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Abstract: This work describes the development of a fast Model Predictive Control (MPC) algo-
rithm for a Proton Exchange Membrane (PEM) fuel cell. The MPC cost-function used considers
the sum of absolute values of predicted control errors (the L1 norm). Unlike previous approaches
to nonlinear MPC-L1, in which quite complicated neural approximators have been used, two an-
alytical approximators of the absolute value function are utilised. An advanced trajectory lineari-
sation is performed on-line. As a result, an easy-to-solve quadratic optimisation task is derived.
All implementation details of the discussed algorithm are detailed for two considered approximators.
Furthermore, the algorithm is thoroughly compared with the classical MPC-L2 method in which the
sum of squared predicted control errors is minimised. A multi-criteria control quality assessment is
performed as the MPC-L1 and MPC-L2 algorithms are compared using four control quality indicators.
It is shown that the presented MPC-L1 scheme gives better results for the PEM.

Keywords: proton exchange membrane fuel cell; model predictive control; optimisation; L1 cost function

1. Introduction

Proton Exchange Membrane (PEM) fuel cells were first developed by General Electric
in the United States in the 1960s and used in a spacecraft developed by the National
Aeronautics and Space Administration (NASA) in the Gemini program [1]. They are a type
of acid fuel cell in which a solid or quasi-solid “membrane” material is used instead of
the proton-conducting liquid electrolyte necessary in earlier acid cells. They can be used
in cars, scooters, bicycles, boats, underwater vessels [2,3] and also aircrafts [4]. These fuel
cells have several advantages. One of them is low operation temperature which gives a
fast start-up. Furthermore, a solid electrolyte is used so no electrolyte leakage can happen.
PEM fuel cell design is also very simple and compact. Finally, they are very reliable
in operation. On the other hand, there are minor drawbacks, such as the formation of a
significant amount of water that may not have time to evaporate from the cell and thus
damage it and the platinum catalyst’s high susceptibility to carbon monoxide. However, all
of the positive features of the PEM fuel cells make them great alternatives to conventional
power generation methods that rely on fossil fuels. Technological details related to different
aspects of PEM fuel cells can be found in numerous publications, e.g., [5–7].

Since PEM fuel cells are nonlinear processes, their efficient control is quite difficult.
Different control strategies are possible for optimising the power split between the bat-
tery and PEM fuel cell to maximise system efficiency and reduce fuel consumption [8].
Simple controllers, including a Sliding-Mode Controller (SMC) and a fuzzy logic con-
troller, can supply a convenient voltage [9]. A more advanced approach is to use a fuzzy
Proportional-Integral-Derivative (PID) controller [10] for temperature control of the fuel
cell cooling system or an adaptive SMC algorithm which is integrated with the radial basis
function neural network to control the current or voltage of the fuel cell power supply [11].
Recent works show that PEM output power quality can be improved using classical and
fractional-order PID controllers [12]. An example of a fuzzy control method to control the
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temperature and humidity of the stack has been presented in [13]. It is also possible to use
a fuzzy adaptive PI controller with an improved advanced genetic algorithm [14]. Hier-
archical techniques can also be applied to develop a comprehensive energy management
strategy consisting of high-level control, which is based on fuzzy logic technique as well
as adaptive control loop and low-level control that generates a pulse-width-modulation
signal so that appropriate power distribution is achieved and the operating voltage of the
powertrain is stabilised [15]. In recent years, applications of MPC algorithms [16–18] to
PEM fuel cells have been reported. A linear model can be used for MPC prediction [19].
However, typically, a nonlinear model is used, meaning that a nonlinear optimisation task
must be solved at each sampling instant on-line [20–23]. A practical method leading to
simplification of the nonlinear task is successive on-line linearisation which leads to a
quadratic optimisation problem [24,25].

In all MPC algorithms cited above, the MPC cost-function used considers the sum
of absolute values of the predicted control errors (the L2 norm). However, in a few pub-
lications concerned with other applications, it is suggested that better control is possible
when the sum of absolute predicted control errors is utilised as the MPC cost function (the
L1 norm) [26–30]. This paper aims to present a computationally simple MPC-L1 control
strategy and its application to the PEM process. This work extends previous research con-
cerned with computationally efficient nonlinear MPC-L1 in which a neural approximator
of the absolute value function is utilised [30]. Unfortunately, such a control strategy’s
effectiveness heavily depends on the approximator’s accuracy. A more straightforward
approach is recommended in this work. The neural network is replaced by two analytical
approximators that are defined explicitly. The predicted process trajectory is linearised
on-line to find a quadratic optimisation task. All implementation details of the discussed
algorithm are detailed. Furthermore, the algorithm is thoroughly compared with the clas-
sical MPC-L2 approach. A multi-criteria control quality assessment is performed as the
MPC-L1 and MPC-L2 algorithms are compared using four control quality indicators. It is
shown that the presented MPC-L1 scheme gives better results for the PEM process.

