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Abstract: Wastewater treatment plants (WWTPs) are one of the most energy-intensive industries.
Every stage of wastewater treatment consumes energy, which is the primary contributor to WWTP
costs. Adsorbents and process optimization are critical for energy savings. The removal of dyes from
industrial wastewater by adsorption using commercially available adsorbents is inefficient. Metal–
organic frameworks (MOFs) have outstanding properties that can improve separation performance
over current commercial adsorbents, and thus, these materials represent a milestone in improving
dye removal in water treatment methods. In this work, three types of metal–organic frameworks
(Fe-BTC, Cu-BTC, and ZIF-8) have been investigated as prospective adsorbents for methyl orange
removal from water in batch setups. The results showed that at 15 mg/L MO initial concentration
and 100 mg dosage, Fe-BTC had the highest removal efficiency of 91%, followed by ZIF-8 (63%),
and finally Cu-BTC (35%), which exhibited structural damage due to its instability in water. Fe-BTC
maintained consistent adsorption capacity over a wide range of pH values. Furthermore, a 23 full
factorial design analysis was implemented to evaluate the conditions for maximum MO-removal
efficiency. The main effects, interaction effects, analysis of variance (ANOVA), and the Pareto chart
were reported. The statistical analysis demonstrated that the MOF type was the most significant
factor, followed by dosage and initial concentration. The analysis indicated that the type of MOF and
dosage had a positive effect on the removal efficiency, while the initial concentration had a negative
effect. The two-way and three-way interactions were also found to be significant.

Keywords: metal–organic frameworks (MOFs); energy-saving; adsorption; methyl orange; factorial
design; analysis of variance (ANOVA); pareto chart

1. Introduction

Along with energy demand in highly urbanized and industrialized countries, pop-
ulation growth has led to higher demand for clean water supply and higher production
of wastewater. In order to maintain the ecological status of water resources, produced
wastewater requires adequate treatment before being safely discharged into the receiving
water bodies [1–3]. Therefore, the number of wastewater collection and treatment plants
has increased in communities [4], leading to countless plants operating throughout the
world [5]. Wastewater treatment plants (WWTPs) are among the most energy-intensive
industries. In 2014, the global energy demand for the water sector was estimated at
120 million tons of oil, which corresponds to 1395.6 TW-h, and projections estimate this
value to double before 2040 [6–9]. This increase in energy consumption leads to significant
growth in operational costs and to considerable boost in CO2 emissions of wastewater
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treatment plants [10,11]. Therefore, the need to protect the environment from fossil fuel
emissions and to have effective treatment of these industrial wastewaters before they are
discharged into the environment necessitates the development of robust, economically feasi-
ble, environment-friendly, and energy-efficient solutions to be implemented for wastewater
treatment industries [12].

One major component of industrial wastewater effluents is the discharge of a substan-
tial amount of synthetic dyes due to their wide-ranging applications, including in textiles,
printing, plastic, and food processing [13,14]. To prevent any potential hazards caused
by these dyes to the surrounding environment of aquatic life and humans [15], industrial
wastewater effluents are usually treated by several physical and/or chemical treatment pro-
cesses to remove these synthetic dyes [16]. These treatments include flocculation combined
with flotation, electroflocculation, membrane filtration, electrokinetic coagulation, electro-
chemical destruction, and ion exchange [17,18]. However, these technologies have several
limitations, including low removal efficiencies, high cost, complexity of operation, high
energy demand, and sensitivity to variations in wastewater influent [19]. In comparison to
these techniques, however, adsorption is more effective and energy-efficient. Its low cost,
simple design, easy handling, and sludge-free cleaning operations have proven that the
adsorption technique is a preferred technique, especially for the removal of synthetic dyes
from wastewater [18–20]. Adsorption is based on the binding of the soluble pollutant in
wastewater (e.g., dye) to an insoluble adsorbent, which is then removed from the wastewa-
ter by filtration or precipitation, taking with it the adsorbed pollutant. The adsorbent can
be regenerated and used for another cycle of the adsorption process.

Currently, beyond silica gel, other widely used adsorbents which rely on physical ad-
sorption for water removal are zeolites, activated alumina, and activated carbon. Although
all of them can be easily regenerated at a relatively low temperature, their main drawback
is their limited adsorption capacity [20,21]. Traditionally, activated carbon (AC) is used
as an adsorbent for quickly capturing dyes from wastewater and lowering their concen-
tration in effluents. However, AC as an adsorbent generally shows very little selectivity
over molecules of different sizes and has a high regeneration cost when exhausted [16].
Therefore, the development of efficient and cost-effective adsorbents is urgently needed.

