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Abstract: In this paper, a traction load model parameter identification method based on the improved
sparrow search algorithm (ISSA) is proposed. According to the load characteristics of the AC traction
power supply system under transient disturbance, the model structure of the traction load is equated
to the composite load model structure of the static load shunt induction motor’s dynamic load.
The traditional sparrow search algorithm is improved to enhance its accuracy and convergence.
The generalization ability of the model was tested, and the accuracy of the proposed model was
verified. Using the ISSA to determine the load model from the measured data, the results can verify
the effectiveness of the ISSA for comprehensive load model parameter identification. Comparing
the ISSA with the traditional SSA and PSO algorithms, it shows that the ISSA has better accuracy
and convergence.

Keywords: improved sparrow search algorithm; parameter identification; traction load; load modeling

1. Introduction

Power systems consist of three main components: the generating unit, the transmission
network, and the electrical load. With the continuous updating of computer technology,
digital simulation of power systems [1] has become an important tool for power system
planning, design, and computational analysis at present. The accuracy of the power system
model required for simulation has attracted increasing attention from scholars. So far,
the modeling studies of generators and transmission networks are quite mature with
the continuous efforts of scholars. Compared with other components, the modeling of
electric loads is still very difficult because of the variety of loads. The complex composition,
complexity of dynamic and static characteristics, and other factors all lead to randomness,
dispersion, and time-varying nature of loads. A large number of experiments and actual
operating conditions of power systems already show that the load model has an important
influence on the tide calculation, voltage stability analysis, and transient stability analysis
of power systems. The establishment of a suitable and accurate load model is of great
significance for the digital simulation of power systems.

Traction loads are characterized by randomness, asymmetry, and low power factor.
The problems of power quality, such as harmonics and negative sequence currents of
traction loads, are not the main focus of transient stability studies; the study of their
transient characteristics mainly depends on the performance of the system after its dynamic
characteristics are changed by transient disturbances [2,3]. Thus, an accurate traction load
equivalent composite load model should be established, and its transient stability could be
studied by means of professional power system transient simulation analysis.

Currently, load modeling methods include statistical synthesis [4], overall measure-
ment and identification [5], and fault simulation [6]. The basic idea of the overall measure-
ment and identification method is to treat the load as a whole system, first determining the
load model structure and then using the data collected in the field and the effective identifi-
cation algorithm to identify the relevant parameters of the load model structure, check the
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accuracy of the model, and then output the load model after the error meets the accuracy
requirements [7]. The overall measurement and identification method is an effective way
to solve complex integrated load modeling without the need to understand the complex
composition within the load. Parameter identification is the core of this method, and the
evolving system identification theory provides a strong theoretical basis for this method.
Therefore, choosing a suitable parameter identification method is the key to the accuracy of
load modeling.

Load model parameter identification can be divided into linear and nonlinear meth-
ods. Linear methods mainly include the least squares method, Kalman filter method [8],
etc. The nonlinear parameter identification method is mainly based on the optimization
algorithm, and the main idea is to find a set of optimal parameter solutions to minimize
the preset objective function. At present, the main nonlinear methods proposed are the
gradient method, random search method, and simulated evolution method. In [9], a genetic
algorithm is first introduced into the parameter identification of the induction motor load
model. In [10], a genetic algorithm (GA) and the Levenberg–Marquardt (L–M) algorithm
are combined to identify parameters of the comprehensive load model, which improves
the accuracy and efficiency of identification. In [11], a combination of chaos and quantum
particle swarm algorithms was used to carry out the parameter identification of the inte-
grated load model, and it indicated that the CQDPSO algorithm has better performance in
terms of convergence speed and accuracy.

