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Abstract: Predictive control offers many advantages such as simple design and a systematic way to
handle constraints. Model predictive control (MPC) belongs to predictive control, which uses a model
of the system for predictions used in predictive control. A major drawback of MPC is the dependence
of its performance on the model of the system. Any discrepancy between the system model and
actual plant behavior will greatly affect the performance of the MPC. Recently, model-free approaches
have been gaining attention because they are not dependent on the system model parameters. To
obtain the advantages of both a model-free approach and predictive control, model-free predictive
control (MFPC) is being explored and reported in the literature for different applications such as
power electronics and electric drives. This paper presents an overview of model-free predictive
control. A comprehensive review of the application of MFPC in power converters, electric drives,
power systems, and microgrids is presented in this paper. Moreover, challenges, opportunities, and
emerging trends in MFPC are also discussed in this paper.

Keywords: model-free control; model predictive control; model-free predictive control

1. Introduction

Predictive control is a type of optimal control [1], which has been extensively used
in the process industry [2]. In the presence of the constraints on the input and output,
predictive control is the most feasible option because of its ability to handle constraints in
a systematic way [3–5]. A model-based predictive controller is known as model predictive
control (MPC) [6], and predictive control with a model-free approach is known as model-
free predictive control (MFPC) [7].

Model predictive control (MPC) uses a model of the system to predict the future
behavior of the system variable. A cost function is used as a criterion for selecting an optimal
control action. Implicit MPC and explicit MPC are two main types of MPC that have been
widely proposed in the literature for different applications. Two main challenges of MPC
are a large number of online computations for solving the optimization problem and
the dependency of MPC on the model of the system. Conventional or implicit MPC
requires a large number of computations because it solves all of the optimization problem
online. To reduce online computations, explicit MPC has been proposed in the literature.
Explicit MPC solves a part of the optimization problem offline by using multi-parametric
programming. Multi-parametric programming generates a lookup table that gives optimal
control action as an explicit function of the controller state.

Different schemes have been proposed in the literature based on implicit MPC and
explicit MPC to reduce the number of computations. An implicit CCS-MPC [4] has been
formulated for a three-phase inverter with an output LC filter. The proposed scheme
requires fewer computations compared to explicit MPC. A computationally efficient implicit
CCS MPC [8] was proposed for a grid-tied inverter. The proposed MPC scheme is based
on CCS-MPC. To eliminate the common-mode voltage of three-phase five-level active
neutral-point-clamped (3P-5L-ANPC) converters, a computationally efficient FCS-MPC [9]
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is proposed. To reduce the computational load of conventional FCS-MPC, an improved
FCS-MPC [10] is proposed for a neutral-point-clamped inverter. The proposed scheme
requires fewer computations compared to conventional FCS-MPC.

To reduce the computations of conventional MPC, explicit MPC is proposed for
a three-phase inverter with an LCL filter [11]. A computationally efficient sensorless
explicit MPC [12] is proposed for the DC–DC converter. Field-oriented control (FOC) of
alternating current drives has two major problems. These problems are low switching
frequency and the dependence of control on system model parameters. To overcome these
problems, a cascade explicit model predictive control is proposed for the FOC of alternating
current drives [13]. To control the fast charging and discharging of an ultra-capacitor,
a computationally efficient explicit MPC [14] is proposed for a bidirectional converter.
The computational requirement of the MPC has been solved to a great extent due to two
factors. These factors are the availability of computationally efficient MPC schemes and
advancement in the computational power of digital hardware.

The second main challenge in the implementation of MPC is its dependence on the
model of the system. A slight change in the actual plant dynamics and its model will greatly
affect the performance of the MPC. To reduce the dependence of MPC on the model of the
system, a model-free approach known as model-free predictive control (MFPC) has gained
attention. MFPC has the advantages of predictive control such as flexibility to handle
constraints and non-linearities in a systematic way. Moreover, to reduce dependency on
system model parameters, MFPC uses a model-free or system identification approach.

This paper gives an overview of model-free predictive control (MFPC) and its applica-
tion. The paper presents the theory of model predictive control (MPC) and the model-free
approach. Moreover, it discusses the different types of MPC and model-free approaches.
After presenting MPC and the model-free approach, the paper discusses the MFPC and its
application. A comprehensive review is given for the application of MFPC in power con-
verters, electric drives, power systems, and microgrids. Future directions and challenges in
the area of MFPC are also presented in this paper.

The organization of this paper is as follows. An introduction to MPC, the problem
formulation of MPC, along with its types is presented in Section 2. Section 3 presents
the model-free approach and its different types. Model-free predictive control and its
applications are presented in Section 4. Emerging trends in MFPC are part of Section 5.
The paper concludes in Section 6.

2. Model Predictive Control

Model predictive control (MPC) uses a model of the system to predict the future
behavior of the system variables. A cost function is used as a criterion for selecting the
optimal control action. Figure 1 shows the model predictive control scheme. x(k) is the
system state measured at time k. In the system model block, the discrete time state space
is used to obtain x(k + 1). The next block contains a cost function and an optimization
algorithm to minimize this cost function. u is the optimal control action obtained by
optimizing the cost function.

System Model
Cost function

+
Optimization algorithm

PlantX(k+1) u

X(k)

Figure 1. Model predictive control (MPC).

2.1. Model Predictive Control Problem Formulation

The main components of MPC are the model of the system, constraints on the input or
output, and a cost function for selecting an optimal control action. The model of a system
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is represented in state space form. The state space representation of a continuous time
system is

ẋ = Ax + Bu

y = Cx + Du
(1)

The discrete time state space model of the above system is given as

xk+1 = Axk + Buk

yk = Cxk + Duk
(2)

Constraints on the system states are given as

Cmin ≤ Cconxk+1 ≤ Cmax (3)

The constraint on the input is written as

Umin ≤ Uk ≤ Umax (4)

MPC problem is defined as

J = xT
k+1Qxk+1 + UT

k RUk

s.t. Cmin ≤ Cconxk+1 ≤ Cmax

Umin ≤ Uk ≤ Umax

(5)

2.2. Types of Model Predictive Control

Model predictive control has gained much attention in different applications because
of its flexibility to handle constraints systematically. However, two major drawbacks
of MPC are the computational requirements and the dependency of MPC on the model
of the system. Regarding computations, generally implicit MPC requires more online
computations. Figure 2 shows different types of MPC.