Recently, metal–organic frameworks (MOFs) came into view as promising adsor-
bents. MOFs are porous solid materials comprised of metal clusters (blocks) connected
by organic ligands via coordination bonds and have exceptional adsorbent properties
that make them superior to other conventional porous solids [22]. Haque et al. (2010)
were the first group to report the adsorptive removal of dyes using MOFs, where they
employed chromium–benzene dicarboxylates MOFs (Cr-BDCs) for methyl orange (MO) ad-
sorption [22]. Since then, several investigators have reported their findings on the removal
of different dyes using various lab-synthesized MOFs as adsorbents [14–26]—for example,
iron 1,3,5-benzenetricarboxylate (Fe-BTC) MOF, has been used in the liquid-phase separa-
tion of various molecules/compounds (organic and inorganic) [27,28]. Similarly, copper
benzene-1,3,5-tricarboxylate (Cu-BTC) is a widely investigated MOF in different environ-
mental applications, such as gas storage and adsorptive separation [29,30], and was used
for methylene blue adsorption from water [31]. Additionally, 2-methylimidazole zinc salt
(ZIF-8) was reported to exhibit high thermal stability up to 400 ◦C and excellent chemical
stability in liquid-phase adsorption [32]. Recently, a new study investigated the develop-
ment of new surfactant-modified carbon-coated monolith for the adsorption of cationic
dyes. The results showed that the new material is suitably adsorbent for rapid and effective
decolorization of methylene blue, with a high adsorption capacity of 200 mg/g [33,34].

The fact that MOFs have higher adsorption capacity, less energy-intensive regen-
eration conditions, and higher recyclability in comparison to other adsorbents makes
them ideal energy-efficient adsorbents. However, for MOFs to be implemented for large-
scale wastewater treatment plants, better assessment tools to compare MOFs with other
adsorbents—emphasizing the energy-saving factor—are needed. Thus, we report herein
the use of “design of experiment” (DOE) analysis to determine the optimal conditions
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for the adsorption process of MOFs. To achieve this objective, a well-studied system of
MOF/MO is used as a model system for this study. A 23 factorial design was implemented
to investigate the effect of three major factors on the efficiency of the adsorption process,
including (1) the type of MOF, (2) the dosage, and (3) the initial concentration on MOFs’ re-
moval efficiency of MO. In this study, three commercially available MOFs, namely Basolite®

F300 (Fe-BTC) [24], C300 (Cu-BTC or HKUST-1) [25], and Z1200 (ZIF-8) [26], were used for
the adsorption of azo-anionic MO dye from aqueous solutions that are widely used in the
textile, printing, pharmaceutical, and food industries.

Additionally, the effect of adsorption on the structure of the MOFs and the possible
adsorption mechanism was also investigated using various characterization techniques includ-
ing FTIR, XRD, SEM, and TGA. Finally, the kinetics and equilibrium isotherms of adsorption
were studied, and the thermodynamic parameters of MO adsorption were calculated.

We believe that this study will contribute to the efforts to better improve the process
of selecting the best MOFs as promising adsorbent candidates in terms of their optimal ad-
sorption capacity. The adsorption of methyl orange (MO) on MOFs has been contemplated
as a promising advancement in wastewater treatment. Understanding the adsorption
mechanism and kinetics and their effect on removal efficiency is essential for reaching the
full potential of this approach. In addition, such a comparative study of MO removal and
MOFs was defined by using a full factorial design method and an analysis of variance
(ANOVA) statistical approach.

2. Materials and Methods
2.1. Materials

Fe-BTC, Cu-BTC, and ZIF-8 were purchased from Sigma-Aldrich under trademark
Basolite® F300, Basolite® C300, and Basolite® Z1200, respectively, and were used without
further modifications. Methyl orange (MO) was purchased from LabChem (Zelienople,
PA, USA) as 0.1% (1000 mg/L) stock solution, and different concentrations were obtained
by subsequent dilution using deionized water. For pH adjustment, 1 M HCl and NaOH
aqueous solutions were used (prepared from 37% hydrochloric acid and 98% sodium
hydroxide pellets, respectively). For MOF regeneration, ethanol (99.8%, Sigma-Aldrich,
St. Louis, MO, USA) was used as the eluent.

2.2. Characterization

Several characterization analyses of the MOF samples, before and after MO adsorption,
were performed. First, the crystal structure was investigated via the X-ray diffraction (XRD)
measurements using a Bruker D8 ADVANCE system with a Cu tube (λ = 1.5406 Å) and a
linear detector (LYNXEYE XE). The measurements were obtained over a 2θ range of 50–60◦

(0.03◦ step size). The shapes and morphologies of the MOF samples before and after MO
adsorption were examined via Scanning Electron Microscopy (SEM) and Transmission
Electron Microscopy (TEM). In addition, the Fourier Transform Infrared (FTIR) spectra of
the MOF samples were measured (KBr pellet technique) using PerkinElmer FTIR instrument
(Waltham, MA, USA), and the measurement’s scanning range was 4000 to 450 cm−1 with a
resolution of 1.0 cm−1. The thermogravimetric analysis (TGA) was performed using a Pyris
1 TGA instrument (PerkinElmer, Waltham, MA, USA). The temperature range was 30 ◦C to
700 ◦C and the heating rate was 10 ◦C·min−1. Moreover, the solid addition method was
utilized to measure the surface point zero charge (pHPZC) of each MOF. The procedure is
similar to what was reported in [35,36], except for the KNO3, HNO3, and KOH solutions
were replaced with NaCl, HCl, and NaOH solutions, respectively.

