pharmaceutical manufacturing, and fermentation. It is essential to get the on-specifications product.
Thus, controlling pH is key management for accomplishing the manufacturing objective. However,
the highly nonlinear pH characteristics of acid–base titration make pH regulation difficult. Applica-
tions of artificial intelligence for process control have progressed and gained popularity recently. The
development of reinforcement learning (RL) control with a deep deterministic policy gradient (DDPG)
algorithm to handle coupled pH and liquid level control in a continuous stirred tank reactor with a
strong acid–base reaction is presented in this study. To validate the RL model, the reward functions
are created individually for the level and pH controls. The grid search technique is deployed to
optimize the hyperparameters of the RL controller models, including the number of nodes in the
hidden layers and the number of episodes. The control performance of the proposed RL control
system was compared with that of the proportional-integral controller in a servo-regulatory test.
The simulation results show that the proposed RL controllers outperform the proportional-integral
controllers in approaching setpoints faster, with better performance and less oscillation.

Keywords: reinforcement learning; artificial intelligence; pH control; deterministic deep policy
gradient; grid search

1. Introduction

pH treatment is used extensively in industrial processes to maintain product quality
within the desired range of specifications. Therefore, controlling pH is essential for achiev-
ing the required product specification. For example, the pH of the effluent stream from a
wastewater treatment plant must be maintained within environmental regulations, the pH
of the liquid fertilizer must be adjusted to control soil quality and enhance plant growth [1],
and the pH of sugarcane juice after bleaching must be treated by alkalinization [2]. Due to
the high nonlinearities of pH, advanced control techniques, especially model-based control,
have received considerable attention in the design of pH control systems over the past few
decades. The model-based controller can be constructed by using both physical and neural
models. Chi et al. [3] use the ARX cascaded neural network structure for latent-variable
nonlinear model predictive control in pH adjustment. Estofanero et al. [4] used the neural
ARIMA model to control the HCl-NaOH neutralization process with a model predictive
controller (MPC). Mahmoodi et al. [5] presented a nonlinear predictive control based on the
Wiener–Laguerre model to control the pH neutralization process. Although model-based
pH control is highly accurate and efficient, it requires more time for process modeling and
acid–base reaction determination [6].

The reinforcement learning (RL)-based control has been developed and has evolved for
two decades. The RL structure consists of an agent that learns and maps actions to maximize
a numerical reward. The deep Q-learning network (DQN) was an early developed RL
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algorithm that was used to play Atari games by receiving pixels and game scores as inputs.
Dressler et al. [7] performed drop microfluidic control using the RL with the DQN algorithm
in a real experiment. The deterministic policy gradient (DPG) algorithm was developed
by Silver et al. to handle continuous states and actions [8]. Lillicrap et al. presented an
actor-critic RL algorithm known as the deep deterministic policy gradient (DDPG) in which
the DPG is an actor and the DQN is a critic to control continuous environments. Fujii et al.
used the actor-critic RL algorithm to apply a self-tuning two-degree-of-freedom control
based on reinforcement learning to film production [9]. The DDPG has some drawbacks
requiring numerous training episodes to find the solutions [10]. Yoo et al. applied a Monte
Carlo method to improve actor learning in the DDPG algorithm for controlling a batch
polymerization process [11].

In this work, an RL-based control system is proposed to handle the coupled pH and
liquid level control in a strong acid–base continuous stirred tank reactor. The DDPG is
used to develop multiple agents for level control and pH control to make continuous
control action decisions for the optimal flow rate of the feed and titrant streams to achieve
desired setpoints. In model training, a mathematical model of the pH process is used as the
environment, and the reward is calculated based on reward policies that are defined with
output errors. The proposed RL controllers are evaluated with the servo-regulatory test
under the MATLAB/Simulink environment. The main contributions of this paper can be
summarized as follows:

1. Develop the RL control using the multi-DDPG agents to handle the multivariable pH
process with highly nonlinear dynamics and use the grid search—hyperparameter
tuning technique—to optimize the RL control performance.

2. Study the control performance of the pH and level control by comparing the RL controller
with multi-DDPG agents and the multi-single-input and single-output controllers.