Model Predictive Control 
(MPC)

Implicit MPC

Finite Control Set MPC
(FCS‐MPC)

Continuous Control Set MPC
(CCS‐MPC)

Explicit MPC

Figure 2. Types of model predictive control.

Implicit and explicit MPC are the two variants that have been extensively used for
different applications such as power converters and electric drives. Furthermore, implicit
MPC has two variants, which are continuous control set MPC (CCS-MPC), shown in
Figure 3, and finite control set MPC (FCS-MPC), shown in Figure 4. CCS-MPC requires
more computations compared to FCS-MPC. Moreover, there are other differences between
FCS-MPC and CCS-MPC depending on the application such as a need for a modulator in
the control of power converters. CCS-MPC for power converters has a switched frequency.
On the other hand, FCS-MPC requires fewer computations, but switching frequency is
variable, which makes the design of the output filter a difficult process. To reduce the
computations of implicit MPC, explicit MPC has been proposed in the literature. Explicit
MPC solves a part of the optimization problem offline. Explicit MPC uses multi-parametric
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programming to generate a lookup table, which gives optimal control action as an explicit
function of the controller state. However, explicit MPC fails to accommodate any real-time
changes in the system variables.

System Model
Cost function

+
Optimization algorithm

PlantX(k+1)

X(k)

Modulatord s

Figure 3. Continuous control set model predictive control (CCS-MPC).

To describe the application of MFPC in power electronics, the plant in Figures 3 and 4
is a power electronic converter. The constraints in a power electronic system are switch-
ing losses, switching frequency, input duty cycle, output voltage, and frequency regula-
tion. The MPC accommodates these multiple constraints during the problem formulation.
The problem is formulated in the form of a cost function. An optimization algorithm is
used to obtain an optimal control action by minimizing this cost function.

System Model
Cost function

+
Optimization algorithm

PlantX(k+1)

X(k)

S

Figure 4. Finite control set model predictive control (FCS-MPC).

3. Model-Free Approach

The model-free approach is shown in Figure 5. The model-free approach uses input
and output data to synthesize the system model. The system parameters change with
time because of different reasons such as component aging and lifetime issues. As a
result, a system model derived using differential equations is unable to accommodate
these changes. These factors have given rise to a model-free approach for developing the
system models.

h[n]

System 
Identification

x[n] y[n]

Estimated h[n]

Figure 5. Model-free approach.

The process of the model-free approach is shown in Figure 6. The first step is the
collection of the input and output data. Filtering is performed on these data to remove
the noise. The second step is the use of a model-free approach for the estimation of the
system model. Two major approaches for the model-free approach are parametric [15] and
non-parametric [16] system identification. The third step is the validation of the estimated
model. Model validation is performed by comparing the outputs of the estimated model
with the actual plant outputs. If the difference in the outputs is within acceptable limits,
then the estimated model is the required model. If the difference is not within acceptable
limits, then the whole process of the model-free approach has to be repeated.
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Collection of input and output data

Start

Use of parametric or non‐parametric 
approach

End

Validation of model
Error= estimated output‐plant output

Error is within acceptable limit

Yes

NO

Figure 6. Model-free approach process.

3.1. Non-Parametric Approach

Non-parametric system identification uses frequency and time domain methods for
measured input and output data for estimating the system response. Figure 7 shows the
process of non-parametric system identification.

Collection of input and output data

Start

Filtering of data to remove noise

End

Use of frequency and time domain 
methods to estimate system response

Figure 7. Non-parametric approach.

The first step is the collection of the output data for all possible inputs. The second
step is the filtering of the data to remove the unwanted noise. The third step is the
use of frequency domain methods such as Bode plots or time domain methods such as
impulse response to estimate the system response. There is no need for model selection and
estimation of model parameters such as parametric system identification. This aspect makes
the implementation of non-parametric system identification easy to implement compared
to parametric system identification. However, the performance of the non-parametric
approach is prone to noise. As a result, a large number of data samples is required, which
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makes its response time slow. As a result, it is not feasible for applications such as power
electronic converters, where the response time should be fast for any change in the voltage
or current.

3.2. Parametric Approach

In a parametric approach [17], there are two main steps to obtain the model of the
system. These steps are the selection of the model and the estimation of the parameters of
the model. The selection of the model of the system is not a straightforward task. A good
choice is the model that captures the necessary dynamics of the system and, at the same
time, does not require too many computations. The model can be linear or non-linear and
of any order. The greater the order of the model, the greater the accuracy of the estimated
model will be with the real plant dynamics. However, a large-order model will have more
computational burden compared to a lower-order model.

H(s) =
as + b

cs2 + ds + e
(6)

The process of the parametric approach is shown in Figure 8. The first step is to collect
the input and corresponding output data. The second step is the selection of the model
structure. The model can be linear or non-linear and of any order. The computational
burden and accuracy of the estimated model depend on the order of the model. The greater
the order of the model, the higher will be the accuracy of the estimated model and compu-
tational requirements. An ideal model is such that it captures the necessary dynamics of the
system and does not require too many computations. After the selection of the model and
its order, the third step is the estimation of the model parameters. As an example, take (6)
as a system model. The parameters of this model are a, b, c, d, and e. Different algorithms
have been proposed in the literature for the estimation of these parameters, such as the
least-squares method. The next step is the validation of the estimated model by measuring
an error. This error is the difference between the plant output and the estimated model
output. If the error is within an acceptable range, then the estimated model is the correct
choice. If the error is not within an acceptable range, then the whole process has to repeat
for the estimation of the system model.