2.3. Adsorption Experiments

For the adsorption experiments, aqueous MO solutions were first prepared by succes-
sive dilution of the 1000 mg/L stock solution with deionized water to obtain the desired
initial MO concentration. In each adsorption experiment, 100–200 mg of MOF was added
to 50 mL of 5–15 mg/L MO solution at a pH of 6 at room temperature (25 ◦C). The mixtures
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were mixed thoroughly with magnetic stirring in sealed beakers and samples were taken
after a predetermined time (5 to 180 min). Each sample was collected using a syringe and
filtered using a membrane syringe filter (0.45 µm pore size, nylon). The MO concentration
in all the samples was determined by visible light spectroscopic analysis of the solutions
at the characteristic MO absorbance peak (λ = 464 nm) with a UV–Vis spectrophotometer
(Evolution 60s, Thermo Scientific, Waltham, MA, USA).

At any given time (t), the adsorbed MO amount per unit mass of MOF (qt) was
calculated by Equation (1).

qt = (Co − Ct)×
V
m

(1)

where Co, Ct, V, and m are the initial MO concentration, the MO concentration in the
liquid phase at time t, the MO solution’s volume, and the MOF’s dosage, respectively.
Additionally, the removal efficiency (RE) was calculated using Equation (2).

RE =
Co − Ct

Co
× 100 (2)

The adsorption kinetics; isotherms; and thermodynamic analysis methodology, results,
and discussion are presented in the Supplementary Information.

2.4. Factorial Design Analysis

DOE is a method used to plan for experiments such that the gathered experimental data
can be assessed for statistical significance to reach unbiased conclusions. The basic steps of
statistically designed experiments are (1) selection of factors and their corresponding levels;
(2) determination of response variables; (3) selection of the type of the experimental design;
(4) statistical analysis of the experimental data. In this paper, the full factorial design, which
is one of the most widely used experimental designs, was chosen to investigate the effects
of the aforementioned factors and their interactions. One of the main advantages of this
design is the reduced number of experiments, which reduces the cost associated with the
experimental work [35]. The number of experimental runs is given by Lk, where k is the
number of factors and L is the number of levels in the design space (range of values over
which factors are to be varied) [37]. Herein, three factors (k) were examined, including the
type of MOF, dosage, and initial concentration. The number of levels was 2. In addition,
the experiments were carried out in duplicate. Therefore, the total number of experiments
was determined to be 16.

The 2k factorial design is extensively utilized in adsorption experiments, where each
experimental factor is investigated at two levels (high and low). In this work, the response
variable was selected to be the removal efficiency of MO (RE), which is calculated according
to Equation (2). To evaluate the statistical significance of the factors, RE was determined as
the average of two parallel experiments. For analysis of the experimental data, Minitab
Statistical Software (Version 17) was used.

3. Results and Discussion
3.1. Characterization

Figure 1 shows the measured MOF’s XRD patterns before and after MO adsorption.
The results demonstrate that both Cu-BTC and ZIF-8 have a crystalline structure and that
the obtained patterns for the commercial MOFs are in good agreement with those reported
in the literature for the equivalent lab-synthesized MOFs [32,38–44]. The main signature
peaks present for Cu-BTC in the XRD patterns are at 2θ = 11.61◦, 13.4◦, 17.45◦, 23.36◦, and
29.33◦. In addition, two extra peaks that are reported in the literature at 2θ = 6.7◦ and 9.5◦

were detected at low intensity. On the other hand, the signature peaks for ZIF-8 are at
2θ = 7.45◦, 10.5◦, 12.8◦, 14.8, 16.5, and 18.1◦. For the Fe-BTC sample, the broad peaks in
the XRD pattern reveal that it is a material of low crystalline order, which is in agreement
with what is reported in the literature for commercial Fe-BTC as well as lab-synthesized
Fe-BTC [45–48]. The XRD patterns of Fe-BTC and ZIF-8 after MO adsorption show that



Energies 2022, 15, 4642 5 of 23

their structure remains intact, while the XRD pattern of the Cu-BTC/MO sample revealed
apparent loss of crystallinity, which is an indication that the crystalline structure of Cu-BTC
was damaged after adsorption.
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Figure 1. XRD patterns of MOF samples before and after MO adsorption. The simulated XRD patterns
of Cu-BTC and ZIF-8 were sourced from the Cambridge Crystallographic Data Centre database.

The SEM and TEM micrographs in Figures 2 and 3, respectively, reveal the crys-
tal morphologies of the MOF samples before and after MO adsorption. The SEM and
TEM images for the fresh samples are similar to those reported in the literature for Fe-
BTC [45,48,49], Cu-BTC [38,50,51], and ZIF-8 [52–54]. For Fe-BTC samples, it was difficult
to obtain SEM images at higher magnification due to the magnetic character of the Fe-rich
samples, whereas TEM images in Figure 3a,b clearly reveal the semi-amorphous nature of
Fe-BTC. For Cu-BTC, the well-known octahedral shape can be seen in Figure 2a. However,
the morphology of the after-adsorption sample shown in Figure 2b cannot be observed
due to the loss of the spatial structure of the MOF. Finally, SEM images (Figure 2c,d) of the
small particles of ZIF-8 and ZIF-8/MO and the TEM micrographs (Figure 3c,d) at the nm
scale reveal the polyhedral shape of ZIF-8, which is retained after adsorption.