The remainder of this work is divided into the following sections: Section 2 integrates
the concept of actor-critic learning, which is the base knowledge leading to the DDPG algo-
rithm and presents the grid search hyperparameter tuning concepts with the performance
evaluation. Section 3 presents the procedure for RL development for the pH process that
consists of process modeling, network, policy design, and algorithm setup. Section 4 shows
the performance of the proposed control system with the servo-regulatory test compared
with the proportional-integral (PI) control. Finally, conclusions are drawn in Section 5.

2. Preliminary
2.1. Reinforcement Learning Control

The process of learning what to do and how to map a situation to action in order
to maximize numerical rewards is known as reinforcement learning (RL). RL has been
conducting active research in the control system to choose the best control action. Syafiie
and colleagues [12] used the model-free learning controller (MFLC) based on reinforcement
learning with the Q-learning algorithm for pH process control. In the Q-learning algorithm,
Q-values are updated in the Q-table by selecting the optimal action from the maximum
Q-value to obtain the optimal policy. Shah and Gopal [13] used a model-free predictive
controller based on reinforcement learning to control the coolant flow velocity using a fuzzy
inference system (FIS) with Q-learning as an approximator for tuning the PID controller.
The disadvantage of Q-learning is that it has a finite set of states and actions. With the
improvement in artificial intelligence technology, it has been utilized to improve the RL
learning model for making the sequence of decisions. Alves and Dutra [14] proposed
the RL pH controller with a particle swarm optimization (PSO) algorithm to vary the RL
hyperparameters. The actor-critic algorithm is applied the value function approximation
stochastic policy to work with a continuous space of states and actions. Sedighizadeh and
Rezazadeh [15] applied the RL-based adaptive PID controller to wind energy conversion
systems. Actor-critic learning with a deep neural network (DNN) is used as an approxi-
mator for parameters in the PID controller. The actor-critic learning architecture consists
of three parts: an actor, a critic, and a stochastic action modifier (SAM). The actor and the
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critic can use the input data and hidden layers of the DNN together. The SAM is used to
generate the actual PID parameters based on the recommended parameters from the actor
and the estimated signal from the critic.

As aforementioned, a Q-table approach in which data are filled into the table to select
the appropriate value may be unsuitable for a continuous action system learning from
large amounts of dynamic data. Furthermore, the application of reinforcement learning
in process control has primarily been studied in a single-input and single-output control
system. This work has developed a model-based RL controller with multi-DDPG agents
with actor-critic neural networks.

Because the pH dynamics are more nonlinear than the liquid level dynamics, imple-
menting a single DDPG agent capable of controlling both the pH and the liquid level at the
same time is difficult. In addition, the MATLAB software does not support normalization
through an input layer of the actor-critic neural network by default, resulting in diminished
learning efficiency. Thus, the DDPG agent has been designed to control the liquid level
and pH separately. The RL system has the main characters, which are the agent and the
environment. The agent stays and interacts with the environment. The agent observes
the state (St) to do an action (At) and gets the reward (Rt) signal returning. Then the envi-
ronment generates the reward (Rt+1) and the next state (St+1) in each iteration. The agent
contains two components which are the policy and the reinforcement learning algorithm.
Policy mapping determines an action based on the state of the environment. The learning
algorithm updates the policy parameters continuously based on action, state, and reward.
The objective of the agent needs to maximize its cumulative reward. The RL overview is
shown in Figure 1.
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Figure 1. An overview of the RL structure.

A standard reinforcement is considered when an agent interacts with a stochastic
and fully observable environment by choosing the sequent actions in a discrete-time step
to calculate the cumulative reward (Gt), which is defined in Equation (1). This series
of processes is called the Markov decision process (MDP). It is necessary to reduce the
importance of discrete rewards in the future using the discount factor (γ), where γ ∈ [0, 1]
is a discount factor that determines the importance of rewards.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . = ∑∞
k=0 γkR(t+1)+k (1)
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A state-action value function, Qπ(St, At), is defined to estimate the performance of
an action in the state to maximize the reward following a target policy (π). The long-term
reward expectation is earned for each action-value function following Equation (2).