Model structure selection
(Linear or Non‐linear model)

(Order of model)

Start

Estimation of model parameters

End

Validation of model
Error= estimated output‐plant output

Error is within acceptable limit

Yes

NO

Figure 8. Parametric approach.
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4. Model-Free Predictive Control and Applications

Model-free predictive control (MFPC) uses predictive control as a controller, and for
the system model, it uses a model-free approach. The MFPC scheme is shown in Figure 9.
Here, the x(k) system state measured at instant k is given as the input to the model-free
block, which uses a system identification approach. xk+1 is the output of the model-free
block that will be used in the cost function to obtain u as an optimal control action. MFPC
removes the model dependence problem of the model predictive control. MFPC utilizes
the advantages of predictive control, as well as model-free approach.

System Model
(Model free approach)

Cost function
+

Optimization algorithm
Plant

x(k)

x(k+1) u

Model free predictive control

Figure 9. Model-free predictive control (MFPC).

To further explain Figure 9, we describe the mechanism of controlling the microgrid
using model-free predictive control. The plant is a power electronic converter that provides
an interface between a distributed energy resource (DER) and the electric grid. To regulate
the voltage and frequency of the microgrid, x(k) will be the output voltage of the power
converter that goes to the MFPC. x(k + 1) is v(k + 1), which goes to the predictive control
to obtain an optimal control action for the power converter. The optimal control action
u will be a duty cycle for the power converter to generate an output voltage of desired
frequency and amplitude.

A comprehensive review of the application of MFPC in power converters, electric
drives, power systems, and microgrids is presented in this section. In power converters,
the application of MFPC to control a three-phase inverter, DC–DC converter, and pulse
width modulated rectifiers is presented. Regarding electric drives, MFPC to control a
permanent magnet synchronous motor and synchronous reluctance motors is presented.
In the area of power systems, MFPC application to control a doubly fed induction generator
and solar power system oscillation damping is presented. In microgrids, MPFC application
to regulate frequency, voltage, and control of grid-forming inverter is presented.

4.1. Application of MFPC in Power Converters

The model-free predictive control approach has been proposed for the regulation of
current [18]. To reduce the dependency of the model predictive control on the output
filter and load model, this paper uses a regressive structure for the output filter and load.
Parameters of the auto-regressive structure are estimated using the recursive least-squares
method. The significance of using an auto-regressive structure is its simplicity because it is
a linear structure. Secondly, its parameter estimation is easy because of the well-established
algorithms such as RLS. The proposed approach uses the advantages of MPC for the
regulation of the output current and eliminates the dependence of the MPC on the output
filter and load model by using the model-free approach.

A performance comparison of the proposed and conventional FCS-MPC in a scenario
of model mismatch is shown in Figure 10. An RLC load is applied rather than an RL load to
show the performance of the controllers in the case of model mismatch. Figure 10 shows that
conventional FCS-MPC failed due to model mismatch. However, the proposed controller
regulates the current as its performance does not depend on the system model parameters.
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FIGURE 12. Performance comparison of conventional FCS-MPC and the
proposed MF-PC of a voltage source inverter considering model
mismatch. (a) Simulated comparison between the conventional FCS-MPC
and the proposed MF-PC. (b) Experimental validation of the conventional
FCS-MPC. (c) Experimental validation of the proposed MF-PC.

E. COMPUTATION TIME OF THE CONTROL ALGORITHM
An important aspect that determines the feasibility of a
control algorithm is the associated computational burden.
Besides the prediction and optimization stages, which are
the basis of the MPC strategy, the proposed MF-PC algo-
rithm also includes the parameter estimation part described
in Sec. III-B. Therefore, an increase in the computation time
is unavoidable. However, as can be seen in Table 2, the com-
putation time of the proposed MF-PC shows only a slight

TABLE 2. Computation times of the predictive algorithms.

increase of 6% with respect to the conventional FCS-MPC
algorithm. These times were measured in experimental tests
with a sampling period of 10 µs, where no overrun events
were recorded during the trials.

V. CONCLUSION
This paper has presented a new strategy for predictive current
control in a two-level voltage-source inverter without using
the physical model and the parameters of the system under
control. For this reason, the strategy is named ‘‘model-free
predictive control’’. The strategy presented in this paper is
based on an estimation of the controlled variables using the
Recursive Least Squares (RLS) method which is a standard
systems identification technique.
Simulation and experimental results confirm that it is not

necessary to have previous knowledge of the physical model
of the inverter and the load to apply predictive control.
In addition, these results confirm that this new strategy is
very robust in relation to parameter and model mismatch in
comparison to standard model predictive control.
In the light of these results, it is possible to consider the

robust application of predictive control in power electronics
systems with higher complexity in a very simple and sys-
tematic way, opening a new field of research and industrial
application.
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Figure 10. Performance comparison of FCS−MPC and MFPC. (a) FCS−MPC and MFPC with model
mismatch. (b) MPC performance. (c) MFPC performance.

Model-free neural-network-based predictive control [19] has been proposed for a
three-phase inverter. The proposed approach uses a state space neural network (SSNN) to
obtain the model. This SSNN model is used for prediction for the model predictive control.
Experimental results were performed for parameter mismatch and compared with the
conventional control scheme. Results validated the performance of the proposed approach
in the case of parameter mismatches.

A comparison between the performance of the conventional MPC and the proposed
approach is shown in Figure 11. Load resistance is 2 × R, and inductance is L

2 . The current
regulation of the conventional MPC is poor due to changes in the parameter. As a result,
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the current error is also more for the conventional MPC. The proposed approach is activated
at t = 60 ms and regulates the current. Moreover, the current error is also small because
the proposed approach does not depend on the system model parameters.
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Figure 6. Simulation results of MPC without identification: Output current for specified resistive
load and filter inductance.