FTIR spectra of the MOF samples presented in Figure 4 are in good agreement with
the literature [45,55–59]. For Fe-BTC and Cu-BTC MOFs, the measured IR spectra show
absorption peaks that are quite similar. This can be explained by the similarity in nature
of the two MOFs regardless of their crystalline order [45,49]. The broad peaks between
3800–3000 cm−1 for both samples correspond to the presence of the hydroxyl group of
the adsorbed water molecules. Both Fe-BTC and Cu-BTC absorb some of the moisture
in the atmosphere, and this explains the presence of free water molecules in the sample
before adsorption. On the other hand, water in the samples after adsorption is mainly
from the adsorbed water molecule from the aqueous solution. The IR spectrum for the
Fe-BTC sample shows absorption peaks at 711.6, 760.5, 1380, 1448, 1577, and 1627 cm−1.
The two peaks at 1577 cm−1 and 1627 cm−1 are attributed to the carboxylic (COO) asym-
metric stretching, whereas the peak at 1448 cm−1 belongs to the corresponding symmetric
stretching vibration [45]. The peak at 1380 cm−1 indicates the presence of (C-O) from the



Energies 2022, 15, 4642 6 of 23

BTC ligand [60]. In addition, the bands at 760.5 cm−1 and 711.6 cm−1 might be related to
the Fe-O bond vibration. The IR spectrum of the Fe-BTC/MO sample shows a slight shift
in some of the peaks related to the carboxylic (COO) stretching and the ligand–Fe bond
vibration. Additionally, the broad band in the range of 3800–3000 cm−1 had a narrower
and less intense peak, which might be attributed to the hydroxyl group having H-bond
interaction with the MO molecule. The measured IR spectra for the Cu-BTC sample, on
the other hand, show absorption peaks at 729.6, 760.1, 1373, 1445, 1560, and 1620 cm−1.
The absorption peaks at 1445, 1560, and 1620 cm−1 are related to the organic linker’s COO
symmetric/asymmetric vibration [45]. The presence of the C–O bond from the BTC ligand
can be related to the peak at 1373 cm−1 [60]. Additionally, the bands at 760.1 cm−1 and
729.6 cm−1 might be indicative of the Cu–O stretching vibration [31]. The vibrational band
corresponding directly to the ligand coordinated with the centered Cu(II) ions is also visible
on the IR absorption band at 487 cm−1 [61,62]. The IR spectrum for the Cu-BTC/MO
sample shows clear changes in the peaks related to the COO stretching modes in the
1700–1300 cm−1 range, and the ligand–Cu bond vibration in the 760–730 cm−1 range. In
the IR spectrum of both Fe-BTC/MO and Cu-BTC/MO, the peak around 1120 cm−1 can be
assigned to the S-O bonds from MO, confirming the presence of MO molecules on Fe-BTC
and Cu-BTC surfaces. For the ZIF-8 samples, the small peaks at 3140 cm−1 and 2930 cm−1

are attributed to the aliphatic/aromatic C-H stretching in the organic linker (from the
methyl group and imidazole ring) [63]. Moreover, the peak at 1590 cm−1 can be assigned to
the stretching mode of C=N, whereas that observed between 1460 and 1310 cm−1 is related
to the vibration of the imidazole ring [64]. Furthermore, the peak at 1150 cm−1 corresponds
to the C-H bending in the imidazolate [64]. Finally, the peaks between 1100 and 950 cm−1