Qπ(St, At) = Eπ [Gt|St = S, At = A ] (2)

Q-learning is a typical type of off-policy learning that updates a target policy using
samples generated by any stochastic behavior policy in an environment. It has the goal
of estimating the Q-value or state-action value. Following the Bellman equation for the
action-value function, the Q-value is updated by Equation (3). In Q-learning updating,
the behavior policy followings an epsilon-greedy exploration strategy to sample the next
actions At+1. Then, the A′ is selected from the action that makes the largest Q-value
following the target policy

Q(St, At) = Q(St, At) + α
[
rt+1 + γ ·maxA′∈AQ(St+1, A′)−Q(St, At)

]
(3)

where α is the learning rate.

2.2. Deep Deterministic Policy Gradient Algorithm

The DDPG uses an actor-critic method that significantly improves the algorithm to
handle a continuous action space [16]. It has two neural networks: the actor network, µ
(with parameter θµ), and the critic network, λ (with parameter θλ). The actor estimates the
value function between states and actions, whereas the critic evaluates the impact.

The schematic diagram of the DDPG agent is illustrated in Figure 3. The action
interacts with the environment to get the following observation and reward. The replay
memory buffer stores observation, action, next observation, and reward. An N-size batch is
sampled randomly from the replay memory buffer in each iteration. The actor and critic
target networks are used to determine the Q-value in the next observation and insert it
into the actor target network to get action (µ). The action obtained from the actor target
network is used to determine the Q-value in the next observation. The Q-value obtained
from the main network is used to find loss from Equation (4) by gradient distribution to
update the critic network. The actor network is updated based on the prediction from the
critic network with the policy gradient as in Equation (5). Noise is added into an action (µ)
obtained from the actor network to improve exploration efficiency as shown in Equation.

The loss function for updating the critic network is shown as follows:

L = E
[
(R + γQ(Si+1, µ(Si+1))−Q(Si, Ai))

2
]

(4)

The policy gradient for updating the actor network is given in Equation (5).

∇θµ
J =

1
N ∑N

i=0 (∇AQ(Si, µ(Si)|θλ ) · ∇θµ
µ(Si

∣∣θµ )) (5)

The equation of action from the actor network for improving the exploration efficiency
is shown as follows:

At = µ(St) + ε (6)

where µ represents the stochastic action policy and ε represents the stochastic noise.

2.3. Gated Recurrent Unit Network

The gated recurrent unit (GRU) is the improved artificial neural network that can
solve the vanishing gradient problem. It uses two vectors, the update gate and reset gates,
to choose which information should be passed to the output. Moreover, the relevant
information to the prediction can be kept without washing through time. Figure 2 depicts
the GRU unit structure. The update gate function (zt) in Equation (7) helps the model to
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decide which information from the previous time steps can be passed along to the next
time steps.

zt = σ(Wz · [ht−1, xt]) (7)

where xt is an input in the GRU network unit and ht−1 is the hold information from the
previous t − 1 units. These two parameters are multiplied by their weight (Wz). The results
are applied with the sigmoid activation function to force the result between 0 and 1.
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The reset gate function (rt) is used to decide which of the past information needs to be
forgotten. It can be calculated with the following equation:

rt = σ(Wr · [ht−1, xt]) (8)
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This formula is the same as Equation (7). The difference is in the weights and the
gate usage.

The current memory content (h̃t) is the function, as shown in Equation (9), that uses
the reset gate to store the relevant information from the past. The final value is applied
with the hyperbolic tangent activation function (tanh). Afterwards, the current memory
content and the hold information are validated by Equation (10) that determines which
information needs to be collected. The ht vector holds the information and passes it to the
next network.

h̃t = tanh(W · [rt ∗ ht−1, xt]) (9)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (10)

2.4. Hyperparameter Tuning Technique

The grid search technique is used to find the optimal model hyperparameter to in-
crease the model performance. The grid search defines a coarse grid space as the searched
parameter. The parameter grids are evaluated to seek a global minimum of all the parame-
ter’s grid points. The hyperparameters of the RL agents, including episode number and
numbers of nodes in the hidden layer, have been optimized by the grid search method to
minimize the control performance indexes such as the integral absolute error (IAE), integral
squared error, and integral of time-weighted absolute error (ITAE). These performance
indexes have been defined as Equation (11).

IAE =
∫ ∞

0 |e(t)|dt

ISE =
∫ ∞

0 [e(t)]2dt

ITAE =
∫ ∞

0 t·|e(t)|dt
(11)

where e(t) is the error between the setpoint and the output.

