
Citation: Gregor, R.; Pacher, J.;

Renault, A.; Comparatore, L.; Rodas,

J. Model Predictive Control of a

Modular 7-Level Converter Based on

SiC-MOSFET Devices—An

Experimental Assessment. Energies

2022, 15, 5242. https://doi.org/

10.3390/en15145242

Academic Editor: Alon Kuperman

Received: 30 May 2022

Accepted: 4 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Model Predictive Control of a Modular 7-Level Converter Based
on SiC-MOSFET Devices—An Experimental Assessment †

Raúl Gregor , Julio Pacher , Alfredo Renault , Leonardo Comparatore and Jorge Rodas *

Laboratory of Power and Control Systems (LSPyC), Facultad de Ingeniería, Universidad Nacional de Asunción,
Luque 2060, Paraguay; rgregor@ing.una.py (R.G.); jpacher@ing.una.py (J.P.); arenault@ing.una.py (A.R.);
lcomparatore@ing.una.py (L.C.)
* Correspondence: jrodas@ing.una.py
† This paper is an extended version of our paper published in the World Multiconference on Systemics,

Cybernetics and Informatics, vol. 18, no. 5, pp. 57–61, 2020.

Abstract: Power converter technology has expanded into a wide range of low, medium, and high
power applications due to the ability to manage electrical energy efficiently. In this regard, the
modular multilevel converter has become a viable alternative to ensure an optimal harmonic profile
with a sinusoidal voltage at the load side. Model predictive control (MPC) is a state-of-the-art
technique that has been successfully used to control power electronic converters due to its ability to
handle multiple control objectives. Nevertheless, in the classical MPC approach, the optimal vector
is applied during the whole sampling period producing an output voltage. This solution causes an
unbalanced switching frequency of the power semiconductor, which then causes unbalanced stress
on the power devices. Modulation strategies have been combined with MPC to overcome these
shortcomings. This paper introduces the experimental assessment of a 7-level converter combining a
simple phase shift multicarrier pulse-width modulation approach with the MPC technique. A custom
test-bed based on SiC-MOSFETs switches is used to validate the proposal.

Keywords: model predictive control; phase shift multicarrier pulse-width modulation; modular
converter; multilevel converter

1. Introduction

Power converter technologies play an increasingly important role in many applications
mainly due to their ability to efficiently manage electrical energy [1]. In this regard, the
high penetration of power electronic converters has been justified primarily because of
the growth of the electricity generated by renewable energies such as solar and wind [2].
Since all power converters connected to the grid must fulfill the grid codes, power quality
has recently become one of the main issues to solve [3,4]. A power quality problem
can be seen as the divergence of magnitude and frequency from the ideal sinusoidal
waveform [5,6]. This divergence typically impacts currents and voltage at the grid side;
the load side has been proposed in several papers to address the power quality issues
at the load side [7,8]. The dizzying advance of power converters has been enhanced by
developing high-performance microprocessors capable of implementing complex nonlinear
digital controllers. The field of power electronic semiconductors has recently developed
new high-speed switching devices with tremendous low on-state loss. One of the most
promising power electronic semiconductors is the SiC-MOSFET used in this paper. As a
result, new power electronic converters can be smaller than the classical ones [9].

Conventional two-level voltage source converters (2L-VSCs) are still one of the most
used converters for many applications, and, as all VSCs, they are considered the funda-
mental component in the conversion energy system. However, the reduced number of
levels of 2L-VSCs cause loss problems and poor power quality due to their bad harmonic
profile [10,11]. To solve this issue, the modular multilevel converter (MMC) has drawn the
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attention of both industry and academic sectors due to its capability to generate sinusoidal
voltages and currents with a low content of harmonic distortions at the load side. Among
these MMC topologies, the cascade H-Bridge (CHB) is a popular choice because of its
modularity, which simplifies the extension for a higher number of levels of the MMC.
Moreover, the MMC does not demand a vast number of flying capacitors or clamping
diodes [12]. Consequently, the CHB-based MMC is currently a competitive choice in the
new era of VSCs [13].