The paper is organised as follows. Section 2 presents the continuous-time PEM fuel
system model used as the simulated process and a description of the Wiener model that
is utilised in all MPC algorithms is next presented. Section 3 recalls the general MPC
optimisation task with both L2 and L1 norms. The main contribution is detailed in Section 4
where a computationally efficient MPC-L1 algorithm with two analytical approximators
is described. The simulation results are presented and discussed in Section 5. Finally, the
research findings are summarised in Section 6.

2. Proton Exchange Membrane Fuel Cell

Fuel cells are devices that allow electricity production, typically through the chemical
conversion of hydrogen and oxygen. Fuel (hydrogen) is supplied continuously to the
anode; oxygen is supplied to the cathode. An electrolyte differs depending on the fuel
cell type. Energy and heat are generated during the electrochemical reaction; water is the
only byproduct. In cars, the entire process begins with the supply of hydrogen from a
high-pressure tank to the cell. In parallel, compressed air is also supplied. The result of the
reaction in the cell is a generated current, which is converted into alternating current and
supplied to the electric motor responsible for traction.

In this work, a PEM fuel cell is considered, which has the polymer membrane as the
electrolyte that conducts protons. A catalyst covers the anode, facilitating the splitting
of hydrogen atoms into protons and electrons. Ions pass through a polymer membrane
conducting protons, which is an isolator for the electrons. Electrons flow through an
external circuit, creating an external current in the cell. These fuel cells have been incredibly
popular lately as alternative power sources. It is beneficial to use them due to their low
operating temperature, great efficiency and minimal emission of harmful greenhouse gases.
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This section describes a fundamental model of the PEM process. It is used in simu-
lations only as the process. Next, a neural Wiener model is detailed. It is used in MPC
algorithms only.

2.1. Description of the PEM Fuel Cell System

The PEM fuel cell model considered in this paper was first introduced in [31] and
further discussed in [32–34]. The manipulated variable is the methane flow rate denoted
as q (mol s−1) and the output is the stack output voltage denoted as V (V). The system is
influenced by one measured disturbance which is the external current load, denoted as I
(A). The partial pressures of hydrogen, oxygen, and water are represented by the variables
pH2 , pO2 and pH2O, respectively (atm). The input hydrogen flow, hydrogen reacted flow,
and oxygen input flow are denoted by qin

H2
, qr

H2
and qin

O2
, respectively (mol s−1).

2.2. PEM Fuel Cell Continuous-Time Fundamental Model

The fundamental continuous-time model of the PEM system is described by the
following continuous-time equations

qin
H2

=
CV

(τ1s + 1)(τ2s + 1)
q (1)

pH2 =
1/KH2

τH2 s + 1

(
CV

(τ1s + 1)(τ2s + 1)
q− 2Kr

)
(2)

pO2 =
1/KO2

τO2 s + 1

(
CV/τH−O

(τ1s + 1)(τ2s + 1)
q− Kr Ir

)
(3)

qr
H2

=2Kr Ir (4)

pH2O =
2Kr/KH2O

τH2Os + 1
I (5)

V =E− ηact − ηohmic (6)

E =N0

[
E0 +

RT
2F

ln
pH2

√pO2

pH2O

]
(7)

ηact =B log(CI) (8)

ηohmic =Rint I (9)

Equation (1) represents the hydrogen flow which can be obtained from the reformer, where
q is the methane flow rate while CV, τ1 and τ2 are constants. The pressure of hydrogen
is calculated from Equation (2), where KH2 and τH2 denote the valve molar constant for
hydrogen and the response time of hydrogen flow, respectively. The current pressure of
oxygen is found using Equation (3), where KO2 and τO2 denote the valve molar constant for
oxygen and the response time of oxygen flow, respectively. Equations (4) and (5) describe
the hydrogen flow that reacts and the pressure of water, respectively, where Kr is a constant.
The stack voltage is found from Equation (6), where E is calculated from the Nernst’s
formula in Equation (7). Additionally, the following symbols are used: N0 is the number of
cells in series in the stack, E0 is the ideal standard potential, R0 is the universal gas constant,
T0 is the absolute temperature and F0 is the Faraday’s constant. Finally, activation losses
and ohmic losses are described by Equations (8) and (9), respectively, where Rint is the
internal resistance while B and C are activation voltage constants. The values of model
parameters are given in Table 1.

The values of process input and disturbance signals are constrained as follows

0.1 mol s−1 ≤ q ≤ 2 mol s−1 (10)

50 A ≤ I ≤ 150 A (11)
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The values of process variables for the initial operating point are the following:
I = 100 A, q = 0.5 mol s−1, pH2 = 5.9102 atm, pO2 = 39.4959 atm, pH2O = 22.6160 atm and
V = 56.6179 V.