and the two peaks at 760 and 694 cm−1 could be related to the in-plane and out-of-plane
bending of the imidazole ring, respectively [63,64]. For the ZIF-8/MO sample, the broader
and more intense peak in the 3300–3600 cm−1 range was related to the free hydroxyl group
and the hydrogen-bonded hydroxyl groups confirming the presence of free water in the
ZIF-8/MO sample [59]. Finally, the small peak at 1030 cm−1 could be ascribed to the
presence of MO on the ZIF-8 surface.
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TGA was used to test the stability of the MOFs before and after MO adsorption. The
TGA results are presented in Figure 5, and they indicate that the overall thermal stabilities
of the MOFs were comparable to those reported for the lab-synthesized MOFs [38,49,65].
For Fe-BTC MOF, the overall weight loss for the sample before adsorption was around 70%,
whereas the sample after adsorption had a slightly higher weight loss of about 72%. The
first drop in weight is around 100 ◦C, which corresponds to the evaporation of the water
present in the samples. This is confirmed by the peak in derivative weight loss (DWT%)
curves for both samples, where the Fe-BTC/MO sample had a slightly more intense peak,
indicating higher water content in the sample, mainly from the MO aqueous solution. In
addition, at 200 ◦C, the Fe-BTC sample lost approximately 10% of its weight, whereas the
Fe-BTC/MO sample lost approximately 20%, mostly water content. Then, between 200 ◦C
and 300 ◦C, both samples showed no significant weight loss. Following this, both samples
continued to lose weight between 300 ◦C and 500 ◦C, where total weight loss reached
around 55% at 500 ◦C. This loss can be attributed to the decomposition of BTC linkers [28].
Between 500 ◦C and 600 ◦C, there was no significant weight loss, followed by a sudden
drop in weight above 600 ◦C (ca. 10% for Fe-BTC and ca. 12% for Fe-BTC/MO). This loss of
weight is due to the total decomposition of the samples and the formation of iron-containing
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ashes [46]. For Cu-BTC MOF, the overall weight loss of the samples was around 60%. The
first drop in weight is at 100 ◦C which corresponds to the evaporation of water present in
the samples. This is confirmed by the peak in DWT% curves for both samples, where Cu-
BTC/MO sample had a second peak between 150 ◦C and 200 ◦C, indicating higher water
content in the sample, mainly from the MO aqueous solution. Then, above 200 ◦C, Cu-BTC
sample showed no significant weight loss up to 360 ◦C after which a sudden weight loss
is observed from the DWT% curve. On the other hand, the second stage of weight loss
for the Cu-BTC/MO sample occurs at around 300 ◦C, where a broad shoulder peak in
the DWT% curve is observed. In both cases, this drop in weight is attributed to the total
decomposition of BTC linkers and production of CuO as the remaining product [40,41], plus
the decomposition of MO in the Cu-BTC/MO sample. For ZIF-8 MOF, the overall weight
loss for the sample before adsorption was around 38%, whereas the sample after adsorption
had a slightly higher weight loss of about 40%. The TGA results for the ZIF-8 sample show
that there was no weight loss in the temperature range of 100–450 ◦C, indicating that the
ZIF-8 had no trapped solvent molecules inside the framework and that it was stable up to
450 ◦C. On the other hand, the ZIF-8/MO sample had a small weight loss (2%) at 150 ◦C,
corresponding to the release of water adsorbed at the crystal surface. Then, both samples
exhibited a gradual weight loss at around 500 ◦C followed by a sharp drop at 600 ◦C due
to the structural collapse of ZIF-8 and decomposition of the organic ligand, leading to
the formation of ZnO as the final product [63]. In comparison, ZIF-8 had the best overall
thermal stability among the three MOFs under consideration.
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3.2. Removal Efficiencies

Figure 6 demonstrates the removal efficiency (RE) as a function of time for the three
adsorbents. Among the three MOFs considered, Fe-BTC had the highest maximum MO
removal efficiency (91%), followed by ZIF-8 (63%) and finally Cu-BTC (35%). It can be
seen that the MO adsorption was rapid in the case of Fe-BTC (80% RE in 10 min), and
equilibrium was achieved in 60 min, while adsorption over ZIF-8 took 180 min to reach
equilibrium. In contrast, the removal efficiency of Cu-BTC drops after 30 min, indicating
that the structure of the adsorbent was damaged, as was confirmed by the XRD results
for Cu-BTC/MO sample. Therefore, Cu-BTC cannot be counted as a good candidate for
the adsorptive removal of MO from water under the investigated experimental conditions.
Furthermore, although Fe-BTC had the lowest BET surface area (according to the data
reported by Sigma-Aldrich), it had the highest removal efficiency, indicating that MO
adsorption was not necessarily directly related to the surface area or pore volume of the
MOF used; rather, it can be due to the presence of specific interactions between the MOF
and MO. Additionally, Luan Tran et al. [66] studied the effect of the external surface area of
ZIF-8 on dyes’ adsorption capacity. According to their findings, the external surface of ZIF-8
was the only contributor to adsorption, and there was no adsorption inside the pores of the
MOF. Additionally, the lower removal efficiency of ZIF-8 compared to Fe-BTC can be linked
to the hydrophobic character of ZIF-8 versus the hydrophilic nature of Fe-BTC [59,67].
Therefore, these factors may be the reason for the limited MO adsorption capacity over
ZIF-8 despite the larger surface area of the MOF.
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3.3. Initial pH (pHinitial) Effect and Adsorption Mechanism