Commonly the CHB-based MMC uses IGBT as switching. Nevertheless, the SiC-
MOSFET has been used as an alternative mainly because it can reach higher switching
frequencies than IGBT devices [14,15]. Yet, it is not enough to incorporate faster switching
to the MMC to improve the power quality [16,17]. Instead, it is essential to manage this
problem with a suitable controller. In this regard, model predictive control (MPC) has
been successfully used to control VSCs due to its ability to handle multiple control goals
and constraints, straightforward implementation, and quick transient response [18,19].
However, the MPC scheme operates with variable frequency leading to a spread switching
spectrum [20]. To eliminate the variable switching frequency behavior of the classical MPC,
this article introduces a fixed switching frequency MPC (FSF-MPC) based on a phase shift
multicarrier pulse-width modulation (PSM-PWM) approach [21,22] and the experimental
assessment of the CHB-based MMC [23].

This article is divided as follows. Section 2 introduces the mathematical model of the
CHB-based MMC topology. Then, in Section 3, the MMC’s predictive model is derived,
and the proposed MPC strategy is presented. In Section 4, some figures of merits are used
as a reference to analyze the obtained experimental results. Finally, the main conclusions of
this work are given in the last section.

2. Proposed 7-Level MMC Topology

Figure 1 shows the proposed MMC scheme. Each MMC has four SiC-MOSFETs and is
fed by an independent dc-link. To obtain the 7-level MMC, connecting in a series of three
cells is necessary for each phase. Sφ

xy represent the firing signals, with being φ the phase
a, b, or c, while x is the cell number in each phase and y the switching device in each cell
(y = 1, 2, 3, or 4). Some firing signal combinations are shown in Table 1 for phase “a”. The
firing signals for phases b and c can be obtained likewise, taking into account the permitted
combinations and avoiding short circuits [24,25].

Cell

Cell

Cell

aRf

bRf

cRf

aLf

bLf

cLf

Reactive Load

7-level CHB converter

Figure 1. Modular multilevel converter based on cascade H-Bridge.
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Table 1. Possible combinations of firing signals.

Sa
η

η va
c,ηCella

1 Cella
2 Cella

3
Sa

11 Sa
13 Sa

21 Sa
23 Sa

31 Sa
33

0 0 0 0 0 0 1 0·va
dc

0 0 0 0 0 1 2 −1·va
dc

0 0 0 0 1 0 3 1·va
dc

. . . . . . . .
0 1 0 1 0 0 21 −2·va

dc
0 1 0 1 0 1 22 −3·va

dc
. . . . . . . .
1 0 1 0 1 0 43 3·va

dc
. . . . . . . .
1 0 1 0 1 1 44 2·va

dc
. . . . . . . .

Figure 2 depicts the proposed FSF-MPC control that uses the explicit MMC’s mathe-
matical model to compute the predictive behavior of the control actions for every switching
state. It is essential to highlight that the 7-level CHB-based MMC is tied to the load through
an RL filter. Kirchhoff’s circuit laws can be used to obtain the system’s dynamic. The
following equation is the state-space representation obtained using Kirchhoff’s rules on the
AC side. 

.
ia
c(t).

ib
c (t).

ic
c(t)

 = F

 ia
c(t)

ib
c (t)

ic
c(t)

+G

 −va
c(t)

−vb
c(t)

−vc
c(t)

, (1)

where

F =


− R f

L f 0 0

0 − R f
L f 0

0 0 − R f
L f

, G =


1

L f 0 0
0 1

L f 0
0 0 1

L f

. (2)

L f represents the inductive filter, which has a parasitic resistance (R f ) that is connected
between the point of common coupling (PCC) and the MMC’s output.

R f L f

based

PSM-

Figure 2. Proposed FSF-MPC control scheme applied to the 7-level MMC.

3. MMC Predictive Model

A forward-Euler discretization procedure has been used to reduce the computational
burden of the FSF-MPC. Then, the predictive model can be obtained from (1), with the
following equation as the MMC discrete-time model [26,27]. îa

c(k + 1)
îb
c (k + 1)

îc
c(k + 1)

 = A

 ia
c(k)

ib
c (k)

ic
c(k)

+B

 −va
c(k)

−vb
c(k)

−vc
c(k)

, (3)
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where

A =

 a1 0 0
0 a1 0
0 0 a1

, B =


Ts
L f 0 0
0 Ts

L f 0
0 0 Ts

L f

, (4)

with a1 =
(

1− R f Ts
L f

)
and Ts as the sampling time.