Table 1. Parameters of the fundamental continuous-time model of the PEM system.

Parameter Value Unit Description

B 0.04777 A−1 Activation voltage constant
C 0.0136 V Activation voltage constant
CV 2 − Conversion factor
E0 0.6 V No load voltage
F 96, 485 C mol−1 Faraday’s constant
KH2 4.22× 10−3 mol s−1 atm−1 Hydrogen valve constant
KH2O 7.716× 10−3 mol s−1 atm−1 Water time constant
Kr = N0/4F0 2.2802× 10−3 mol s−1 A−1 Constant
KO2 2.11×−2 mol s−1 atm−1 Oxygen time constant
N0 88 − Number of cells
R0 8.314 J mol−1 K−1 Universal gas constant
Rint 0.00303 Ω Internal resistance
T0 343 K Absolute temperature
τ1 = τ1 2 s Reformer time constants
τH2 3.37 s Hydrogen time constant
τH−O 1.168 − Hydrogen-oxygen flow ratio
τH2O 18.418 s Water time constant
τO2 6.74 s Oxygen time constant

2.3. Wiener Model of PEM Fuel Cell

The discussed PEM fuel cell’s continuous-time fundamental model has linear dynamic
transfer functions in Equations (2), (3) and (5), but the stack voltage is defined by the
nonlinear steady-state Nernst’s equation (7). This means that the outputs of the linear
dynamic part of the model are inputs of the nonlinear steady-state one. As a result, it
is evident that a Wiener structure [35] as an empirical model of the PEM fuel cell under
consideration can be used. For the Wiener model, the process variables q, I, and V are
scaled as follows

u = q− q̄, h = 0.01(I − Ī), y = V −V (12)

where q̄, Ī and V denote values of the signals at the initial operating point.
Identification of a few variants of the Wiener model and selection of the best one is

thoroughly discussed in [24,35]. The structure of the chosen model is shown graphically
in Figure 1. It has three linear dynamic blocks and one nonlinear steady-state block.
The outputs of each linear block, at every sampling instant k, are found with the use of the
following formulas

v1(k) =
n11

B

∑
i=1

b11
i u(k− i) +

n12
B

∑
i=1

b12
i h(k− i)−

n1
A

∑
i=1

a1
i v1(k− i) (13)

v2(k) =
n21

B

∑
i=1

b21
i u(k− i) +

n22
B

∑
i=1

b22
i h(k− i)−

n2
A

∑
i=1

a2
i v2(k− i) (14)

v3(k) =
n3

B

∑
i=1

b3
i h(k− i)−

n3
A

∑
i=1

a3
i v3(k− i) (15)

The integers nj
A for j = 1, 2, 3, nij

B for i = 1, 2, j = 1, 2 and n3
B define the order of the

model dynamics. The constant parameters of the linear dynamic blocks are denoted by
the real numbers aj

i (i = 1, . . . , nj
A, j = 1, 2, 3), bjl

i (i = 1, . . . , nj
B, j = 1, 2, l = 1, 2) and b3

i
(i = 1, . . . , n3

B). It is to be noted that the steady-state block of the model does not use just
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the measured outputs of the linear blocks, v1, v2, v3, but also the measured disturbance
signal, h. The output of the model, y, is calculated from the nonlinear steady-state block by
using the following general equation

y(k) = g(v1(k), v2(k), v3(k), h(k)) (16)

A neural network with four inputs, one hidden layer with K units and one output is used
as the nonlinear part of the model. The model output is

y(k) = w2
0 +

K

∑
l=1

w2
l ϕ

(
w1

l,0 +
3

∑
j=1

w1
l,jvj(k) + w1

l,4h(k)

)
(17)

Weights of the network are denoted by w1
l,j, l = 1, . . . , K, j = 0, . . . , 4 and w2

l ,
l = 0, . . . , K, for the first and the second layers, respectively.

Linear dynamic
block No. 1

Linear dynamic
block No. 2 

Linear dynamic
block No. 3 

Nonlinear
steady-state

block

Figure 1. The structure of the Wiener model.

3. Problem Formulation

Although this work is concerned with a specific process (the PEM fuel cell), let us
use universal notation in derivation of the MPC algorithm. The manipulated variable (the
input of the process) is denoted as u and the controlled variable (the output of the process)
is denoted as y. For scaling, Equation (12) is used. Then, the classical rudimentary MPC
optimisation task can be presented in the following form

min
4u(k)

{J(k)}

subject to (18)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1

The task is solved at each sampling instant and the solution is the vector of decision
variables, of length equal to the control horizon denoted as Nu, containing the increments
of the manipulated variable

4u(k) = [4u(k|k) . . .4u(k + Nu − 1|k)]T (19)