It can be seen that the inductor current (i f in Figure 2) in both figures is sinusoidal
with low distortion, particularly for the ssNN-PSO-based PC, which has an MSE of 0.042
compared to 0.137 for MPC without identification.

To turn out the feasibility of the proposed approach under realistic operating condi-
tions, the resistive load is doubled (R× 2), and the filter inductance is halved ( L

2 ).
Figure 7 demonstrates the conventional MPC degradation performance through un-

certainty and the parametric mismatch. In contrast, ssNN-PSO-based predictive control
performs satisfactorily under parameter change of the physical load after activation at
t = 60 ms.
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Figure 7. Impact of parameter mismatch on steady state output current of VSC: Double specified
resistive load (R× 2) and one half of filter inductance ( L

2 ).

For further investigation of the robustness, five scenarios are considered as listed in
Table 2. As can be observed in Table 2, the inductor current generated by the identification-
based approach totally outperforms that obtained using conventional MPC. The increased
error due to the second variation is trivial in comparison to the rest mismatches in Table 2.

Figure 11. Performance comparison of conventional MPC and proposed MFPC.

Cascaded model-free predictive control [20] has been proposed for the single-phase
boost power factor correction converter. A unified ultra-local model has been used for
the continuous conduction mode (CCM) and discontinuous conduction mode (DCM) of
the power converter. An estimator updates the ultra-local model. Experimental results
validated the performance of the proposed control scheme. THD is computed for a variation
of −20% to 20% in the parameters. THD remains in the range of 10.93 to 10.90, and the
power factor remains constant at 0.99.

An enhanced model-free predictive control (MFPC) [21] has been proposed to elim-
inate the stagnant current variation update for PWM rectifiers. The proposed approach
estimates four variables to eliminate this problem. This approach removes the draw-
backs [22] that require the identification of the voltage vector combination and need a
lookup table for storing the grid current variations. The performance of the proposed
approach and model-based predictive control is shown in Figure 12. Figure 12a shows
the performance of MPC with rated values of L and R. Figure 12b,c show the increase in
THD and power error due to a change in model parameters. Figure 12d shows that MFPC
performance is almost similar to MPC with accurate parameters for unknown values of L
and R.

To reduce the parameter dependence and current ripple problem of MPC for a voltage
source inverter, double-vector MPC [23] has been proposed. The proposed approach uses an
ultra-local model along with a sliding mode observer for the estimation of disturbances in
the ultra-local model. Moreover, a visualization method is proposed to see the effectiveness
of the control scheme. Experiment results showed that double-vector free model predictive
control reduces the current ripples. Figures 13 and 14 were taken from [23], which show
the comparison of the proposed model-free predictive control with conventional model
predictive control. Figure 13 shows the performance of MPC and MFPC with an ideal model
of the system. In the case of a mismatch in the parameters, a comparison of Figures 13
and 14a shows that the current error for model-based predictive control increases because
of the dependence of MPC on the model parameters. However, due to the change in
inductance to 0.04 H, a comparison of Figures 13 and 14b shows that the current error
remains the same. This comparison validates the better performance of MFPC as its
performance is not dependent on system model parameters. The Table 1 summarizes all
the discussed papers on the application of MFPC in power converters.
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Figure 12. Performance comparison of different approaches. (a) MPC with the ideal model. (b) MPC
with model mismatch. (c) MPC with model mismatch. (d) Proposed MFPC.

JIN et al.: DOUBLE-VECTOR MODEL-FREE PREDICTIVE CONTROL METHOD 10073

Fig. 13. Current THDs with different currents.

Fig. 14. Comparison of current errors when the reference current is
10 A.

Fig. 15. Comparison of current errors when the reference current is
10 A with mismatched filter inductance. (a) Filter inductance is 0.01 H.
(b) Filter inductance is 0.04 H.

From Fig. 13 it can be further concluded that double-vector
MPC can reduce the current THD significantly, which validates
the effectiveness of the proposed visualization analysis method
in this article again. Moreover, the proposed double-vector
MFPC has better performance compared to the conventional
double-vector MPC because of the designed SMO-based lumped
disturbance observation method.

Besides, Fig. 14 is given to show the current control error of
the conventional double-vector MPC as well as the proposed
method. It is seen that the current control error of the proposed
method is a little smaller.

B. Experimental Results With Inaccurate Model
Parameters

In this section, the current control performance of the con-
ventional double-vector MPC and the proposed method with
mismatched model parameters are compared to show the effec-
tiveness and robustness of the proposed method.

In Fig. 15, the current control errors of the two methods are
compared when the reference current is 10 A with mismatched
filter inductance.

According to Figs. 14 and 15(a), it can be seen that when
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value, the current control error of the conventional double-vector
MPC becomes larger. Meanwhile, from Figs. 14 and 15(b), it
can also be seen that the current control error of the conven-
tional double-vector MPC becomes bigger too when the filter
inductance is 0.04H which is larger than its accurate value.
That shows the strong parameter dependence of the conventional
MPC. However, from Figs. 14 and 15, it can also be seen that the
proposed method in this article has strong parameter robustness,
which verifies its effectiveness again.

Additionally, Figs. 16 and 17 are further given to compare the
current THD and ripple of the conventional double-vector MPC
and the proposed method with inaccurate model parameters.

According to Fig. 16, it can be seen that when the filter
inductance is smaller than its accurate value, the current ripple
and THD of the conventional double-vector MPC are larger than
that of the proposed double-vector MFPC strategy. Furthermore,
when the filter inductance is larger, it is still can be known that
the proposed method can reduce the current ripple and THD
obviously compared to the conventional double-vector MPC, as
depicted in Fig. 17. That further shows the effectiveness of the
proposed method in this article.