In recent years, many scholars have proposed many new intelligent optimization
algorithms [12–15] by analyzing different biological populations and physical phenom-
ena. The sparrow search algorithm is a new group intelligence algorithm proposed by
scholar Xue [16] in 2020, and it has been widely used by scholars because of its excellent
convergence and accuracy. Scholar Li [17] tested the typical swarm intelligence algorithms
proposed in recent years and compared the experimental performance of these algorithms
in terms of convergence speed, accuracy, and stability through 22 standard CEC test func-
tions; the results show that the sparrow search algorithm has better convergence, accuracy,
and variance. However, it is still easy to converge prematurely and fall into a local optimum
when solving complex nonlinear problems. Therefore, it is necessary to optimize its existing
algorithm process to improve the algorithm accuracy and convergence performance. In [18],
the authors introduced the random walk strategy into the SSA, proposed an adaptive spar-
row search algorithm, and applied it to the model parameter optimization identification of
proton exchange membrane fuel cell stack. The results show that the proposed algorithm
has the best efficiency compared with the comparison algorithm. In [19], the improved
sparrow search algorithm is applied to the IEEE33 nodes of the distributed-generation
optimization configuration model, and the DG configuration scheme can reduce the active
power loss and voltage deviation of the distribution network to a greater extent. In [20],
the population is initialized by using the barycenter reversal mechanism. Aiming at the
shortage of the global search ability of the discoverer, the learning coefficient is introduced
into the position update part, and the improved algorithm is applied to the photovoltaic
microgrid system. The results show that compared with the comparison algorithm, the
algorithm can track the maximum power point more accurately with good robustness.
However, the paper only used the particle swarm optimization algorithm for comparative
experiments, and there is no benchmark function experiment based on it, which cannot
fully explain the universality of the improvement strategy. In [21], an improved sparrow
search algorithm is proposed by combining the sparrow search algorithm with the UAV
planning problem. The convergence speed and detection ability of the adaptive inertia
weight balance algorithm are adopted, and the Cauchy–Gaussian mutation strategy is
introduced to improve the anti-stagnation ability of the algorithm. The experimental results
show that the algorithm can more effectively solve the UAV route planning problem. In [22],
the Kent chaos mapping, Student-t distribution, and Lévy flight strategy are combined
with the basic sparrow search algorithm and applied to the unknown load robotic arm
parameter identification.
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In order to verify the application effectiveness of the power system load parameter
identification method combined with the SSA, we proposed an improved sparrow search
algorithm by adding tent chaos mapping, Levy flight strategy, Gaussian perturbation
after population update, and tent chaos perturbation on the basis of the conventional
sparrow search algorithm. In order to verify the performance of the algorithm, the paper
performs parameter identification of the proposed traction load model. The method is
compared with the conventional sparrow search algorithm and particle swarm optimization
(PSO) algorithm. After satisfying the error accuracy, we check the generalization ability
of the identified load model. The article verifies the practicality of the ISSA to solve the
optimization problem of load modeling parameter identification.

2. Modeling the Load

The main power component of the traction power supply system of the electrified
railroad is the high-power traction motor on the traction locomotive, which is a three-phase
asynchronous motor by nature and has obvious dynamic load characteristics. In addition,
there are many small power components including air conditioning, lighting, and other
static loads. Therefore, based on the load characteristics, the traction side can be equated to
a composite load model with a parallel static load of motors when viewed from the grid
side to the traction side, as in Figure 1. The load model uses a third-order induction motor
dynamic load model in parallel with an exponential static load model [23].
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Figure 1. Traction composite load equivalence model.

According to the research of previous scholars, induction motor transient models [24,25]
are usually divided into electromechanical transient models, mechanical transient models,
and voltage transient models according to the different amounts of parameters, such
as dynamic response accuracy of active power and voltage stability index accuracy. A
comparison of these three motor models is presented in Table 1.

Among the many models proposed above, the third electromechanical transient model
is generally suitable for the induction motor transient analysis problem, considering the
balance of calculation volume and calculation accuracy. Since the work of this paper
mainly focuses on the active power response and reactive power response of the load after
the transient voltage disturbance, the dynamic load part of this paper adopts the third
induction motor electromechanical transient model, and the static load is described by
the exponential static model with few parameters and acceptable accuracy. It is shown
schematically in Figure 2.
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Table 1. Comparison of three induction motor models.

Induction Motor
Model

Active Power
Response
Accuracy

Reactive Power
Response
Accuracy

Stability Accuracy Parameter
Identifiability Calculation Size

Electromechanical
transient model Better Better Better Identifiable Large

Mechanical
transient model Good Bad Better Unidentifiable Small

Voltage transient
model Bad Good Good Unidentifiable Small
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Figure 2. A schematic of the exponential-induction motor model.

2.1. Dynamic Load Section

In order to increase the calculation accuracy and the calculation volume, and also
reduce the number of parameters to be identified, the third model of induction motor
adopts the polar coordinate form [26], and its state equation and power output equation
are as shown in Equations (1) and (2).