The solution is found with respect to the constraints imposed on the magnitude of the
input, defined by umin and umax, and the constraints imposed on the increments of that
variable, defined by 4umin and 4umax. Only the first element of the decision variables
vector is applied to the process, i.e., PEM fuel cell system. In general form, the minimised
cost-function J(k) can be written in the task as a sum of two parts as follows
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min
4u(k)

{
Je(k) + J4u(k)

}
subject to (20)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1

The first part of the MPC cost-function is of the following form

Je(k) =
N

∑
p=1

Fe(e(k + p|k)) (21)

The predicted control error for the future sampling instant k + p computed at the current
time step k is denoted by e(k + p|k). In the cost-function, they are taken into account over
the prediction horizon N as arguments of a function Fe. The predicted control errors are
calculated as follows

e(k + p|k) = ysp(k + p|k)− ŷ(k + p|k) (22)

where ysp(k + p|k) is the set-point for the future sampling instant k + p available at the
current time step k and ŷ(k + p|k) is the predicted output of the process the sampling
instant k + p found from a process model at the time step k. The second part of the MPC
cost-function is of the following form

J4u(k) = λ
Nu−1

∑
p=0

(4u(k + p|k))2 (23)

All changes of the manipulated variable (over the control horizon) are minimised when this
part is included into the cost-function J(k). In this part, there is also a weighting parameter
λ (the larger its value, the larger the penalty term and the slower the control). The function
Fe that weighs the predicted control errors (Equation (21)) can be a squared function

Je(k) = (e(k + p|k))2 (24)

or it can be an absolute value function

Je(k) = |e(k + p|k)| (25)

Hence, if the square function (24) is used, we obtain the classical MPC cost-function in
which squared values of the predicted control errors are considered

J2(k) =
N

∑
p=1

(ysp(k + p|k)− ŷ(k + p|k))2 + J4u(k) (26)

It is called the L2 cost-function and the resulting MPC algorithm is named MPC-L2.
In this work, the L1 cost-function is studied, which uses the part given by the Equa-
tion (25). As a result, we obtain the following L1 cost-function in which absolute values of
the predicted control errors are considered

J1(k) =
N

∑
p=1
|ysp(k + p|k)− ŷ(k + p|k)|+ J4u(k) (27)

Let us note that both MPC cost-functions have the same second part defined by Equation (23).
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4. Computationally Efficient Nonlinear MPC Using the L1 Cost-Function

The nonlinear MPC-L1 optimisation task is formulated with the use of the general form
of the optimisation task in (18) and the MPC-L1 cost function (27). It takes the following form

min
4u(k)

{
J1(k) =

N

∑
p=1
|ysp(k + p|k)− ŷ(k + p|k)|+ λ

Nu−1

∑
p=0

(4u(k + p|k))2

}
subject to (28)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1

It is important to note that the PEM fuel cell system model is nonlinear, so the predictions
of the process output, ŷ(k + p|k), are nonlinear functions of the calculated moves4u(k) as
well. In such a case, we have to distinguish two problems to solve.

Problem 1: The absolute value function used in the cost-function is not differentiable.
As a result, the MPC-L1 cost-function is also not differentiable. It makes it impossible to
use the classical gradient-based optimisation method. For the L2 norm, this problem does
not exist because the MPC-L2 cost-function is quadratic and differentiable.

Solution to problem 1: The first part of the non-differentiable cost function (27) is
replaced by its differentiable representation. This work uses two analytical approximations
of the absolute value function. It is also possible to solve this problem using neural
approximators [30].

Problem 2: Assuming that a nonlinear model is used in MPC, predictions ŷ(k + p|k)
are nonlinear functions of the calculated decision vector (19), which means that the MPC-L1
or MPC-L2 cost function is nonlinear. As a result, a nonlinear optimisation task is obtained
and it must be repeatedly solved at each sampling instant.

Solution to problem 2: The J1(k) cost function after applying an analytical approxima-
tor is still nonlinear in terms of the computed control moves (19). An advanced trajectory
linearisation method adopted from [35] is used to improve the derivation of a simple
quadratic optimisation task from the nonlinear MPC-L1 optimisation task.

4.1. Analytical Approximation of the MPC-L1 Cost-Function

In this work, it is postulated that the absolute value of the predicted error is replaced
by a square of an auxiliary function α

(α(e(k + p|k)))2 = |e(k + p|k)| (29)

over the whole prediction horizon, i.e., for all p = 1, . . . , N. Two versions of analytical
approximators of the absolute value function are considered. The first one (v. 1) is described
by the following equation [36]

(α(e(k + p|k)))2 =
√
(e(k + p|k))2 + c−

√
c, c > 0 (30)

The second one (v. 2) is characterised by Equation [37]

(α(e(k + p|k)))2 = c log10

(
cosh

(
e(k + p|k)

c

))
, c > 0 (31)

A test of both analytical approximators is necessary to find the appropriate value of
parameter c which is used in Equations (30) and (31). Figure 2 depicts the comparison
between the real absolute function and two approximators for different example values of
the parameter c. For the first approximator, two values are chosen for further comparisons
of MPC algorithms: c = 0.01 and c = 0.0001. The value c = 0.01 gives quite a rough
approximation; it will be interesting to analyse how this inaccuracy influences the resulting
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control quality. The influence of this imprecise approximation on control quality possible
in MPC is discussed in Section 5. The value c = 0.0001 gives very good accuracy. The value
c = 0.01 is chosen for the second approximator as it gives good accuracy.