3. Development of RL for pH Process

The framework for developing reinforcement learning for the liquid level and pH
control is demonstrated in Figure 4.
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3.1. Process Description and Modeling

The pH process model of liquid level can be derived from the mass balance of the
process shown in Figure 5. It is assumed that the system is well mixed. The parameters,
including the cross-sectional area of the reactor (A), the density of the influent and the
effluent streams (ρ), and the density of the titrant stream (ρb), are constant.
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A dynamic model of the reactor level can be described as follows:

dh
dt

=
ρFw + ρbFb − ρFs

ρA
(12)

where h is the reactor level, Fw is the flow rate of the influent stream, Fb is the flow rate of
the titrant stream, and Fs is the flow rate of the effluent stream defined by Fs = 0.0063h0.5.

The pH value of the system is studied in terms of net proton-hydroxide ions. It can be
described by the following equation:

η = 10−pH − Kw

10−pH (13)

where η is net proton/hydroxide ions, and Kw is the equilibrium constant for the ionization
of water (KW = 10−14).

By performing the component balance, a dynamic model of net proton/hydroxide
ions in the reactor can be described as follows:

dη

dt
=

ηwFw + CbFb − ηFs

Ah
− η

(
ρFw + ρbFb − ρFs

ρAh

)
(14)

where Cb is the concentration of titrant flow and ηw is the net proton/hydroxide ions of the
influent feed stream.

The process model of the reactor for a level and pH can be summarized by Equation (15).
The process parameters of the process and process constraints are given in Table 1.

dh
dt = ρFw+ρb Fb−ρFs

ρA

dη
dt = ηw Fw+Cb Fb−ηFs

Ah − η
(

ρFw+ρb Fb−ρFs
ρAh

)
η = 10−pH − Kw

10−pH

y1 = h, y2 = pH

u1 = Fw, u2 = Fb

(15)
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Table 1. The parameters and constraints of the studied pH process.

Parameter Value Unit

A 0.0284 m2

ρ 1000 kg/m3

ρb 1010.71 kg/m3

Cb 0.3159 mol/L
Fw 0–6 L/s
Fb 0–0.02 L/s

3.2. Design RL Network Structures

The RL level control system is created in MATLAB and Simulink through a reinforce-
ment learning toolbox using the DDPG agent [17]. The mathematical model in Equation (15)
is deployed in Simulink as the RL environment. The simulation time and sample time of
this control system are set to 200 s and 1 s, respectively.

In the control system, the neural network structure is used for the critic and actor
networks with the GRU layer as shown in Figure 6. The critic network receives three
states from the process model: height level, error, and integrated error of height level with
3 nodes input layer. The network then receives the action and the influent feed stream flow
rate with a node input layer and a fully connected layer. State and action are combined
with an additional layer to define Q-value, and output data are sent to a GRU layer and an
output layer.
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The actor network receives three states from the process model: height level, error,
and integrated error of height level with 3 nodes input layer. It then sends output data to
the GRU layer and an output layer.

The RL control system with the DDPG algorithm is developed for the pH control
system by using two neural networks with the gated recurrent unit (GRU) layer for the
critic and actor networks. The simulation time and sample time of this control system are
set to 200 s and 1 s, respectively. The neural network structure used for critic and actor
networks is shown in Figure 7. The critic network receives three states: pH; error; and
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integrated error of pH with 3 layers that are input layer, GRU layer, and fully connected
layer. It has an activation function, a rectified linear unit (ReLU) function, which converts
data in the range of [0, 1] to send data from the hidden layer to the next node. An action
enters the critic network through these layers. It has been through a ReLU function. State
and action are combined with an additional layer to define Q-value. Output data are sent
out through the ReLU function and an output layer.
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3.3. Design RL Policies

Two policies have been developed for the liquid level control system in this work. In
the reward function of policy 1 and policy 2, the error of liquid level value and the exceed
bound condition are considered to calculate the reward. The reward is derived from the
reward function as follows:

Level Control Policy 1 Rh =


10;|eh| < 0.01

1;|eh| ≥ 0.01

−500;h ≤ 0 cm or h ≥ 90 cm

Level Control Policy 2 Rh =


10;|eh| < 0.01

−0.5;0.01 ≤ |eh| < 0.05

−1;|eh| ≥ 0.05

−500;h ≤ 0 cm or h ≥ 90 cm

(16)

where Rh is the reward of the height level and eh is the error of the height level (eh = hsp− h);
hsp is the reference height level and h is the height level.