• Equation of state. 
T′ dE′

dt = −E′ + CU cos δ
dδ
dt = −CU sin δ

T′E′ + ω−ωs

M dω
dt = −UE′ sin δ

X′ − Tm

(1)

• Power output equation. {
Pd = −UE′

X′ sin δ

Qd = U(U−E′ cos δ)
X′

(2)

In Equation (2), E′ =
√

E′2d + E′2q, δ = arctan(− Ed
′

Eq ′
), C = X−X′

X , and T′ = X′
X T′0, where

E′ is the induction electric potential amplitude, δ is the angle behind transient reactance, ωS
is the angular velocity of stator, ωr is the angular velocity of rotor, Xm is the magnetizing
reactance, Xs is the rotor reactance, Xr is the rotor reactance,X′ = Xs + XmXr/(Xm + Xr) is
the transient reactance, X = Xm + Xs is the open-circuit reactance, T0

′ = (Xm + Xr)/(ωsRr)
is the rotor open-circuit time constant, Rr is the rotor resistance (zero stator resistance is
assumed), M is the motor inertia, Tm is the load torque constant, and Pd and Qd are the
dynamic load active and reactive power, respectively.

In Equation (1), E′, δ, ω are the state variables. Since the differential of the state
quantity is 0 in the steady-state process, it can be determined that the initial value of the
state variable is solved as shown in Equation (3) as follows:

δ0 = 1
2 arcsin(− 2TmX′

CU0
2 )

E0
′ = CU0 cos δ0

ω0 = ωs +
CU0 sin δ0

T′E0
′

(3)
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In the iterative process of solving the optimal parameters of the load model, each itera-
tion involves the calculation of the dynamic process of dynamic load state quantities. In this
paper, the state differential equation is solved using the fourth-order Runge–Kutta meth-
ods in the iterative process. The principle of the formulation is described in Equation (4)
as follows: 

yn+1 = yn +
h
6 (K1 + 2K2 + 2K3 + K4)

K1 = f (xn, yn)

K2 = f (xn +
h
2 , yn +

h
6 K1)

K1 = f (xn +
h
2 , yn +

h
6 K2)

K1 = f (xn + h, yn + hK3)

(4)

After solving the equation of state by the fourth-order Runge–Kutta methods, the state
variable iteration equation can be obtained as: E′n+1

δn+1
ωn+1

 =

 E′n
δn
ωn

+
h
6

 K11
K12
K13

+ 2

 K21
K22
K23

+ 2

 K31
K32
K33

+

 K41
K42
K43

 (5)

Therefore, the above Equation (5) and the state variable initial value of Equation (3)
can be combined to iteratively calculate the induction motor in the time domain.

2.2. Static Load Section

The exponential function load model is chosen for the static part, ignoring the variation
of frequency, and its expression is described as follows:{

Ps = Ps0(
U
U0

)
pv

Qs = Qs0(
U
U0

)
qv (6)

where Ps, Qs are the active and reactive power of the static load, respectively, Ps0, Qs0 are
the active power and reactive power of the steady state before the disturbance, respectively,
U0 is the steady-state voltage, and pv, qv are the active power index and reactive power
index, respectively.

2.3. Parameter Identification

From the above two subsections, the total power absorbed by the composite load is
shown in Equation (7) as follows:{

P = Ps + Pd = Ps0(
U
U0

)
pv − UE′

X′ sin δ

Q = Qs + Qd = Qs0(
U
U0

)
qv + U(U−E′ cos δ)

X′
(7)

In summary, the parameters to be determined for this integrated load model consist
of five dynamic load parameters θd = [T′, X′, C, M, Tm] and two static load parameters
θs = [pv, qv], and the set of parameters identified is θ = [T′, X′, C, M, Tm, pv, qv].

The objective function of parameter identification is generally taken as a non-negative
monotonic increasing function of the output error, the squared error sum of the mea-
sured response of the system, and the calculated response of the model is used as the
objective function.