-0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

-0.5 0 0.5
0

0.1

0.2

0.3

0.4

0.5

Figure 2. Comparison between the absolute value function and its analytical approximations for
different values of parameter c.

For the first version of the approximator, the MPC-L1 cost function (MPC-L1 v. 1) is
given by

J1(k) =
N

∑
p=1

√
(e(k + p|k))2 + c−

√
c + λ

Nu−1

∑
p=0

(4u(k + p|k))2 (32)

and for the second version, the MPC-L1 cost function (MPC-L1 v. 2) is

J1(k) =
N

∑
p=1

c log10

(
cosh

(
e(k + p|k)

c

))
+ λ

Nu−1

∑
p=0

(4u(k + p|k))2 (33)

4.2. Advanced Trajectory Linearisation of the MPC-L1 Cost-Function

As a result of using differentiable approximators of the absolute value function, both
J1(k) cost-functions with the analytical approximators, as defined by Equations (32) and (33),
are differentiable now, but still nonlinear. The source of nonlinearity is the model of the
controlled process. Namely, the predictions of the future values of the controlled variable
and hence the predicted control errors are nonlinear in terms of the calculated future
control increments (19). In order to solve this problem, an advanced on-line trajectory
linearisation is carried out. It may be proved elsewhere [30] that the linear approximation
of the predicted trajectory of the control error over the prediction horizon embedded in the
nonlinear function α can be written in general form

α(k) =
dα(etraj(k))

dutraj(k)
J4u(k) + α(etraj(k)) +

dα(etraj(k))
dutraj(k)

(u(k− 1)− utraj(k)) (34)

The future trajectory of the control error

α(k) = [α(e(k + 1|k)) . . . α(e(k + N|k))]T (35)

and the trajectory of controller errors embedded in the function α

α(etraj(k)) =
[
α(etraj(k + 1|k)) . . . α(etraj(k + N|k))

]T
(36)
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are both vectors of length N. The control errors used in the trajectory (35) are calculated
from Equation (22) while the following equation

etraj(k + p|k) = ysp(k + p|k)− ŷtraj(k + p|k) (37)

is utilised to determine the control errors in the trajectory (36). Linearisation is carried
out at each discrete time sampling instant k about the following trajectory of future
control scenario

utraj(k) =
[
utraj(k|k) . . . utraj(k + Nu − 1|k)

]T
(38)

which is a vector of length Nu. Matrix

J =


1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

 (39)

is of size Nu × Nu and the vector

u(k− 1) = [u(k− 1) . . . u(k− 1)]T (40)

is of length Nu. The N × Nu matrix dα(etraj(k))
dutraj(k) is required for trajectory approximation

(Equation (34)). Its entries, i.e., the partial derivatives ∂α(etraj(k+p|k)
∂utraj(k+r|k) are calculated for all

p = 1, . . . , N and r = 0, . . . , Nu at each sampling instant. Differentiation depends on the
type of the absolute value function approximator used. For the first approximation method
(Equation (30)), we have

∂α(etraj(k + p|k))
∂utraj(k + r|k)

=
−etraj(k + p|k)

2

√(
(etraj(k + p|k))2 + c

)(√
(etraj(k + p|k))2 + c−

√
c
) ∂ŷtraj(k + p|k)

∂utraj(k + r|k)
(41)

and for the second one (Equation (31)), we derive

∂α(etraj(k + p|k))
∂utraj(k + r|k)

=
− tanh

(
etraj(k+p|k)

c

)
2
√

c log10

(
cosh

(
etraj(k+p|k)

c

)) ∂ŷtraj(k + p|k)
∂utraj(k + r|k)

(42)

Finally, the partial derivatives ∂ŷtraj(k+p|k)
∂utraj(k+r|k) are calculated for all p = 1, . . . , N and r =

0, . . . , Nu at each sampling instant for a given dynamical model of the process used for
prediction in MPC. As far as the neural Wiener model of the PEM fuel cell system described
in Section 2 is concerned, all implementation details are given in [24].