Based on (6) it is easy to understand that, although the pro-
posed double-vector MFPC strategy in this article is model-free,
the parameter α should be selected carefully. In the above
experiments, α is set as 50. In the following, the robustness
of the proposed method in this article against the parameter α is
tested and the results are illustrated in Figs. 18 and 19.
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tional double-vector MPC becomes bigger too when the filter
inductance is 0.04H which is larger than its accurate value.
That shows the strong parameter dependence of the conventional
MPC. However, from Figs. 14 and 15, it can also be seen that the
proposed method in this article has strong parameter robustness,
which verifies its effectiveness again.

Additionally, Figs. 16 and 17 are further given to compare the
current THD and ripple of the conventional double-vector MPC
and the proposed method with inaccurate model parameters.

According to Fig. 16, it can be seen that when the filter
inductance is smaller than its accurate value, the current ripple
and THD of the conventional double-vector MPC are larger than
that of the proposed double-vector MFPC strategy. Furthermore,
when the filter inductance is larger, it is still can be known that
the proposed method can reduce the current ripple and THD
obviously compared to the conventional double-vector MPC, as
depicted in Fig. 17. That further shows the effectiveness of the
proposed method in this article.

Based on (6) it is easy to understand that, although the pro-
posed double-vector MFPC strategy in this article is model-free,
the parameter α should be selected carefully. In the above
experiments, α is set as 50. In the following, the robustness
of the proposed method in this article against the parameter α is
tested and the results are illustrated in Figs. 18 and 19.
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Table 1. Research papers on the application of model-free predictive control in power converters.

MFPC for Power Converters Reference

Model-free predictive control for current regulation of a three-phase inverter [18]
Model-free neural-network-based predictive controller for a three-phase
inverter [19]

Cascaded model-free predictive control for a boost converter [20]
Model-free predictive control for pulse width modulation rectifiers [21]
Double-vector model-free predictive control for a voltage source inverter [23]

4.2. MFPC in Electric Drives

Model-free predictive current control has been proposed for a surface-mounted per-
manent magnet synchronous motor (SMPMSM) [24]. An ultra-local model has been used
for future predictions. The proposed approach uses six voltage vectors for the prediction,
and then, a simple optimization method is used for the selection of the optimal voltage
vector. Experimental results showed that model-free predictive current control has better
results compared to CCS-MPC and FCS-MPC. Figure 15 shows the comparison between
the proposed approach, conventional FCS-MPC, and duty cycle MPC. The steady-state
performance of the proposed approach is much better than other methods because the
proposed approach does not depend on the model parameters.
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Fig. 10. Experimental bench of SMPMSM drive system.

0.02s to 0.03s. The curves of d-axis stator current and q-axis
stator current have the same color as the original ones. By using
the conventional FCS-MPC, larger dq-axes current oscillation
are shown in Fig. 8(a) and Fig. 9(a). As shown in Fig. 8(b) and
Fig. 9(b), the duty cycle MPC improves the steady-state current
response in contrast with the conventional FSC-MPC. From the
simulation results of the proposed method in 8(c) and Fig. 9(c),
one can see that the dq-axes current ripples are significantly
reduced. Moreover, Fig. 8(d) and Fig. 9(d) show the estimation
of Fd and Fq , and it is clear that the disturbance caused by the
inverter dead-time appears periodically.

V. EXPERIMENTAL RESULTS

The test bench of the SMPMSM drive system is shown in
Fig. 10. The experiment is implemented based on rapid con-
trol prototype by using dSPACE/DS1007 with DS5202 and
MOSFET-module inverter. The dynamometer is a 2.2-kW AC
induction-motor and is coupled with the tested SMPMSM. The
dynamometer operates at speed control mode and the SMPMSM
works on torque control mode. The rotor position is measured
by the resolver and the Hall-effect sensor is used to measure the
stator current. The dead-time of the inverter is 2μs and the DC
voltage is 48V. The sampling time of all methods, nominal pa-
rameter of SMPMSM and the control parameters are the same as
simulation. However, the motor parameters and the inverter non-
linearity may vary in practice. The step and steady-state current
response tests of the conventional FCS-MPC, duty cycle MPC
and CVV-MFPC are implemented and compared.

Fig. 11 and Fig. 12 show the step current response of all
methods at 100 r/min and 400 r/min. The q-axis current refer-
ence is 10.2881 A(5 N.m) and 20.5761 A(10 N.m). The q-axis
current dynamic of all methods is almost the same, however,
the proposed method has smaller overshoot of d-axis current in
most cases. The steady-state current response of both methods
is shown in the enlarged drawing of Fig. 11 and Fig. 12. It can
be seen that dq-axes current ripples of the proposed method are
much lower than the other two methods. Besides, a tracking

Fig. 11. Current response at 100 r/min (experiment). (a) The conventional
FCS-MPC. (b) The duty cycle MPC. (c) The CVV-MFPC. (d) Online estimation
of Fd and Fq .

error of the conventional FCS-MPC and duty cycle MPC occurs
in the d-axis current at 400 r/min in Fig. 12(a) and Fig. 12(b) due
to the ideal mathematical model. However, the proposed method
is independent of the mathematical model of SMPMSM drive
system, therefore can guarantee the steady-state error. The re-
sults are similar to the simulation and this illustrates that the
proposed method achieves the optimal voltage vector that can
effectively improve the current steady-state response. Moreover,
it retains the advantage of high dynamic response of the con-
ventional MPC.

In Fig. 11(d) and Fig. 12(d), the static values of the estima-
tion of Fd and Fq are different from simulation because of the
parametric uncertainties and inverter nonlinearity. Furthermore,
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Figure 15. (a) Conventional FCS−MPC. (b) Duty cycle MPC. (c) Model−free predictive control.
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To reduce the computational burden of discrete space vector modulation-based finite
control set model predictive control, an improved model-free predictive control has been
proposed for the permanent motor synchronous drives [25]. The proposed approach
uses model-free dead bat current control. Moreover, to increase the efficiency of the
converter, a second term is included in the cost function to reduce the switching frequency.
Experimental results showed that the proposed approach has much better performance
compared to FCS-MPC. Figures 16 and 17 were taken from [25]. Figure 16 shows the
dynamic performance of the model-based method for the dq-axis currents at 100 rpm and
400 rpm. Figure 17 shows the dynamic performance of the model-free method for the
dq-axis currents at 100 rpm and 400 rpm. The comparison of both methods shows that the
dynamic performance of the proposed method is better than the model-based method.
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Figure 17. Dynamic performance of model-free method for dq axis currents: (a) 100 rpm; (b) 400 rpm.