The reward function of policy 1 consists of three parts: the first part gives a reward of
+10 points when an error is less than 0.01, the second part gives a penalty of −1 point when
an error is greater than or equal to 0.05, and the third part gives a penalty of −500 points if
the liquid level exceeds the height of a reactor tank. The reward function of policy 2 consists
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of four parts: the first part gives a reward of +10 points when an error is less than 0.01,
the second part gives a penalty of −0.5 points when an error is greater than or equal to
0.01 and less than 0.05, the third part gives a penalty of −1 point when an error is greater
than or equal to 0.05, and the fourth part gives a penalty of −500 points if the liquid level
exceeds the height of a reactor tank (overflowed) or the liquid has dried in a reactor tank.
The studied pH process is a standalone unit without a downstream process. The overflow
and liquid drying scenarios are essential in terms of process operation. As a result, the
penalties in both scenarios are treated as equal in importance and higher in penalty value
when compared with those other scenarios.

The initial values for height level and reference height are initialized for the liquid
level control system. The reset function randomizes the initial value for the height level
and reference height in each step of the episode. In the reset function, the reference height
is changed by the random numbers so that the value cannot exceed the height of a reactor
tank. The initial value obtained from the reset function is used to determine the liquid level
along with the action calculated by an agent in the process model. The liquid level obtained
is used to find a difference with the reference height to calculate an error constituting
system state variables error, integrated error, and liquid level. An error and liquid level
are used to calculate the reward by Equation (16). Suppose the liquid level exceeds the
height of a reactor tank. In that case, the training is terminated in the current episode, or
if the episode number reaches its maximum, the training stops. Otherwise, the training
continues by sending the state variables and rewards to the agent to calculate an action for
the next state.

In the pH control system, two policies have been deployed. In the reward functions of
both policies, the value of pH error and the exceeding bound conditions are considered to
calculate the reward. The reward is derived from the reward function as follows:

pH Control Policy 1 RpH =



10;
∣∣epH

∣∣ < 0.05

−0.25; 0.05 ≤
∣∣epH

∣∣ < 0.1

−0.5; 0.1 ≤
∣∣epH

∣∣ < 0.5

1; 0.5 ≤
∣∣epH

∣∣ < 1

−2;
∣∣epH

∣∣ ≥ 1

pH Control Policy 2 RpH =



10;

∣∣epH
∣∣ ≤ 0.5; 6 ≤ pHsp ≤ 8∣∣epH
∣∣ ≤ 0.25; 4.5 ≤ pHsp < 6 or 8 < pHsp ≤ 9.5∣∣epH
∣∣ ≤ 0.1; pHsp < 4.5 or pHsp > 9.5

________________________________ _

−1;

∣∣epH
∣∣ > 0.5; 6 ≤ pHsp ≤ 8∣∣epH
∣∣ > 0.25; 4.5 ≤ pHsp < 6 or 8 < pHsp ≤ 9.5∣∣epH
∣∣ > 0.1; pHsp < 4.5 or pHsp > 9.5

(17)

where RpH is the pH reward, epH is the output error (epH = pHsp − pH), and pHsp is the
pH setpoint.

The reward function of policy 1 is divided into five sections: the first section gives a
reward of +10 points when an error is less than 0.05, the second section gives a penalty
of −0.25 points when an error is less than 0.1 and greater than or equal to 0.05, the third
section gives a penalty of −0.5 points when an error is less than 0.5 and greater than or
equal to 0.1, the fourth section gives a penalty of −1 point when an error is less than 1 and
greater than or equal to 0.5, and the fifth section gives a penalty of −2 points when an error
is greater than 1.