Obj.E(θ) = minε∗(θ) =
1
N

min
N

∑
k=1

[(Pk − P̂k)
2
+ (Qk − Q̂k)

2
] (8)

Here, Pk and Qk are the measured active power and reactive power, P̂k and Q̂k are
the model calculates the output active and reactive power, and N is the number of sample
data sets.
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3. Traditional Sparrow Search Algorithm and Its Improvement
3.1. Traditional Sparrow Search Algorithm

The sparrow search algorithm (SSA) is a new group intelligent optimization algorithms
proposed by Xue [16] in 2020 to simulate sparrow population searching. The background
and rationale of this algorithm are mainly based on the foraging and anti-predatory be-
haviors of sparrow populations. This algorithm enables sparrows within a population to
update the positions of discoverers, joiners, and perceivers by continuously comparing
fitness values until the optimal solution of the objective function is found.

The sparrow search algorithm is divided into three sparrow populations based on
their characteristics and adaptability (energy contained in themselves), as described below:

• Producer: Producers are characterized by high fitness values and a wide search range,
and they are responsible for finding food for the entire population and providing
foraging directions;

• Scrounger: Scroungers have low fitness values, but they always watch the Producers
and leave their current location to compete for food if they sense that the Producers
have found better food;

• Perceiver: Perceivers originate from the Producers and the Scroungers. They can
realize the update of the position by perceiving the danger.

The general content of the sparrow search algorithm is as follows. In the case of an
optimization problem, the population composed of sparrows is as follows:

X =


x1,1 x1,2 . . . x1,d
x2,1 x2,2 . . . x2,d

...
...

...
...

xn,1 xn,2 . . . xn,d

 (9)

where d denotes the dimension of the parameter to be optimized for this problem, and n
indicates the number of sparrows. It can be determined that the fitness value of the sparrow
is expressed as follows:

f it(X) =


f ([x1,1, x1,2, . . . , x1,d])
f ([x2,1, x2,2, . . . , x2,d])

...
f ([xn,1, xn,2, . . . , xn,d])

 (10)

In the SSA, the location of the Producer is updated as described below:

Xt+1
i,j =

{
Xt

i,j exp(− i
αiterMax

) i f R2 < ST
Xt

i,j + QL i f R2 ≥ ST
(11)

where t is the number of current iterations, j is the dimension of the parameters, itemMax
is the maximum number of iterations, Xi,j is the position coordinate of the i sparrow in
the j dimension, α ∈ (0, 1] is a random number, and ST ∈ [0.5, 1] represent the alarm
value and the safety threshold, respectively, Q represents a random number that obeys
normal distribution, and L represents a matrix with one row and d columns, of which all its
elements are 1. There are two situations about the location change of the Producers: when
R2 < ST, there are no predators around in this environment, and the Producers can carry
out extensive search. When R2 ≥ ST, a sparrow in the population has spotted predators
and sends a warning signal to other sparrows in the entire population, at which point all
sparrows should immediately fly to other safe locations.



Energies 2022, 15, 5034 7 of 18

In the SSA, the location of the Scrounger is updated as described below:

Xt+1
i,j =

 Q exp(
Xworst−Xt

i,j
i2 ) i f i > n

2

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣A+L otherwise
(12)

where XP represents the best location discovered by the Producers, and represents the
current global worst position. A+ = AT(AAT)

−1, in which A represents a matrix with one
row and d columns and where each element in the matrix is randomly assigned 1 or −1.
When i > n/2, it means that the number i Scrounger with low fitness did not obtain food,
so at this time it should change the position to obtain more energy.

In the SSA, for Perceivers who are aware of danger, we usually give 10–20% of the
sparrows in the whole population. Its location update is described below.

Xt+1
i,j =


Xt

best + β
∣∣∣Xt

i,j − Xt
best

∣∣∣ i f fi > fg

Xt
i,j + K

∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fwrost)+ε

i f fi = fg

(13)

Here, Xbest is the current global best position, and β ∼ N(0, 1) is a random number
that represents the step control parameter. K ∈ [−1, 1] represents the direction of sparrow
movement, which is also a step size control parameter and a random number. fi represents
the fitness value of the current individual sparrow. ε represents an infinitesimal constant,
which is used to avoid the occurrence of 0 in the denominator of the above formula. There
are two situations for the position change of the perceiver. When fi > fg, the sparrow is at
the edge of the population and easy to be attacked by predators. When fi = fg, it means
that the sparrow in the middle of the population is aware of the danger and needs to move
to the position of other sparrows to avoid the danger.