To improve the steady-state performance of synchronous motors (PMSMs), a model-
free predictive control (MFPC) [26] has been proposed. As a model-free approach, an ultra-
local model is derived using parametric system identification. Moreover, to reduce the
switching frequency, a second term is added in the cost function. The proposed approach
shows better results compared to the FCS-MPC and FS-MMFPC methods, and the proposed
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approach reduces stator current ripples and switching losses. Figure 18 was taken from [26],
which shows the comparison of the responses of finite control set model predictive control
(FCS-MPC), five-segment modulated model-free predictive control (FS-MMFPC), and mini-
mum switching losses modulated model-free predictive control (MSL-MMFPC). The pro-
posed approach MSL-MMFPC is better than the other methods because the proposed
approach does not depend on the system parameters.

Y. Wang et al.: MSL-MMFPC for PMSM Drive System

FIGURE 13. The dq-axes stator current response at 100rpm (experiment).
(a) FCS-MPC. (b) FS-MMFPC. (c) MSL-MMFPC.

It can be seen from Fig. 13 and Fig. 14, the FS-MMFPC
method and the proposedMSL-MMFPCmethod have similar
steady-state control performance, and the dq-axes current
ripples of both two methods are much lower than the conven-
tional FCS-MPC method. The results are consistent with the
simulation and this illustrates that both two MMFPC meth-
ods can obtain the optimal voltage vector, moreover, it can
effectively improve the current steady-state response. Fur-
thermore, the selection of different voltage vector sequence
has little effect on the steady-state performance of the system.
Fig. 15 and Fig. 16 show the experimental results of nor-

malizedA-phase current and duty cycle of A- phase at100rpm
and 300rpm of the two MMFPC methods, respectively. It can
be seen fromFig. 15(a) and Fig. 16(a), there are still switching
actions at the positive maximum value of A-phase current in
the FS-MMFPC method. By comparison, one can see there
are not switching actions at the positive or negative maximum
value of A-phase current in the proposed MSL-MMFPC
method. And hence, the switching losses will be greatly
reduced. Furthermore, as we can see from Fig. 15 and Fig. 16,
the peak value of A-phase current will shift to the right

FIGURE 14. The dq-axes stator current response at 400rpm (experiment).
(a) FCS-MPC. (b) FS-MMFPC. (c) MSL-MMFPC.

FIGURE 15. A-phase current and duty cycle of A-phase in steady-state
operation at 100rpm (experiment). (a) FS-MMFPC. (b) MSL-MMFPC.

slightly with the increase ofmotor speed, but this has a limited
effect on switching losses reduction.

20950 VOLUME 8, 2020

Figure 18. dq−axis stator currents response at 100 rpm. (a) FCS−MPC. (b) FS−MMFPC.
(c) MSL−MMFPC.

A model-free predictive control [27] has been proposed for synchronous reluctance
motor (SRM) drives. The proposed scheme uses a lookup table as a prediction model.
The prediction model uses eight base voltage vectors for the current predictions. The pro-
posed control scheme has been validated by simulation and experimental results. Figure 19
was taken from [27]. The comparison between the model-free predictive and model predic-
tive control shows that MFPC performs better because its performance does not depend on
the system parameters.
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Figure 19. Comparison between model-based predictive control and model-free predictive control.
(a) τ∗

m = 25% rated load. (b) τ∗
m = 25% rated load.

An improved model-free predictive current control [22] has been proposed for per-
manent magnet synchronous motors. The proposed approach removes the problem of
stagnation in the update of the current gradient. Experiment results validated the perfor-
mance of the proposed approach. Moreover, the reduced computations of the proposed
approach make it an ideal control scheme for industrial applications. Table 2 shows the
comparison of the proposed approach with different methods. The data of the table is taken
from [24]. The Table 3 summarizes all the discussed papers on the application of MFPC in
electric drives.

Table 2. Comparison of proposed approach with different methods.

Method Trip
e Nm Irip

d (A) Irip
q (A) THD % fav KHz

MBPCC 0.277 0.282 0.162 7.53 2.81
MBPCC with 0.5Ld 0.409 0.332 0.246 7.76 2.87
MBPCC with 0.5Lq 0.267 0.415 0.137 7.46 2.78
Conventional MFPCC 0.690 0.438 0.390 9.83 2.93
Proposed MFPCC 0.223 0.293 0.132 7.27 2.89

Table 3. Research papers on the application of model-free predictive control in electric drives.

MFPC for Electric Drives Reference

Ultra-local-model-based model-free predictive current control for a surface
mounted permanent magnet synchronous motor [22]

Dead-beat-based model-free predictive current control for a permanent
motor synchronous drive [24]

Ultra-local-model-based model-free predictive control for a synchronous
motor [25]

Lookup-table-based model-free predictive control for a synchronous reluc-
tance motor drive [26]

Model-free predictive current control for a permanent magnet synchronous
motor [27]
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4.3. Application of MFPC in Power Systems

Model-free predictive current control has been proposed for the doubly fed induction
generator (DFIG) [28]. The proposed scheme uses an ultra-local model to remove the
dependency of the system model on motor parameters. To further improve the controller
performance, an estimator is used to measure the disturbances in the system. Experimental
results showed that the proposed scheme shows promising results for DFIG under different
conditions. Moreover, the proposed scheme shows excellent results for an unbalanced
and distorted grid. Figure 20 was taken from [28], which shows the comparison of two
predictive control methods. Figure 20a shows that model-based predictive control is unable
to regulate currents in the case of changes in the system model parameters. Figure 20b
shows that model-free predictive control performs the regulation of current because its
performance does not depend on the system model parameters.