The effect of the initial pH on MO adsorption was investigated in the 2–12 pH range. In
this study, the pH effect experiments were carried out at 25 ◦C. The initial MO concentration
was kept at 15 mg/L, and the dosage of the MOF was 150 mg. The effect of the initial pH
(pHinitial) on MO adsorption is shown in Figure 7a. For Fe-BTC, the pHinitial of the solution
(in the range of 2–10) had an insignificant effect on MO equilibrium adsorption capacity
(qe), while in the same range, ZIF-8 had the highest adsorption capacity at pHinitial of 2 with
relatively similar capacities between 4 and 10. On the other hand, the adsorption capacity
of Cu-BTC decreased as pHinitial increased in the same range. At pHinitial 12, the adsorption
capacity of all MOFs was the lowest, suggesting the collapse of the MOFs’ structures under
strong alkaline conditions [68]. These findings can be linked with the results of pHPZC
experiments shown in Figure 7b. For pHinitial less than pHPZC, the MOF’s surface is more
positively charged, which strengthens the electrostatic attraction to MO molecules that are
usually in the negatively charged sulfonate form. Additionally, for pHinitial greater than
pHPZC, the surface of the MOF is more negatively charged, which leads to strong repulsion
between the MOF’s surface and MO molecules (both are negatively charged) [22,68]. In
the cases of Fe-BTC and ZIF-8, the pHPZC was around 9 and 9.5, respectively. Therefore,
the drop in the adsorption capacity at pH 12 can be attributed to the electrostatic repulsion
between the negative surface charge and the negatively charged MO molecule as well as to
the decomposition of the MOF structure. However, for Cu-BTC, the pHPZC was around 4,
which explains the higher adsorption capacity at pHinitial less than 4 since the surface of
Cu-BTC is more positively charged. However, it should be noted that the improvement in
the amount adsorbed at pHinitial less than 4 was not substantial, indicating that the effect of
water instability on the structure of Cu-BTC was significant, as was shown previously. As
a result, all other experiments were performed at the natural MO solution’s pH without
adjustment (pH = 6).

It is worth noting that the relatively constant qe for Fe-BTC and ZIF-8 in the pH range
2–10 could indicate the involvement of other adsorption mechanisms in addition to the
electrostatic interactions, such as π–π stacking and hydrogen bonding, between MO and
the MOF. In the case of Fe-BTC, the interaction between the benzene rings in the MOF’s
organic linker and MO molecules is referred to as the π–π stacking [69], while hydrogen
bonds can form between MO’s nitrogen or oxygen atoms and the hydrogen atoms in
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the benzene ring of Fe-BTC and the imidazole ring of ZIF-8. Therefore, electrostatic, π–π
stacking, and hydrogen-bond interactions are considered the primary forces involved in MO
adsorption on both ZIF-8 and Fe-BTC. The details of the adsorption kinetics, isotherms, and
thermodynamic analyses are discussed and presented in the supplementary information.
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3.4. Factorial Design Analysis

The factors selected for the experimental design were the type of MOF, the dosage of
MOF, and the initial concentration. For the type of MOF factor, only Fe-BTC and ZIF-8 were
considered since the structure of Cu-BTC was proven to be unstable under the experimental
conditions. Furthermore, the pH effect was not included since it was performed separately,
and the results showed that pH effect on MO adsorption was negligible over a wide pH
range (2–10).

Optimum conditions are decided by changing several factors and using different
levels of these factors. Factorial designs are widely applied in experiments that are take
into account several factors where it is necessary to study the interaction effect of factors
on the response [20]. The factorial design describes which factor shows more impact and
influences the variation of one factor on the other factors [21].

Table 1 presents the high and low levels for the 23 factorial design for a total of
16 experiments. The higher level was given the “+1” designation, and the lower level was
given the “−1” designation. For the type of MOF, ZIF-8 was assigned as the lower level
since it had lower removal efficiency than Fe-BTC. The factorial design matrix (codified
variables) along with the response values for MO removal efficiency are summarized in
Table 2. Figure 8 presents a graphical representation (cube plot) of the experimental results
(average RE) for the respective low and high levels of each factor. The following codified
equation was used to explain the 23 factorial design of MO removal:

Y = X0 + X1A + X2B + X3C + X4AB + X5AC + X6BC + X7ABC

where Y is the predicted response (removal efficiency percentage), X0 represents the
global mean, Xi is the regression coefficient corresponding to the main factor effects and
interactions, A is the MOF type, B is the adsorbent dosage (mg), and C is the initial dye
concentration (mg/L).

Analysis of variance (ANOVA) was conducted to examine the reliability of the model
describing the response as a function of the factors. The analysis was performed using
Fisher’s test (F-value) and p-values to determine the significance of the regression co-
efficients of the main effects and the interaction effects. In general, p-values < 0.05 are
considered statistically significant [70]. The ANOVA results and the contribution of the
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main factors and their interactions with the model are shown in Table 3 as well. From
the p-values, it can be seen that the main factors (A, B, and C), their two-way interactions
(AB, AC, and BC), and their three-way interaction (ABC) are statistically significant to the
removal efficiency. The coefficients and the effects of the main factor and their interactions
in the model are presented in Table 4. The significance (or relative importance) of the main
factors and their interactions can be determined from the absolute values in the “Effect”
column. It can be seen that the order of the effects of the factors and their interactions in the
model is ABC < BC < AB < AC < C < B < A. The positive values of the effects indicate that as
the level of the factor increases the removal efficiency increases, while the negative values
imply the opposite (i.e., increasing the level of the factor decreases removal efficiency).

Table 1. The factors and their corresponding levels used in the factorial design.

Factor Code Low Level (−1) High Level (+1)

Type of MOF A ZIF-18 Fe-BTC
Dosage (mg) B 100 200

Initial Concentration
(mg/L) C 5 15

Table 2. The factorial design matrix and the experimental response results for MO removal efficiency.