3.2. Improvement of Sparrow Search Algorithm
3.2.1. Tent Chaotic Mapping

This paper uses a tent chaotic map [27] to initialize the sparrow population. A chaotic
system is a kind of seemingly disordered but complex and orderly non-random motion,
which has the characteristics of randomness, ergodicity, and regularity. Common chaotic
maps include a circle map and logistic map, etc. Tent mapping and logistic mapping are
topologically conjugate. A related study [28] shows that a tent map has better ergodic
uniformity than a logistic map through comparative experiments. Therefore, a tent map
is selected as the chaotic map in this study. The iteration formula of tent mapping is
as follows:

Xt+1 =

{
Xt
α X ∈ [0, α)

1−Xt
1−α X ∈ [α, 1]

(14)

where α ∈ (0, 1), Xn ∈ [0, 1], n = 1, 2, . . ..
In this study, by setting the parameters of three dimensions and performing tent

chaotic mapping between (0,1), it is found that when 0.3 is taken, the variables have
relatively good randomness, ergodicity, and regularity, and the iteration diagram of the
tent mapping is as shown in Figure 3.

3.2.2. Lévy Flight Strategy

When the Scroungers notice that the Producers have searched for a large amount of
food, they will flock to the new location together. This situation will easily cause the joiners
to gather to a certain search area at the same time, which will cause the global search ability
to decrease and even make the algorithm fall into a local optimum in serious cases. To
solve the above problem, we introduce the random step size of Lévy flight [29] when the
Scroungers update its position and use its step size s and the uncertainty of its direction to
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enhance the search ability of the algorithm, avoiding premature convergence of the search
and falling into a local optimum.
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s = µ

|ν|
1
β

, β = 3/2

µ ∼ N(0, σ2
µ)

ν ∼ N(0, σ2
ν )

σµ =
{

Γ(1+β) sin(πβ/2)
2(β−1)/2βΓ[(1+β)/2]

} 1
β

σν = 1

(15)

The location update following the introduction of the Lévy flight strategy by the
Scroungers is described as follows.

Xt+1
i,j =

 Q exp(
Xworst−Xt

i,j
i2 ) i f i > n

2

Xt+1
P + s⊗

∣∣∣Xt
i,j − Xt+1

p

∣∣∣A+L otherwise
(16)

We selected three sets of parameters for their Lévy flight iterations, and it can be
seen from Figure 4 that each parameter has good randomness and uncertainty in its Lévy
flight step and direction during the iterative process, realizing the diversity of population
position changes.

3.2.3. Gaussian Variation and Tent Chaos Perturbation

Gaussian variation refers to a perturbation of the current global optimal solution
searched for by a random number satisfying a Gaussian distribution during each iteration
of the search for the optimal solution, which is described by the perturbation formula
as follows:

Xbest
′ = Xbest(1 + N), N ∼ N(0, 1) (17)

where Xbest represents the global optimal solution of the search at the current iteration
number, and Xbest

′ represents the new value of the global optimum after Gaussian per-
turbation. From the Gaussian distribution properties, it is known that the introduction of
Gaussian variation enhances the local search ability of the sparrow, which is conducive
to inducing the population to jump out of the local optimal solution and find the global
optimal solution.
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The tent chaos perturbation is derived from the tent chaos mapping, which uses
chaotic variables Zd acting on parameter variables in d dimensions and is formulated
as follows:

Xd = mind + (maxd − mind)Zd (18)

where maxd and mind are the maximum and minimum values of the d dimension param-
eters, respectively. The tent chaotic perturbation iterative update equation is described
as follows:

Xnew
′ = (X′ + X)/2 (19)

where X’ represents the position of the individual sparrow to be disturbed, X is the gen-
erated perturbation variable, and Xnew

′ represents the position of an individual sparrow
after chaotic perturbation.

According to the characteristics of Gaussian distribution, the main disturbance area of
Gaussian disturbance is the local area near the original individual, which is conducive to
the algorithm efficiently finding the minimum point of the current search area. Meanwhile,
the tent chaotic disturbance can make the original individual have better randomness and
ergodicity after disturbance, which can help the algorithm jump out of local optimization
and prevent “premature”. Therefore, this paper uses tent chaos perturbation in the early
stage of algorithm optimization to search in a large range, which is as much as possible
to avoid “premature”, and it uses Gaussian perturbation to search in a small range more
carefully in the late stage of optimization to speed up the convergence.