Figure 20. Comparison of two different predictive control methods. (a) Model-based predictive
control (b) Model-free predictive control.

A model-free predictive control [29] has been proposed for the grid-connected solar
power generation systems. The proposed approach is the H∞-based controller. The pro-
posed approach improves the tracking control performance. Simulation results showed
that the proposed approach outperforms the conventional proportional–integral (PI) and
model-free PI controllers. Figure 21 was taken from [29]. A comparison of different control
methods is shown for a change in line inductance from 0.15 to 0.45 mH. Figure 21a shows
that the PI controller is unable to stop oscillations in the line current and fluctuation in
the voltage. Similarly, Figure 21b shows that the model-free linear–quadratic–Gaussian
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(LQG) controller is unable to stop oscillations in the line current and fluctuation in the
voltage. However, Figure 21c shows that the proposed approach removes oscillations from
the current and fluctuations in the voltage.

Figure 21. Performance comparison of different controllers for a change in grid inductance from
0.15 to 0.40 mH. (a1) PI controller current waveform. (a2) PI controller voltage waveform. (b1)
Model−free LQG controller current waveform. (b2) Model−free LQG controller voltage waveform.
(c1) Model−free H∞ current waveform. (c2) Model−free H∞ voltage waveform.

A data-based predictive control scheme [30] has been proposed for power system
oscillation damping. The proposed scheme removes oscillations in the presence of mea-
surement noise, communication delays, load fluctuations, and non-linear loads. Moreover,
to further reduce the computations of the proposed algorithm, a min–max data-based
predictive controller has been proposed. The modified scheme removes power system
oscillations and requires fewer computations. Figure 22 was taken from [30], which shows
the performance comparison between the proposed or data-driven predictive control and
model-based predictive control. Results show that data-driven predictive control eliminates
the low-frequency oscillations and model-based predictive control is unable to eliminate
the oscillations.
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Figure 22. Comparison of data-driven predictive control and model-based predictive control. Grey
color: without control. Blue color: model-based predictive control. Orange color: data-driven
predictive control.

Model-free predictive control [31] has been proposed to remove oscillation in the
grid-connected voltage source inverter. Results show that the proposed scheme removes
oscillation from the grid-connected inverter and stabilizes the unstable system. The Table 4
summarizes all the discussed papers on the application of MFPC in power systems.

Table 4. Research papers on application of model-free predictive control in power systems.

MFPC for Power Systems Reference

Model-free predictive control for a doubly fed induction generator [28]
H∞-based model-free predictive control for a grid-connected solar power
generation system [29]

Data-based predictive control for power system oscillation damping [30]
Data-based model-free predictive control for removing oscillation in a grid-
connected inverter [31]

4.4. Application of MFPC in Microgrids

A model-free predictive control approach has been proposed for the frequency syn-
chronization of microgrids [32]. The proposed approach uses the model reference concept
for generating the signals for the model of a complex power system. The model-free
approach is used to model the complex power grid rather than the physical modeling.
A model predictive control is used to regulate the frequency control at the primary layer
level. The proposed approach shows promising results for regulating the frequency of the
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microgrid at the primary level. Moreover, by using a model-free approach, it captures the
dynamics of the complex power system compared to the linearized and reduced-order
models of the power system, which are compromised in capturing the dynamics of the
complex power system. Figure 23 was taken from [32], which shows the performance of
the model-free predictive control for different values of the model parameter α. Results
show that the model-free predictive control tracks the reference frequency for different
values of α. However, for a 100% change in the value of α, there is some error in tracking,
but the error is very small.

Figure 23. Frequency response for different values of α.

A model-free predictive control approach for fast frequency support using a battery
energy storage system has been proposed [33]. The proposed approach uses an estimator
to estimate the frequency response model of the microgrid. A model predictive controller
is used to control the frequency deviation in the microgrid. The advantage of a battery
energy storage system is its flexible rampant quick response, which helps in the frequency
synchronization problem. Moreover, the proposed approach eliminates the modeling issues
and the model dependence problem of the model predictive control. Figure 24 was taken
from [33], which shows the frequency deviation curves and without an energy storage
system (ESS) for different controllers. Results show that without an ESS, the frequency
nadir goes below under frequency load shedding (UFLS). However, with an ESS, frequency
response becomes better and remains above UFLS.

Figure 24. Frequency deviation with and without ESS.
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A three-phase inverter with an output LCL filter is the most commonly used topology
for interfacing distributed renewable energy resources with the islanded microgrid. The
LCL filter reduces the harmonics in the output voltage of the inverter. Model predictive
control has been extensively used to control this converter. To reduce the dependency of
the model predictive control on the model parameters, a model-free predictive control [34]
has been proposed for voltage regulation of a three-phase inverter with an LCL filter.
The proposed approach uses a two-stage model structure using auto-regression with
exogenous input. Moreover, the proposed approach uses least squares for the parameter
estimation of the model. The results have shown that the proposed approach significantly
improved the performance of the inverter in response to variation in the input values.
Figures 25–28 were taken from [34], which show the performance of model-based and
model-free predictive control for the change in values of inductance and capacitance.
Figure 25 shows that model-based predictive control fails to regulate the current for a change
in the capacitance. Figure 26 shows that model-free predictive control regulates the current
because its performance is not dependent on the system model parameters. Figure 27
shows the comparison of model-based predictive control and model-free predictive control
for an ideal model of the system. Figure 28 shows that model-based predictive control
fails to regulate the voltages, but model-free predictive control regulates the voltages for a
change of 30% in capacitance.

Figure 25. Performance of model-based predictive control.

Figure 26. Performance of model-free predictive control.