In the compensation section of policy 2, due to the highly nonlinear pH control
system depicted in Figure 8, the reference for pH is considered in four different ranges:
{4.5 ≤ pHsp < 6}, {6 ≤ pHsp ≤ 8}, {8 < pHsp ≤ 9.5}, and {pHsp < 4.5 or pHsp > 9.5}. If the
reference pH is in the range of 6≤ pHsp ≤ 8, the system will be given a reward of +10 points
when an error is less than or equal to 0.5, and it will be given a penalty of −1 point when
an error is greater than 0.5. If the reference pH is in the range of 4.5 ≤ pHsp < 6 and the
range of 8 < pHsp ≤ 9.5, the system will be given a reward of +10 points when an error is
less than or equal to 0.25, and it will be given a penalty of −1 point when an error is greater
than 0.25. If the reference pH is in the range of pHsp < 4.5 and pHsp > 9.5, the system will
be given a reward of +10 points when an error is less than or equal to 0.1, and it will be



Processes 2022, 10, 2514 11 of 19

given a penalty of −1 point when an error is greater than 0.1. In the range of 6 ≤ pHsp ≤ 8,
which is very sensitive due to the steep slope of a titration curve, a constraint of error of 0.5
was imposed to make the system more flexible and to balance the multiple constraints.
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In the pH control system, the reset function initializes or randomizes the values for
pH, reference pH, and liquid level at each step of the episode. The initial value for pH and
the initial value for height level are used to determine the pH and height level, as well as
the action calculated from an agent. The pH obtained from the process model is compared
with the reference pH to calculate an error. Equation (17) uses an error and reference pH to
calculate the reward. Unless the maximum number of episodes has been reached, training
will continue by sending a state variable from the current episode and a reward to an agent
in order to calculate an action for the next state.

3.4. Training Algorithm Setup

The noise from the noise model in Figure 9 is added to the action generated by the
actor network in the liquid level and pH control systems. In each control system, the
noise will oscillate around the mean values of the action parameters (the influent and the
titrant flows). The standard deviation decay will provide the opportunity for the model
to conduct additional exploration, which will enable the model to investigate potential
options leading to convergence, while mean attraction depicts how quickly the noise model
output is attracted to the mean. Figure 10 represents the simple flow diagrams of the DDPG
agent development for each RL controller.
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4. Results and Discussion
4.1. Liquid Level Control
4.1.1. Hyperparameter Tuning Results

Two parameters are varied to find the best model for the RL level controller: the
number of episodes (300, 500, and 700 episodes) and the number of nodes in the hidden
layer (10, 20, and 30 nodes). The number of nodes in the hidden layer is varied in the fully
connected and GRU layers. These parameters are used to validate the model with level
control policies 1 and 2. To find the best RL level controller, a grid search is performed by
training the liquid level controller with different sets of parameters. The simulation time to
validate and collect data is set to 400 s, with a step of the liquid level setpoint from 10 cm
to 80 cm at 200 s. The training results include a current episode reward and an average
cumulative reward that is updated every 20 episodes.

The reward in the RL concept is an indication of RL learning behavior. Nonetheless,
the highest reward cannot be used to conclude that the control was successful. It may
cause the agent to become overfitted and fail to cover the entire condition range [18].
Furthermore, the system response can indicate the trajectory profile of the controller. As
a result, the episode rewards and average cumulative rewards do not properly represent
the performance of the controller. Thus, the performance indexes (ITAE, ISE, and IAE) are



Processes 2022, 10, 2514 13 of 19

employed as evaluation criteria in this study. Table 2 shows the grid search results of liquid
level control and shows the results of the servo test with performance indicators.

Table 2. Grid search results of liquid level control.

Case
Number

Episode
Number

Reward
Function
of Policy

Number of Nodes
in

Hidden Layer

Average
Cumulative

Reward

Performance Indexes

ITAE ISE IAE

1

300

1

10 79.95 87.105 0.042 0.247

2 20 97 37.097 0.034 0.118

3 30 108.55 94.323 0.039 0.262

4

2

10 17.88 110.568 0.070 0.355

5 20 −99.05 96.154 0.062 0.348

6 30 −99.05 96.154 0.062 0.348

7

500

1

10 265 33.465 0.028 0.112

8 20 29.30 66.683 0.038 0.196

9 30 −94.40 40.642 0.029 0.124

10

2

10 174.30 46.696 0.028 0.134

11 20 11.45 20.227 0.026 0.066

12 30 −252.75 109.028 0.066 0.418

13

700

1

10 194.35 30.654 0.028 0.097

14 20 15.60 48.080 0.030 0.140

15 30 −210.40 27.686 0.028 0.089

16

2

10 241.10 54.849 0.038 0.165

17 20 51.21 78.877 0.044 0.216

18 30 −297.12 59.814 0.034 0.197

Two different reward functions for the RL level controller, policy 1 and policy 2, are
evaluated under the control performance indexes. It can be seen that the trend of the
performance index of the controller with the reward function of policy 2 is less than the
controller with the reward function of policy 1. Therefore, the reward function of policy 2
was selected.