4.3. Formulation of the Computationally Simple MPC-L1 Quadratic Optimisation Task

We consider the general nonlinear MPC-L1 optimisation task defined by Equation (28),
where the first part of the minimised cost function is approximated by Equation (34).
The same approximation of the trajectory α(k) is used for both analytical approximators of
the absolute value function described by Equations (30) and (31). Thanks to the fact that the
trajectory (34) is linear in terms of the calculated decision variable vector of MPC,4u(k),
we derive the following quadratic programming MPC-L1 optimisation problem
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min
4u(k)

{
J1(k) =

∥∥∥∥∥dα(etraj(k))
dutraj(k)

J4u(k) + α(etraj(k))

+
dα(etraj(k))

dutraj(k)
(u(k− 1)− utraj(k))

∥∥∥∥∥
2

+ ‖4u(k)‖2
Λ

}
subject to (43)

umin ≤ J4u(k) + u(k− 1) ≤ umax

4umin ≤ 4u(k) ≤ 4umax

The matrix Λ = diag(λ, . . . , λ) is of size Nu × Nu. Due to linearisation, the minimised
cost function is quadratic in terms of the decision vector, 4u(k), and all constraints are
linear with respect to the vector4u(k). The vector constraints are defined by the following
vectors of length Nu

umin =
[
umin . . . umin

]T
, umax = [umax . . . umax]T, (44)

4umin =
[
4umin . . . 4umin

]T
, 4umax = [4umax . . . 4umax]T (45)

We name the obtained control scheme the MPC algorithm with Nonlinear Prediction and
Linearisation along the Trajectory (MPC-NPLT).

The presented MPC-NPLT-L1 algorithm is very universal since different kinds of
dynamical models may be used for prediction. A specific form of a neural Wiener model
(as shown in Figure 1) is used in this work. Nevertheless, due to a universal formulation of
the MPC-NPLT-L1 algorithm, neural networks and fuzzy models of different structures
may be used. The general calculation scheme, including the formulation of the quadratic
optimisation task (43), is unchanged. The actual model structure must be taken into account
when the following two components are calculated:

(a) The predicted trajectory ŷtraj(k + p|k) for p = 1, . . . , N in Equation (37);

(b) The derivatives of the predicted trajectory ∂ŷtraj(k+p|k)
∂utraj(k+r|k) p = 1, . . . , N and r = 0, . . . , Nu− 1

in Equation (41) or (42).

5. Simulations
5.1. Compared Algorithms

The effectiveness of several MPC algorithms for the PEM fuel cell system has been
verified using MATLAB software. All experiments have been conducted for N = 10,
Nu = 3 and λ = 1; the values of MPC tuning parameters are the same as those used in
previous research [24]. Let us remind that the first version of the approximation is relatively
imprecise while the second one is excellent, as depicted in Figure 2. The MPC algorithms
have been assigned to two groups.

The first group of compared control schemes consists of MPC algorithms with Nonlin-
ear Optimisation (MPC-NO) repeated at each sampling instant. The following acronyms
are used:

• MPC-NO-L2 refers to the MPC algorithm with the classical L2 cost-function that
measures the sum of squared predicted control errors.

• MPC-NO-L1 refers to the MPC algorithm with the sum of absolute values of predicted
control errors. It is important to stress that the real absolute function is used, without
any approximation. The absolute value function is not differentiable at 0. It may create
problems for a nonlinear solver used to minimise the MPC-NO-L1 optimisation task.

• MPC-NO-L1 v. 1 refers to the MPC algorithm in which the possibly non-differentiable
absolute value function is replaced by its approximation defined by Equation (30).

• Finally, MPC-NO-L1 v. 2 refers to the MPC algorithm in which the absolute value
function is replaced by its approximation defined by Equation (31).
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The second group of compared control schemes consists of different configurations of
the MPC-NPLT algorithm in which quadratic optimisation is used at each sampling instant
in place of nonlinear programming necessary in the MPC-NO approach. The following
acronyms are used:

• MPC-NPLT-L2 stands for the algorithm in which the classical cost-function is used
with the quadratic norm.

• MPC-NPLT-L1 v. 1 stands for the algorithm in which the possibly non-differentiable
absolute value function is replaced by its approximation defined by Equation (30).

• MPC-NPLT-L1 v. 2 refers to the MPC algorithm in which the absolute value function
is replaced by its approximation defined by Equation (31).

As recommended in [24], linearisation is performed around the trajectory utraj(k)
(Equation (38)) defined by the most recent value of the manipulated variable computed
and applied to the process at the previous sampling step, i.e., utraj(k) = [1 . . . 1]T.

Three experiments have been conducted for the same control scenario. In the scenario,
the set-point trajectory is constant, but there are five step-changes in the disturbance signal.
The disturbance trajectory is presented in Figure 3.

0 20 40 60 80 100 120 140 160 180 200
40

60

80

100

120

140

160

Figure 3. Disturbance step changes.