3.3. Improved Sparrow Search Algorithm Solving Process

According to the improvement of the algorithm in Section 3.2, the parameter identifica-
tion process of the improved sparrow-based search algorithm in this study is implemented
as follows:

• Step 1: set the number of groups of parameters to be identified (population size
N), number of dimensions of parameters to be identified (dimensions d), number of
Producers PD, number of Perceiver SD, safety threshold ST, maximum number of
iterations Itermax, and the objective function Obj.f (x);

• Step 2: apply tent chaos mapping to initialize the population location Xi and generate
N d-dimensional sparrow individuals;

• Step 3: After setting the objective function Obj.f (x), the current fitness value fi is
calculated for each individual sparrow (the objective function value is taken as the
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fitness value in this study), and then the current optimal fitness value fg and the
current worst fitness value fw are determined in order. Record the positions Xg and Xw
corresponding to the fitness values;

• Step 4: Compare the magnitude of the random value R2 and the security threshold
ST to update the position of the Producers according to Equation (11). Update the
Scroungers position according to the Equation (16) after introducing Lévy’s flight
strategy. Update the Perceivers position according to Equation (13);

• Step 5: According to the size of the current individual fitness value, perform Gaussian
variation and tent chaos perturbation on the sparrow position after each iteration
position update, and then one iteration is completed;

• Step 6: Updating individual fitness values fi of sparrow populations, reorder the new
population fitness to determine the current global optimal fitness value fg and the
global worst fitness value fw and corresponding positions Xg and Xw;

• Step 7: Determine if the algorithm has reached the maximum number of iterations
Itermax, and if the iterative maximum is reached, the optimal fitness value fbest of the
sparrow population and its corresponding sparrow position Xbest are output, where
the optimal fitness value fbest is the objective solution of the requested optimal objective
function, Xbest is the set of optimal identification parameters sought. If not, go to step 4
and continue iteratively.

The flowchart of the ISSA is shown in Figure 5:
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4. Example Analysis of Parameter Identification
4.1. Data Acquisition

These research data come from the recording and broadcasting data of the PMU
measurement device based on the Internet of things at the power grid side obtained
by a traction substation in Tibet due to fault disturbance. The traction power supply
method in this area adopts the direct power supply method with a return current line;
the traction transformer type adopts three-phase V/v [30] wiring, and the locomotive is
an HXD1 [31] AC electric locomotive. The recording device installed in the substation
records the instantaneous values of bus voltage and current before and after the substation
disturbance to realize the input and output of parameter identification.

In the acquired recording data, the bus voltage perturbation causes the bus voltage
to plunge by about 50%, and for the voltage perturbation curve for input data U(k) and
output data P(k) and Q(k), the data after normalization is shown in Figure 6 below:
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4.2. Parameter Identification

After obtaining the processed voltage input data, the ISSA is used to identify the parame-
ters of the traction load. The flow chart of parameter identification is shown in Figure 7:
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The ISSA identification algorithm is set as follows: sparrow population N = 50
(of which Producers account for 20% of the total population, Scroungers account for
80%, and 20% for Perceivers). The maximum number of iterations Itermax is 300. For
safety threshold ST = 0.8, the objective function (also the fitness value) is Equation (8):

Obj.E(θ) = 1
N min

N
∑

k=1
[(Pk − P̂k)

2
+ (Qk − Q̂k)

2
].

After the algorithm is set, the parameters of the model are identified. The comparison
of the active power and reactive power responses with the original data is shown in
Figure 8:
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Figure 8. Fitting curve between measured data and calculated data.

Figure 8 shows that the output of the identified load model can accurately fit the
measured power response curve, especially the reactive power.

According to the research in [7], the load model evaluation index can be evaluated by
using the relative error coefficient:

ε =

(
1
N

N
∑

k=1
[y(k)− ŷ(k)]2

) 1
2

(
1
N

N
∑

k=1
[y(k)]2

) 1
2

× 100% (20)

where y(k) is the measured power, and ŷ(k) is the calculated power (it can be active power
or reactive power), and if the relative error is less than 5% [7], the load model is acceptable.

The results and errors of the parameters obtained after applying the ISSA to the
identification of the model are shown in Table 2.
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Table 2. Parameter identification values and errors.