3.1. Current Reference Generation

The FSF-MPC technique requires the previous calculation of the reference currents to
calculate the cost function in (8). Therefore, firstly, we must select the active and reactive
power reference P∗L and Q∗L to be applied to the load side, considering that the voltage
references vφ

sc are the maximum voltages of the fundamental frequency at the output of the
multilevel converter. Using the Clarke transformation matrix (T), the currents and voltages
can be represented in static reference frame α− β as:

[
vα

sc

vβ
sc

]
=

√
2
3

 1 − 1
2 − 1

2

0
√

3
2 −

√
3

2
1√
2

1√
2

1√
2


︸ ︷︷ ︸

T

 va
sc

vb
sc

vc
sc

.
(5)

Then, the relationship between the active and reactive power, as a function of the
current references in α− β subspace can be represented by:[

iα∗
c

iβ∗
c

]
=

1

(vα
sc)

2 + (vβ
sc)2

[
vα

sc vβ
sc

vβ
sc −vα

sc

][
P∗L
Q∗L

]
. (6)

The phase current references used in the optimization process are:

 ia∗
c

ib∗
c

ic∗
c

 =

√
2
3

 1 − 1
2 − 1

2

0
√

3
2 −

√
3

2
1√
2

1√
2

1√
2


−1

︸ ︷︷ ︸
T−1

 iα∗
c

iβ∗
c
0

. (7)

3.2. Cost Function and Optimization Process

The proposed fixed switching frequency controller is based on the MPC approach
and makes explicit use of an optimization process to minimize a definite cost function,
represented by (8). The cost function evaluates the current tracking error in each sampling
period using the prediction model and considers all possible firing signal combinations.

ga =‖ ia∗
c − îa

c(k + 1) ‖2,

gb =‖ ib∗
c − îb

c (k + 1) ‖2,

gc =‖ ic∗
c − îc

c(k + 1) ‖2 .

(8)

Considering nc = 3 cells per phase connected in cascade, we need 2nc = 6 firing
signals to control the output voltages (vφ

c ). This produces sixty-four (ε = 22nc = 64) firing
signals to be evaluated in the optimization process. After evaluating the cost function for
all possible combinations of firing signals, the optimization algorithm selects the optimum
vector Sφ

η,opt for each firing signal of each cell and applies the optimal vector during
a sampling period. The optimization process can be summariszed in the pseudocode
represented in Algorithm 1.
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Algorithm 1 Pseudocode of the optimization process applied to the FSF-MPC current
controller

1. Initialize ga
opt := ∞, gb

opt := ∞, gc
opt := ∞, η := 0

2. Compute the current references (7).
3. while η ≤ ε do
4. Sφ

η ← Sφ
xy ∀ x & y = 1, 2, 3

5. Calculate the prediction currents (3).
6. Compute the cost function, (8).
7. if ga < ga

opt then
8. ga

opt ← ga, Sa
opt ← Sa

η

9. end if
10. if gb < gb

opt then
11. gb

opt ← gb, Sb
opt ← Sb

η

12. end if
13. if gc < gc

opt then
14. gc

opt ← gc, Sc
opt ← Sc

η

15. end if
16. η := η + 1
17. end while
18. Compute the modulation signals (9).
19. Get the turn-on times of the firing signals according to Figure 3.
20. Apply the firing signals.

A
m

pl
it

ud
e 

[p
.u

]

Ts 2Ts 3Ts 4Ts

Time [s]

Ts 2T s s3T 4Ts

F
ir

in
g 

si
g
na

ls

Figure 3. The PSM-PWM scheme for the CHB-based MMC phase φ.

3.3. Proposed PSM-PWM Strategy

The classical model-based predictive control, after selecting the optimal vector Sφ
η,opt,

is applied during the whole sampling period producing a output voltage vφ
c,η,opt. This

solution produces an unbalanced switching frequency, causing, in turn, unbalanced stress
on the power devices.