All simulation results of MPC algorithms which are presented in the following figures,
use two analytical approximations of the absolute value function, defined by Equations (30)
and (30), respectively, are developed for the parameter c = 0.01. Additionally, a different
value is considered in Section 5.5 that compares MPC algorithms in terms of different
control quality criteria.

5.2. Experiment 1

The first experiment compares the algorithms MPC-NO-L1, MPC-NO-L1 v. 1 and
MPC-NO-L1 v. 2. This experiment aims to check if the algorithms with approximations
of the absolute value function give similar control quality to those possible when the
algorithm with the classical form of the absolute value function is used. All considered
MPC algorithms use nonlinear optimisation. For this purpose, the fmincon function
available in MATLAB is used.

All obtained simulation results are presented in Figure 4. The top panel presents
the constant output set-point, denoted as Vsp, and the process output signals and the
middle panel depicts the trajectories of the manipulated variable. Two bottom panels
depict enlarged fragments of the first panel. It is clearly shown that the recorded trajectories
are nearly identical. It is evident taking into account two bottom plots, which show parts
of the trajectories for two selected step changes of the disturbance. Although the difference
between them is minimal, we may note that the second version of the absolute value
function approximator used in the MPC-NO-L1 v. 2 algorithm gives the same trajectories
as those possible in the rudimentary MPC-NO-L1 algorithm. The first version of the
absolute value function approximator used in the MPC-NO-L1 v. 1 algorithm gives slightly
different trajectories. It is because the first version of the approximator gives worse results
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than the second one, as depicted in Figure 2. The conclusion is that the approximators of
the absolute value function give good results. Of course, nonlinear optimisation is used.
This difficulty is removed in the following experiments.
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Figure 4. Simulation results: the MPC-NO-L1, MPC-NO-L1 v. 1 and MPC-NO-L1 v. 2 algorithms.

5.3. Experiment 2

The following algorithms are compared in the second experiment: MPC-NO-L1, MPC-
NPLT-L1 v. 1 and MPC-NPLT-L1 v. 2. This experiment aims to check if the algorithms
with advanced linearisation of the predicted output trajectory perform similarly to the
MPC-NO-L1 control scheme. It is to be noted that this is the first test of the algorithms with
quadratic optimisation tasks against the algorithm with the nonlinear optimisation task.
Both versions of the MPC-NPLT-L1 algorithms use quadratic optimisation. For this purpose,
the quadprog function available in MATLAB is used.

The obtained trajectories are shown in Figure 5. The presented trajectories have
minor differences between them. We can draw two conclusions. Firstly, the trajectories
of the MPC-NPLT-L1 v. 2 algorithm are practically the same as those generated by the
MPC-NO-L1 method. It means that advanced trajectory linearisation and quadratic pro-
gramming may be used to eliminate nonlinear optimisation used at each sampling instant.
Secondly, the trajectories of the MPC-NPLT-L1 v. 1 algorithm are slightly different from
two other tested algorithms. As in the first experiment, it is because the first version of the
approximator gives worse results than the second one, as depicted in Figure 2.
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Figure 5. Simulation results: the MPC-NO-L1, MPC-NPLT-L1 v. 1 and MPC-NPLT-L1 v. 2 algorithms.

5.4. Experiment 3

The third experiment compares process trajectories for MPC-NPLT-L2, MPC-NPLT-
L1 v. 1 and MPC-NPLT-L1 v. 2 control methods. The focus is to check the perfor-
mance of computationally efficient algorithms with the classical cost-function (the MPC-L2
cost-function) vs. two versions of approximations of the absolute value functions.
All algorithms use quadratic optimisation. For this purpose, the quadprog function is used.

The trajectories of all MPC algorithms are presented in Figure 6. We can make
two observations. Firstly, in general, the algorithms with the L1 cost-function give better
results than the algorithm with the L2 cost-function. The difference in control quality is
quite significant. Secondly, as far as the algorithms with the L1 norm are concerned, better
results are possible when the more precise second version of the approximator is used.
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Figure 6. Simulation results: the MPC-NPLT-L2, MPC-NPLT-L1 v. 1 and MPC-NPLT-L1 v. 2 algorithms.

5.5. Control Quality Evaluation

In this work, a multi-criteria control quality assessment is considered [38]. As many as
four control quality indicators are calculated after simulation and their values are compared.
Two of these indices directly correspond with the L1 and L2 cost-functions. Firstly, we
consider the sum of absolute values of control errors over the whole simulation horizon

E1 =
200

∑
k=0
|ysp(k)− y(k)| (46)

and the sum of squared values of control errors

E2 =
200

∑
k=0

(ysp(k)− y(k))2 (47)

The third index is the Gauss standard deviation of the control error denoted as σGauss.
Finally, the last one is the rational entropy of the control error denoted as H. As emphasised
in [38], control quality assessment should be performed using various indicators as only
one index, e.g., the commonly used sum of squared control errors, may lead to wrong
conclusions about the effectiveness of the analysed control algorithm.
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Tables 2 and 3 compare all discussed MPC algorithms in terms of four considered
control quality indicators. The first version of the absolute value function approximator
uses two values of the parameter c, i.e., 0.01 and 0.0001. Let us remind that the c = 0.01
gives a pretty rough approximation. The second version of the approximator uses the
parameter c = 0.01, which has excellent accuracy. We may make the following observations:

• In general, minimisation of the L1 cost function gives better all control quality indicators in
comparison with the L2 cost function, i.e., the MPC-NO-L2 and MPC-NPLT-L2 algorithms
lead to bigger values of quality indices than the algorithm that the L1 cost function.