Parameters Identifying Value

T’ 4.1354
X’ 1.6654
C −2.6241
M 0.82
Tm 3.378
pv 3.5867
qv 3.056
εp 3.847 × 10−2

εq 6.07 × 10−3

Obj.E(θ) 2.851 × 10−3

From Table 2, it can be seen that the identified parameters are all within reasonable
ranges, the active and reactive errors are less than 5%, and the model is acceptable. The
above results verify the effectiveness of the ISSA for the parameter identification of the
composite load model.

4.3. Algorithm Comparison

In order to verify that the improved ISSA has the advantages of high accuracy and
good convergence, the ISSA is compared with the SSA and PSO algorithms for experiments
to jointly identify the parameters of this load model. The ISSA, SSA, and PSO algorithms
are set as follows:

• ISSA: N = 50 (PD = 10, SD = 20), ST = 0.8, Itermax = 300;
• SSA: N = 50 (PD = 10, SD = 20), ST = 0.8, Itermax = 300;
• PSO: N = 50, ω = 0.8, c1 = 0.5, c2 = 1, Itermax = 300.

After the algorithm is set up, the parameters of the load model are identified. The
identification results and errors are shown in Table 3:

Table 3. Parameter identification values and errors for the three algorithms.

Parameters ISSA SSA PSO

T’ 4.1354 −3.8726 2.1863
X’ 1.6654 1.8054 0.75606
C −2.6241 1.8197 0.627
M 0.82 0.3427 1.7738
Tm 3.378 3.0239 1.2298
pv 3.5867 1.9803 2.5629
qv 3.056 2.128 1.286
εp 3.847 × 10−2 4.4512 × 10−2 4.1205 × 10−2

εq 6.07 × 10−3 1.135 × 10−2 1.6175 × 10−2

Obj.E(θ) 2.851 × 10−3 3.712 × 10−3 4.49 × 10−3

The global optimal fitness value reflects the change law of the global optimal solution
in the iterative process of the algorithm and can reflect the convergence characteristics of
the algorithm. Figure 8 takes the iteration times as the x-axis and the global optimal fitness
value as the y-axis. The iterative change curves of the optimal fitness values of the three
algorithms are shown in Figure 9:
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Figure 9. Fitness curves of ISSA, SSA, and PSO algorithms.

From Table 3 and Figure 9, it can be seen that:

• PSO: Although the accuracy and convergence speed of PSO is acceptable, it is easy
to fall into local optimization. The values of the load model identified by PSO are
acceptable, but the relative error of its active power is slightly higher;

• SSA: Although the search accuracy and convergence speed of the SSA are better than
that of the PSO algorithm, it cannot jump out of the local optimal solution. The values
of the load model identified by the SSA are acceptable, but the relative error of its
active power is slightly higher;

• ISSA: After improvement, ISSA has the ability to search quickly and jump out of the
local optimal solution, so its search accuracy and convergence speed are better than the
SSA and PSO. Moreover, its active power response, especially reactive power response,
is described more accurately.

Therefore, the ISSA has better accuracy and convergence than the SSA and PSO.

4.4. Model Generalization Capability Study

The generalization capability of a load model [32] refers to the ability of the model built
using known data to interpret the load location change data, also known as interpolation
extrapolation capability. A load model has real practical value only when it has good
extrapolation and interpolation capabilities. This study evaluates the generalization ability
of the load model from two aspects: load response fitting curve and response residual.

The response residual [33] can reflect the description ability of interpolation and ex-
trapolation of the model and is one of the important indicators to evaluate the applicability
of the model. The average value of the response residuals is as follows:

ε̂ =
1
N

N

∑
k=1

(
∣∣Xk − Ŷk

∣∣) (21)

where X is the calculated power data of the original response of the model itself, and Ŷ is
the actual power data of the interpolation or extrapolation response.
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4.4.1. Interpolation Capability

Through the recording and broadcasting device, the disturbance data with a voltage
disturbance of less than 50% is obtained, and the load model in Table 2 identified by ISSA
is tested to verify the interpolation ability of the model. The results are shown in Figure 10:

Energies 2022, 15, x FOR PEER REVIEW 17 of 20 
 

 

4.4.1. Interpolation Capability 
Through the recording and broadcasting device, the disturbance data with a voltage 

disturbance of less than 50% is obtained, and the load model in Table 2 identified by ISSA 
is tested to verify the interpolation ability of the model. The results are shown in Figure10: 

 
Figure 10. Interpolation fitting curve between measured data and calculated data. 