The proposed controller uses a modulation stage based on a phase shift multicarrier
pulse-width modulation approach. A triangular three phase-shifted carrier signal with the
same frequency and magnitude are needed to obtain the turn-on times of the firing signals
of each cell using the proposed PSM-PWM strategy. The two adjacent carrier signals are
shifted by 180◦/3. By comparing one specific carrier signal vφ

cr,i with a pair of inverted

sinusoidal modulation signals, we obtain the firing signals of sφ
x1 and sφ

x3, as shown in
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Figure 3. Note that the carrier frequency and the sampling frequency are the same, and
the modulation signals are associated with the optimal phase voltages and are normalized
between −1 and 1, that is:

vφ
cont =

vφ
c,η,opt

3vdc
. (9)

3.4. Theoretical Results

A parametric analysis was performed to evaluate the performance of the proposed
controller. For that purpose, different sampling frequencies (from 15 kHz to 35 kHz in
1 kHz steps) and current amplitude references (from 1 A to 6 A in 0.5 A steps) were
considered. The performance of the proposed controller was analyzed in steady-state
operation, considering the mean square error phase current ia

c tracking as a figure of
merit. Figure 4a shows the parametric MSE evolution, where it is observed that at low
reference current amplitudes, the mean square error levels remained practically invariant
as a function of the sampling frequency variation (from 0.071 A for 15 kHZ to 0.068 A for
35 kHz). However, as the reference current became higher, the efficiency of the controller
in terms of the lower root mean square error improved. For the particular case of ia

c = 6 A,
the MSE was reduced from 1.107 A (for 15 kHz) to 0.085 A (for 35 kHz of sampling
frequency). Figure 4b summarizes in a level curve the different MSE values obtained in the
parametric analysis.

35

30

250
6

0.02

5

0.04

204

0.06

3

0.08

2

0.1

151

0.12

Current reference [A]

M
ea

n 
sq

u
ar

e 
er

ro
r 

[A
]

0.085

1.107

0.071

0.068

(a)

15 20 25 30 35

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

C
ur

re
nt

 r
ef

er
en

ce
 [

A
]

(b)

Figure 4. Phase current (ia
c ) tracking analysis after the change inreference amplitude from 1 A to

6 A and sampling frequency from 15 kHz to 35 kHz. (a) Parametric ia
c mean square error evolution.

(b) Level curves of the parametric MSE analysis.

4. Experimental Assessment

The proposed 7-level CHB-based MMC was validated through experimental results
obtained by using a custom test bench, as shown in Figure 5. This converter was imple-
mented using three cells per phase arranged in a cascade scheme. Each cell integrated four
SiC-MOSFET semiconductor devices and was fed with an independent dc-link voltage. The
dc-link voltages were implemented using independent linear dc sources, which ensured
the balance in the dc-link level voltages of the multilevel converter. The 7-level converter
was controlled by a real-time platform based on dSPACE MicroLabBox programmed using
a MATLAB/Simulink environment considering a Ts = 25 µs sampling time. The frequency
at the grid side was 50 Hz, and the voltage was set to 310.2 V. The rest of the electrical
parameters used for the controller were vdc = 33 V, R f = 0.09 Ω, L f = 3 mH, RL = 23.2 Ω,
and LL = 55 mH. The active power and current tracking measurements were performed
with analogue meters and were used as a figure of merit to validate the proposed control
strategy.

Initially, the 7-level CHB-based MMC was analyzed in an open-loop configuration.
Figure 6 shows the 7 levels of the output voltage (va

c ) and the load current (ia
L) evolution at

the output of the multilevel converter. Then, the FSF-MPC controller was evaluated in a
closed-loop to analyze the current control’s performance at the load side under transient
conditions. Figure 7a shows the current tracking evolution when a reference amplitude
changed from 0.5 A to 1 A. The result showed excellent and fast-tracking of its reference.
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dSPACE Control Unit

7-level CHB based MMC (Phase c)

7-level CHB based MMC (Phase b)

7-level CHB based MMC (Phase a)

Figure 5. The 7-level CHB-based MMC experimental test bench including the dSPACE platform and
the protection devices.

Figure 6. Voltage at the output of the 7-level CHB-based MMC (before the filter) and load current
(ia

L).