Figure 27. Comparison of different controllers with an ideal model. (a) MPC performance. (b) MFPC
performancel.
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Figure 28. Comparison of different controllers for a change of 30% in capacitance. (a) MPC perfor-
mance. (b) MFPC performance.

A model-free neural-network-based predictive controller [35] has been proposed for
the frequency and voltage regulation of synchronverters or virtual synchronous gener-
ators (VSGs). The proposed control scheme is for the operation of VSGs in microgrids.
Experimental results show that the proposed control scheme regulates the voltage and
frequency of the VSG. Figure 29 was taken from [35], which shows the comparison between
the proposed approach and proportional–integral control. The proposed model-free neural
network predictive control (NNPC) performs better than the proportional–integral con-
troller. The Table 5 summarizes all the discussed papers on the application of MFPC in
microgrids.

Table 5. Research papers on the application of model-free predictive control in microgrids.

MFPC for Microgrids Reference

Model-free predictive control for frequency synchronization of a microgrid [32]
Model-free predictive control for fast frequency synchronization of a micro-
grid using a battery energy storage system [33]

Model-free predictive control of grid-forming inverters with an LCL filter [34]
Model-free neural-network-based predictive controller for frequency and
voltage regulation of synchronverters [35]

Figure 29. Cont.
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Figure 29. Comparison of the performance of NNPC−VSG and PI control. (a) Active power. (b) Re-
active power. (c) Zoomed active power. (d) Zoomed reactive power.

5. Emerging Trends in Model-Free Predictive Control

This section presents a microgrid as a potential application of MFC and gives a future
direction in the area of microgrids. Moreover, it gives an overview of the challenges in the
implementation of MFPC such as model reduction and convexification.

5.1. Microgrids

Microgrids provide support to the main electric grid in case of any disturbance, and
they are an option for providing electricity in areas where there is no access to electricity.
Solar panels, wind turbines, and energy storage systems are some of the sources connected
to the microgrid by using power electronic converters. Different control schemes have been
proposed in the literature for microgrids [36]. The most widely used control scheme is
the hierarchical control of the microgrid. This hierarchical control consists of three layers,
known as primary, secondary, and tertiary. These layers are divided based on response
time and bandwidth requirements for the communication. Table 6 shows the functions of
different layers and their response time.

Table 6. Hierarchical control layer functions and their response time.

Layer Function Time Response

Primary
• Voltage control
• Frequency control Fast

Secondary

• Elimination of frequency deviation
• Reference signal generation for primary layer
• Grid-connected to island mode
• Island to grid-connected mode

Slow

Tertiary Coordination of different microgrids Slow

Two main challenges in the control of microgrids are frequency [37,38] and voltage
regulation. For frequency and voltage regulation, model-based controllers have been
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proposed. Among these model-based controllers, model predictive control (MPC) offers
many advantages in microgrids because of its flexibility to include constraints and non-
linearities in a systematic way [39]. However, the major drawback of the MPC is the model
of the microgrid. Modern microgrids have complex dynamics, and they have a non-linear
nature. Due to their complex nature, an explicit representation of the state variable is
not possible. Moreover, solving these non-linear equations requires much computational
effort. To solve this problem, reduced model or linearization methods are commonly used.
However, the reduction in model or linearization compromises capturing the dynamics
of the system. As a result, it affects the performance of the MPC. Due to these factors,
model-free predictive control (MFPC) has gained attention in microgrids. There is much
potential for MFPC in microgrids.

5.2. Model Reduction

For the non-parametric approach, two main components are the selection of a model
structure and the identification of the model parameters. Applications such as power elec-
tronic converters have a non-linear nature. Approximating this non-linear behavior with a
simple non-linear model is an active area of research [40]. Moreover, the approximation of
non-linear models with a linear model is also an active area of research [40]. Model order
reduction is an active research domain in the model-free approach. The reduction in the
order of the model reduces the computational load of the controller.

5.3. Convexification

The estimation of model parameters is a major process in the model-free approach.
Different estimation techniques have been proposed in the literature for the estimation of
the model parameters. Convexification is the process of converting an estimation problem
into a convex function. Computationally efficient schemes are available for finding the
global minima of a convex function. Convexification [40] is also an active research area in
the model-free approach.

6. Conclusions

This paper presented an overview of model-free predictive control and its applications.
In the first phase, it presented the theoretical background of the model predictive control
and model-free approach. In the second phase, model-free predictive control (MFPC)
was presented and explained that MFPC utilizes the advantages of both model predictive
control and the model-free approach. In the third phase, model-free predictive control was
presented for different applications. Results validated the performance of the model-free
predictive control. In the area of power converters, results were shown for the MFPC
of a three-phase inverter to control current. Results showed that the current error was
just 14 percent of the model-based predictive control. In the area of electric drives, results
showed that the MFPC of a permanent magnet synchronous motor has a torque ripple that is
80 percent of model-based predictive control. In the microgrid area, results were presented
for the MFPC of a three-phase inverter with an LCL filter to regulate the output voltage.
Results showed that the voltage error was just 17 percent of the model-based predictive
control. In the last part, a microgrid was presented as a potential application in which
MFPC is gaining attention. Moreover, two major problems in the model-free approach
known as convexification and model order reduction were presented as a challenge in the
implementation of the model-free predictive control.
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The following abbreviations are used in this manuscript:

MFC Model-free control
MPC Model predictive control
MBPC Model-based predictive control
MFPC Model-free predictive control
PC Predictive control
CCS-MPC Continuous control set model predictive control
FCS-MPC Finite control set model predictive control
DFIG Doubly fed induction generator
SSNN State space neural network
CCM Continuous conduction mode
DCM Discontinuous conduction mode
PWM Pulse width modulation
SMPMSM Surface-mounted permanent magnet synchronous motor
SRM Synchronous reluctance motor
PI Proportional integral
VSG Virtual synchronous generators
AR Auto-regressive
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