It can be seen from Figure 10 that although there is some error between the 
interpolation response value calculated by the model and the change curve of the 
measured value, the response tracking fitting curve is basically consistent, which indicates 
that the model has good nonlinear interpolation ability. 

This study compares the interpolation ability of the models identified by the SSA and 
PSO algorithms by calculating the values of the response residuals. The mean values of 
residuals for each algorithm are shown in Table 4. 

Table 4. Interpolation response residual. 

Algorithm Active Power Interpolation 
Residual 

Reactive Power 
Interpolation Residual 

ISSA 1.66 × 10−2 2.987 × 10−3 
SSA 1.81 × 10−2 7.46 × 10−3 
PSO 1.48 × 10−2 6.1 × 10−3 

From Table 4, it can be seen that the models identified by different algorithms have 
different interpolation capabilities for active and reactive power descriptions, and the 
overall model identified by the ISSA has a better interpolation capability, especially the 
reactive power interpolation response. 

A
ct

iv
e P

ow
er

(p
.u

.)
R

ea
ct

iv
e P

ow
er

(p
.u

.)

Figure 10. Interpolation fitting curve between measured data and calculated data.

It can be seen from Figure 10 that although there is some error between the interpola-
tion response value calculated by the model and the change curve of the measured value,
the response tracking fitting curve is basically consistent, which indicates that the model
has good nonlinear interpolation ability.

This study compares the interpolation ability of the models identified by the SSA and
PSO algorithms by calculating the values of the response residuals. The mean values of
residuals for each algorithm are shown in Table 4.

Table 4. Interpolation response residual.

Algorithm Active Power Interpolation
Residual

Reactive Power
Interpolation Residual

ISSA 1.66 × 10−2 2.987 × 10−3

SSA 1.81 × 10−2 7.46 × 10−3

PSO 1.48 × 10−2 6.1 × 10−3

From Table 4, it can be seen that the models identified by different algorithms have
different interpolation capabilities for active and reactive power descriptions, and the
overall model identified by the ISSA has a better interpolation capability, especially the
reactive power interpolation response.
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4.4.2. Extrapolation Capability

Through the recording and broadcasting device, the disturbance data with a voltage
disturbance of less than 50% is obtained, and the load model in Table 2 identified by the
ISSA is tested to verify the extrapolation ability of the model. The results are shown in
Figure 11:
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Figure 11. Extrapolation fitting curve of measured data and calculated data.

It can be seen from Figure 11 that although there is some error between the extrapola-
tion response value calculated by the model and the change curve of the measured value,
the response tracking fitting curve is basically consistent, which indicates that the model
has good nonlinear extrapolation ability.

From Table 5, it can be seen that the models identified by different algorithms have
different extrapolation capabilities for active and reactive power descriptions, and the
overall model identified by the ISSA has a better interpolation capability.

Table 5. Extrapolation response residual.

Algorithm Active Power Extrapolation
Residual

Reactive Power
Extrapolation Residual

ISSA 2.86 × 10−2 1.3 × 10−2

SSA 3.11 × 10−2 2.31 × 10−2

PSO 2.76 × 10−2 2.11 × 10−2

In general, the models identified by the ISSA have relatively better generalization
capabilities, including interpolation and extrapolation capabilities, than those identified by
the SSA and PSO.
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5. Conclusions

In this paper, an improved sparrow search algorithm, ISSA, is proposed and ap-
plied to the parameter identification of the traction-integrated load model. The following
conclusions are obtained through the application of algorithm identification analysis:

1. The load disturbance data are obtained from the recording and broadcasting data, a
suitable traction load model is established, and its parameters are identified by the
ISSA. The identification results meet the relative error of the dynamic load model,
which verifies the correctness and effectiveness of the ISSA applied to the parameter
identification of the comprehensive load model;

2. The results show that compared with the other two algorithms, the ISSA has stronger
ergodicity in searching individuals and better performance in convergence speed and
accuracy, as well as being able to constantly jump out of local optima;

3. The generalization ability of the identified load model was studied. The results show
that the load model identified by the ISSA has good interpolation and extrapolation
ability. Therefore, the ISSA can improve the accuracy of load modeling and show
practical value.

Since the balance degree of negative sequence voltage on the 220 kV power grid side
is considerable, this paper does not consider too much the negative sequence current and
harmonic in the research, and future work should analyze and model these two aspects.
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