Runs A B C MO Removal Efficiency (%)

1 −1 +1 +1 87.3
2 −1 −1 −1 88.9
3 +1 +1 +1 99
4 +1 −1 −1 96.9
5 −1 −1 +1 61.5
6 −1 +1 −1 97.2
7 −1 −1 −1 88.6
8 +1 −1 +1 90.9
9 −1 +1 +1 86.9

10 +1 +1 −1 100
11 +1 −1 −1 96.8
12 +1 +1 −1 100
13 +1 +1 +1 98.1
14 +1 −1 +1 90.9
15 −1 −1 +1 66
16 −1 +1 −1 97.2
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Table 3. Analysis of variance (ANOVA) results for RE calculated using Minitab.

Source DF
Adjusted Sum

of Squares
(Adj. SS)

Adjusted Mean
Squares

(Adj. MS)
F-Value p-Value Contribution

A 1 612.6 612.6 459.7 0.000 31.39%
B 1 453.7 453.7 340.5 0.000 23.25%
C 1 451.6 451.6 338.9 0.000 23.14%

AB 1 110.3 110.3 82.74 0.000 5.650%
AC 1 191.8 191.8 144.0 0.000 9.830%
BC 1 94.09 94.09 70.61 0.000 4.820%

ABC 1 27.04 27.04 20.29 0.002 1.390%
Error 8 10.66 1.332

Total 7 1951.68

Main effects 7 1941.02 277.288 208.10 0.000
2-way interactions 3 396.16 132.054 99.10 0.000
3-way interaction 1 27.04 27.040 20.29 0.002

Table 4. Estimated regression coefficients of the factors and their effects on MO removal.

Term Effect Coefficient Standard Error
Coefficient T-Statistic p-Value

Constant 90.39 0.289 313.21 0.000
A 12.38 6.188 0.289 21.44 0.000
B 10.65 5.325 0.289 18.45 0.000
C −10.63 −5.312 0.289 −18.41 0.000

AB −5.250 −2.625 0.289 −9.10 0.000
AC 6.925 3.463 0.289 12.00 0.000
BC 4.850 2.425 0.289 8.40 0.000

ABC −2.600 −1.300 0.289 −4.50 0.002
S 1.154

R-Sq 99.45%
R-Sq (adj.) 98.98%

The normal probability plot can be divided into two regions: the region with percent-
ages above 50 percent, where the factors are represented by positive coefficients (A, B, AC,
and BC), and the region with percentages below 50 percent, where the factors are repre-
sented by negative coefficients (C, AB, and ABC). Furthermore, the main factors and their
interactions denoted by circles are not significant, whereas the effects denoted by a square
are significant. Analysis of variance is a statistical method that divides total variation into
component parts, each of which corresponds to a different source of variation [20,21].

The main factors’ statistical significance and their interactions were also confirmed
via the Pareto chart in Figure 9b. For the 95% confidence level (α value of 0.05), the
t-value was 2.31 (the vertical reference line). The values that exceed the reference line are
considered significant [71]. According to Figure 9, all main factors and their interactions
were statistically significant at the level of 0.05, which corroborated the results from ANOVA.
Though the Pareto chart allows one to compare the absolute values of the effects of each
factor and their interactions, the normal plot of standardized effects is more accurate in
determining the significance and insignificance of each effect, as shown in Figure 9a. A
normal probability plot could be separated into two regions: the region with percentages
above 50%, where the factors are indicated by positive coefficients (A, B, AC, and BC),
whereas in the region with percentages below 50%, the factors are indicated by negative
coefficients (C, AB, and ABC). Moreover, the main factors and their interactions denoted
as circles are not significant, while the effects shown as a square are significant. Figure 9a
indicates that the main factors and their interactions were all significant. Analysis of
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variance is a statistical method that partitions the total variation into its component parts,
each of which is associated with a different source of variation [20,21].
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The main effects of each factor on the response variable (RE) are presented in Figure 10.
The results show that changing the MOF from ZIF-8 to Fe-BTC had a positive effect on
MO’s removal efficiency. For the effect of MOF dosage, increasing the dosage from 100 mg
to 200 mg increased the removal efficiency. As the MOF’s dosage increases, the available
adsorption sites increase, leading to more MO molecules being adsorbed by the MOF and
thus lowering its concentration in the solution. As a result, the difference between the
initial and final MO concentration increases, which increases the removal efficiency (see
Equation (2)) [72–74]. On the other hand, increasing the initial concentration decreased the
removal efficiency. This can be attributed to the increased amount of MO molecules in the
solution—which saturates the binding sites on the MOF’s surface—at a fixed MOF dosage,
thus leading to a decrease in RE (see Equation (2)) [75–78].
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(c) initial concentration of MO.