• Advanced trajectory linearisation and quadratic optimisation in the MPC-NPLT-L1 al-
gorithm lead to very similar control quality indicators as the computationally difficult
nonlinear optimisation used in the MPC-NO-L1 scheme.

• The first version of the approximator of the absolute value function with the parameter
c = 0.01 gives worse results than the same approximator with the parameter c = 0.0001
and the second one with c = 0.01. It is straightforward since the first approximator is
quite imprecise for c = 0.01, as depicted in Figure 2.

• As a result of excellent accuracy, the first version of the approximator of the abso-
lute value function with the parameter c = 0.0001 and the second version of the
approximator with c = 0.01 give very good results, practically the same.

The first version of the approximator seems to be computationally simpler. Hence, it is
recommended to use the first approximator.

Table 2. Simulation results: E1 and E2 indices; the coloured control quality indicators correspond to
the minimised cost-function used in MPC.

Algorithm E1 E2
MPC-NO-L1 5.6615 1.2995
MPC-NO-L1 v. 1, c = 0.01 5.5617 1.3114
MPC-NO-L1 v. 1, c = 0.0001 5.4832 1.2826
MPC-NO-L1 v. 2, c = 0.01 5.4842 1.2827
MPC-NPLT-L1 v. 1, c = 0.01 5.5517 1.3113
MPC-NPLT-L1 v. 1, c = 0.0001 5.3068 1.2588
MPC-NPLT-L1 v. 2, c = 0.01 5.2920 1.2398
MPC-NO-L2 6.7640 1.5779
MPC-NPLT-L2 6.7640 1.5779

Table 3. Simulation results: σGauss and H indices.

Algorithm σGauss H

MPC-NO-L1 8.0808× 10−2 4.3298× 10−2

MPC-NO-L1 v. 1, c = 0.01 8.1175× 10−2 4.3480× 10−2

MPC-NO-L1 v. 1, c = 0.0001 8.0281× 10−2 4.2735× 10−2

MPC-NO-L1 v. 2, c = 0.01 8.0282× 10−2 4.2735× 10−2

MPC-NPLT-L1 v. 1, c = 0.01 8.1170× 10−2 4.3480× 10−2

MPC-NPLT-L1 v. 1, c = 0.0001 7.9527× 10−2 3.9145× 10−2

MPC-NPLT-L1 v. 2, c = 0.01 7.8926× 10−2 3.8998× 10−2

MPC-NO-L2 8.9044× 10−2 5.4130× 10−2

MPC-NPLT-L2 8.9044× 10−2 5.4130× 10−2

6. Conclusions

This paper describes a fast MPC algorithm with the L1 norm and its application to
control the PEM fuel cell system. The classical non-differentiable absolute value function
is replaced with its analytical approximation. Moreover, linearisation of the predicted
process trajectory is performed at every sampling time instant to improve computational
efficiency further. Two approximation methods are described and implementation details
are derived. The obtained trajectories and four control quality indices have been compared
to analyse the algorithm’s performance thoroughly.
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The presented MPC-NPLT-L1 algorithm allows to control the PEM fuel cell effectively.
Firstly, it gives excellent control quality, the same as the MPC-NO-L1 scheme with nonlinear
optimisation. Secondly, minimisation of the L1 cost function gives better results than the
use of the classical L2 cost function. Thirdly, the use of the analytical approximation of
the absolute value function is much easier than the application of a neural approximation
considered in the literature [30]. Two versions of the analytical approximators are consid-
ered in this work. When properly tuned, both give excellent results, but the first one is
computationally simpler and recommended.

It is necessary to emphasise a universal nature of the presented MPC-NPLT-L1 algo-
rithm since different kinds of dynamical models may be used for prediction. Although a
specific form of a neural Wiener model is used in this work, neural networks and fuzzy
models of different structures may also be used. The general calculation scheme, including
the formulation of the quadratic optimisation task, is unchanged. The actual model struc-
ture must be taken into account when the predicted output trajectory and the derivatives
of that trajectory are calculated. The only limitation is differentiability of the model.

In the future, it is planned to study the choice of alternative cost-functions to control
PEM fuel cell systems and their influence on control quality.
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