The effects of episode number and number of nodes in the hidden layer are considered
by performance indexes. The result shows the model that trained in 500 episodes and has
20 nodes in the hidden layer tends to decrease when compared with the model with 10
and 30 nodes in the hidden layer. It can be concluded that more nodes in the hidden layer
improve performance, but too many nodes in the hidden layer can lead to poor controller
performance. Additionally, an increasing episode number will cause an overtraining
problem which increases the errors in the servo-regulatory test. Therefore, the liquid level
controller in case 11 was chosen as the final model.

4.1.2. Setpoint Tracking Performance of the RL Level Control

To study the behavior of the liquid level control system, setpoint tracking performance
was performed by stepping a setpoint of liquid level from 10 cm to 80 cm at 200 s.

In the liquid level control system, the PI controller is developed as a base case because
the PI controller is simple. The PI controller has been chosen as a base case to compare the
control performance of the proposed RL controller for level control systems. It is widely
used in the pH process where process disturbances typically occur. The PI controller for
the level control is tuned with an initial guess by the internal model control (IMC) tuning
method for the first-order transfer function model. The obtained tuning parameters are{

kc1 = 0.005 m2 · s−1, τi1 = 7.46 s
}

.
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The system adjusts the liquid level to enter the first setpoint at 10 cm, as shown in
Figure 11. Both the proposed and PI controllers can enforce the level to enter the desired
setpoint. The PI controller has a faster and smoother response than the proposed controller.
In the second step, at 200 s, although both controllers successfully enforce the level to the
setpoint of 80 cm, the proposed controller provides a faster response than the PI controller.
The results of the setpoint tracking performance show that the proposed RL level controller
performs better than the PI controller. According to the settling time in Table 3, it enters the
setpoint faster than the PI controller.
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Table 3. The performance comparison of the controllers for liquid level control.

Height Level Change Controller Settling Time (s)
Performance Index

ITAE ISE IAE

From 10 to 80 cm
Proposed 20 20.227 0.026 0.066

PI 35 29.804 0.029 0.096

4.2. pH Control
4.2.1. Hyperparameter Tuning Results

To find the best model for the RL pH controller, two parameters are varied: the number
of episodes (300, 500, and 700 episodes) and the number of nodes in the hidden layer (40, 60,
and 80 nodes). These parameters are used to validate the model with two reward functions:
pH control policies 1 and 2. A grid search is performed by training the pH controller with
different sets of parameters, as shown in Table 4. The simulation time for validating and
collecting data is set to 400 s. The pH setpoint is changed from 8.4 to 9.1 at 200 s. The
training results include an episode reward for the current episode, an average cumulative
reward that is updated every 20 episodes, and the results of performance indexes during
the servo test.
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Table 4. Grid search results of pH control.

Case
Number

Episode
Number

Reward
Function
of Policy

Number of
Nodes in

Hidden Layer

Average
Cumulative

Reward

Performance Indexes

ITAE ISE IAE

1

300

1

40 −400 6664 151.775 26.947

2 60 −224.25 6664 151.775 26.947

3 80 −298.75 6664 151.775 26.947

4

2

40 −67.45 6664 151.775 26.947

5 60 −137.30 6664 151.775 26.947

6 80 −197.25 4060 40.453 19.788

7

500

1

40 −321.14 6664 151.775 26.947

8 60 −299.33 6372 141.819 26.082

9 80 −309.03 6664 151.775 26.947

10

2

40 2.95 6664 151.775 26.947

11 60 −93.30 3423 39.220 19.415

12 80 −90 2647 34.956 11.049

13

700

1

40 −222 6658 155.371 26.926

14 60 −400 6660 151.638 26.935

15 80 −182.75 6283 133.827 25.285

16

2

40 −21.80 6664 151.775 26.947

17 60 1901 2818 38.976 17.186

18 80 −200 2953 42.803 22.064

When examining the RL pH controller with the different reward functions of policies
1 and 2, it can be seen that the trend of the performance index of the controller with the
reward function of policy 2 is less than the controller with the reward function of policy 1.
Therefore, the reward function of policy 2 was chosen.