Furthermore, an interaction effect of the different factors is considered prominent when
the change in the level of one factor results in a change in the response variable (i.e., removal
efficiency) that is also dependent on the level of another factor. This can be detected when
the lines of the response variable are not parallel or intersect [71]. The plots, presented in
Figure 11, indicate that interactions between the factors (AB, AC, and BC) were all significant,
as was confirmed by the ANOVA analysis and the Pareto chart. The AB and AC plots
reveal that changing the MOF type had more effect at a lower dosage and higher initial
concentration. On the other hand, the BC plot showed that increasing dosage from 100 mg to
200 mg had a higher effect at higher initial concentrations. The multi-vari chart presented in
Figure 12 reveals a comprehensive representation of the effects of interactions between the
experimental factors. It can be seen that changing the type of MOF from ZIF-8 to Fe-BTC at
100 mg dosage and 15 mg/L MO initial concentration had the most prominent change in the
removal efficiency, which is evident from the slope and length of the blue lines.
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3.5. Response Surface of Independent Variables and Their Interaction

The last step of the statistical optimization was the analysis of the 3D response surface
plots and contour plots as a function of three independent variables, which served the
purpose of determining the interaction effects between three parameters while keeping
the others at a fixed value. Statistical process optimization, in a given range of parameter
values, allows not only for calculating the optimal condition, but also for determining the
effect of the process conditions on the adsorption. A 3D graph (Figure 13) was plotted for
each of initial concentration, dosage, and type of MOF. The MO removal rate reached its
maximum for all MO initial concentrations and dosage loads, as shown in Figure 13A,B.
However, when higher initial MO concentrations were used, the rate of MO removal
decreased. Increased MOF dosage, on the other hand, increased removal efficiency. As a
result, despite the dosage load, Figure 13C shows that Fe-BTC has the highest MO removals.
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According to Figure 14, which depicts the contour plot of the coded MO concentra-
tion and MOF dosage, the range of optimum dye removal value is related to both MO
initial concentration and dosage while keeping the ZIF-8 constant (on hold). Indeed, the
same trend has been demonstrated previously in the literature; the optimal dosage and
concentration have a significant impact on the removal rate [76].
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3.6. Process Optimization Curve

The process optimization curve, which enables the determination of optimum condi-
tions of independent variables for obtaining a desired value of the response, is presented
in Figure 15. In the present study, the desired value of removal percentage, i.e., the goal,
was to obtain a value at or near the target value of 95%, and the minimum and maximum
qe were set at 10% and 100%, which means that removal percentage values lower than
61.5 and larger than 100 are not acceptable. As can be seen in Figure 15, for this target value,
the predicted response of 95% was obtained at optimum conditions of the independent
variables, including an initial concentration of 10.58 mg/L and an adsorbent dose of 126 g
with a good desirability score. A perfect desirability score could have been obtained if
uptake had achieved the ideal settings [35]. However, it is well within the acceptable range
and in good accordance with the experimental response. The maximum uptake is shown
to be achieved at 15 mg/L initial concentration and adsorbent dose of 200 g.
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3.7. Comparison of Adsorption Capacity with Other Adsorbents

Several studies using different adsorbents were reported for the removal of methyl
orange in the literature. The adsorption capacities of Fe-BTC and ZIF-8 are compared with
other adsorbents in Table 5. It can be seen that the adsorption capacity of the proposed
MOFs for MO is higher than most adsorbents. Thus, the value of adsorption capacity
indicates that Fe-BTC is a good adsorbent for the adsorption of MO.

Table 5. Adsorption performance of MO with other adsorbents.

Adsorbent Type pH Time
(Min)

Initial Concentration
(mg/L)

Adsorption
Capacity (%) References

Zirconium MOF 31 [79]
chitosan/diatomite composite 5 40 50 88.3 [80]

Polyethyleneimine-modified persimmon tannin 4 120 30 97.6 [81]
MnOx-decorated MgAl 20 40 90.5 [82]

Fly ash 8.5 60 66 [83]
UiO-66 MOF 5.5 180 10 87.4 [84]

Fe-based MOF/graphene oxide 3 240 50 98 [85]
Fe-BTC 6 60 15 99 This work

4. Conclusions

In conclusion, metal–organic frameworks with superior advantages over other con-
ventional adsorbents in removing dyes from the aquatic environment have attracted much
attention in recent years. Three MOFs (Cu-BTC, Fe-BTC, and ZIF-8) were investigated for
the adsorptive removal of MO from aqueous solutions. The results showed that Fe-BTC
exhibited the highest removal efficiency among the three adsorbents. Additionally, the
characterization results showed that no significant changes in the internal structure of
Fe-BTC and ZIF-8 after the adsorption process were detected, and they were easily regen-
erated by washing with ethanol, whereas the crystal structure of Cu-BTC was damaged
and could not be regenerated. The maximum removal efficiencies for Fe-BTC and ZIF-8
were 91% and 63%, respectively, and both MOFs maintained their removal efficiency and
adsorption capacity over a wide range of pH. Hence, the adsorption mechanism of MO
on the MOFs could be due to a combination of electrostatic, π–π stacking, and hydrogen
bonding interactions. Finally, the 23 factorial design utilized to study the effect of MOF type,
dosage, and initial concentration on the MO removal efficiency revealed that the MOF type
was the most statistically significant factor, followed by dosage and initial concentration.
Both the type of MOF and dosage had a positive effect on removal efficiency, while the
initial concentration had a negative effect. The two-way and three-way interactions were
also found to be significant.
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