A
m

pl
it

ud
e 

[A
]

Time [ms]

(a)

A
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e 

[A
]

Time [ms]
30 50 70 90 110 130 150 170

(b)

Figure 7. Phase current (ia
c ) tracking analysis under transient conditions. (a) Phase current (ia

c )
tracking analysis after the change in reference amplitude from 0.5 A to 1 A. (b) Phase current (ia

c )
tracking analysis after the change in reference frequency from 50 Hz to 25 Hz.

Then, the system’s dynamic response was verified by measuring the output response
when having a variation in the frequency of reference current from 50 Hz to 25 Hz. It can
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be verified from Figure 7b that the current had the amplitude and frequency specified by
the reference current, which shows the proper operation of the 7-level CHB-based MMC
and the implemented current control. The mean square error (MSE) was around 0.08 A
in both cases. Similar results were observed for phases b and c and are not been included
for conciseness. On the other hand, the 7-level CHB-based MMC was evaluated from
the point of view of active power control at the load side. In this test, a multi-step active
power reference (P∗L ) was defined considering Q∗L = 0 VAr. Figure 8 shows the results of
the reactive power tracking. As shown, the active power applied to the load followed its
reference. Finally, Figure 9a shows the simulation results of the load current total harmonic
distortion (THD) profile. As observed from the results, the proposed controller provided
low ripples as well as a good harmonics profile at the load current side (around 2.16%).
The theoretical results are consistent with the harmonic profile obtained experimentally.
According to Figure 9b, the experimental load side current THD was around 3.76 %. Note
that an analytical comparison of the proposed control technique against other state-of-the-
art methods will be not discussed in this paper and is beyond the scope of the article.

A
ct

iv
e 

p
ow

er
 (

W
)

Figure 8. Multistep active power reference tracking analysis.

Frequency [kHz]

(a)

Frequency [kHz]

(b)

Figure 9. Load side phase current (ia
c ) THD analysis. (a) Simulation results. Load side current (upper)

and THD measurements (lower). (b) Experimental results. Load side current (upper) and THD
measurements (lower).

5. Conclusions

The paper described the implementation of a 7-level CHB-based MMC and imple-
mented a model-based predictive control strategy. The feasibility and effectiveness of
the overall system were investigated and validated through experimental results under
steady-state and transient conditions. The controller used a phase shift multicarrier pulse-
width modulation strategy. Among the advantages of the proposed FSF-MPC control
strategy are: (a) the better harmonic profile of the load phase currents minimizing the total
harmonic distortions at the load side; (b) good dynamics performance in terms of the MSE
in the tracking reference currents. It can be noted that due to the simple nature of the
implemented controller, it could be performed in any industrial application of a wide range
of power.
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Abbreviations
The following abbreviations have been employed in this work:

AC Alternating current
CHB Cascade H-Bridge
FSF Fixed switching frequency
IGBT Isolated Gate Bipolar Transistors
MMC Modular multilevel converter
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MPC Model-based predictive control
PCC Point of common coupling
PSM-PWM Phase shift multicarrier PWM
PWM Pulse-width modulation
SiC Silicon Carbide
THD Total harmonic distortion
VSCs Voltage source converters

Nomenclature

Cdc dc-link capacitor
ga, gb, gc FSF-MPC cost functions
ia
L, ib

L, ic
L Load phase currents

ia
c , ib

c , ic
c Converter phase currents

îa
c (k + 1), îb

c (k + 1), îc
c(k + 1) Converter phase current predictions

icα, icβ MMC currents in the α− β subspace
ia∗
c , ib∗

c , ic∗
c Converter phase current references

va
c , vb

c , vc
c Converter phase voltages

nc Number of cells
P∗c Instantaneous active power reference
Q∗c Instantaneous reactive power reference
QL Instantaneous reactive load power
T Clarke’s transformation matrix
x Corresponding cell number
y Switching device in each cell
Ts Sampling time
vdc dc-link voltage
R f Filter resistance
L f Filter inductance
Sφ

η,opt Optimum vector

vφ
c,η,opt Optimal voltage

vφ
cr,x Carrier wave

vφ
cont Modulation signals
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