The performance indexes consider the effects of the episode number as well as the
number of nodes in the hidden layer. According to the results, the error of the RL model
that trained 500 episodes and has 80 hidden layer nodes tends to decrease when compared
with those with 40 and 60 hidden layer nodes. Furthermore, the results show that increasing
the number of nodes improves performance. Therefore, the RL pH controller from case 12
was chosen and used in the subsequent study.

4.2.2. Setpoint Tracking Performance of the RL pH Control

The PI controller is used to compare the performance of the RL pH control system.
The PI controller for pH control is also tuned with an initial guess by the IMC tuning
method. The obtained tuning parameters are

{
kc2 = 8.01× 10−9 m3 · s−1, τi2 = 1.153 s

}
.

The setpoint tracking is performed by stepping the pH setpoint from pH 8.4 to pH 9.1
at 600 s.

Figure 12 illustrates the process responses under the proposed PI controllers. The
system first adjusts pH to enter the first setpoint at pH 8.4. The pH response of the
proposed controller is faster than that of the PI controller, and it has less overshoot than
the PI controller. In the second step at time 600 s, both the proposed and the PI controller
successfully enforce the outputs to reach the setpoint at pH 9.1. The response of the
proposed controller is faster than that of the PI controller.
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Table 5 shows the performance comparison between the proposed and PI controllers
for various indexes. The proposed controller performs better than the PI controller because
of fewer errors and a faster response.

Table 5. The performance comparison of the controllers for pH control.

pH Change Controller Settling Time (s)
Performance Index

ITAE ISE IAE

From pH 8.4 to 9.1
Proposed 16 2647 34.956 11.049

PI 38 5047 128.800 23.620

4.3. Implementation of Coupled pH and Level RL Control System

The selected liquid level controller and pH controller are deployed to the pH process
control with the implementation of the liquid level controller. A servo-regulatory test
is performed to evaluate the performance of the proposed controller by introducing a
disturbance, a decrease in liquid level from 20 cm to 10 cm at 200 s while maintaining
the pH at 9. The coupled PI controllers for liquid level and pH control developed in the
previous study have been used and compared with the proposed multi-agent RL controllers.
The responses under both controllers are shown in Figure 13.

Figure 14 shows that the proposed controller successfully maintains the pH at pH 9
despite the oscillation caused by the interactions of the influent feed stream and titrant
stream in the system. This is because pH 9 is within the range that the proposed controller
can control (pH 8.4–9.1), whereas sustained oscillation occurs in the response of both the PI
level controller and PI pH controller. Table 6 compares the performance of both controllers
with various performance indexes. The response of the proposed controller is faster and
has fewer error values than the response of the PI controller, which has an oscillation.
According to the results, the proposed controller performs better than the PI controller in
terms of rejecting disturbances.
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Table 6. The performance comparison between the proposed and PI controllers.

Control Step Change Controller Settling Time (s)
Performance Index

ITAE ISE IAE

Liquid Level From 0.2 to 0.1
Proposed 227 1.393 1.982× 10−4 0.005

PI - 6.687 8.662× 10−4 0.021

pH pH = 9
Proposed 883 1390 6.360 5.338

PI - 1490 6.448 6.717

5. Conclusions

This paper develops a model-based reinforcement learning controller with multi-
DDPG agents utilizing the reinforcement learning toolbox in MATLAB and Simulink to
manage the coupled control of liquid level and pH in the strong acid–base pH process.
because of the high level of nonlinearity between pH dynamics and level dynamics, multi-
DDPG agents are created and deployed for coupled level and pH control. The grid search
approach is used to optimize the control performance of the designed RL controllers by
adjusting the number of training episodes and the number of nodes in the hidden layer. The
developed multi-agent RL control system is applied to pH process control because the sen-
sitivity of pH characteristics is relatively different from that of the level. A servo-regulatory
test is used to evaluate the proposed model compared with the multi-single-input and
single-output PI controllers. From the results, it can be concluded that the performance
indexes indicate controlling efficiency with significantly decreasing error metrics. The
proposed controller outperforms the PI controllers by approaching the setpoints faster,
with better performance indexes and less oscillation.
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