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Abstract: The use of air source heat pumps (ASHP) in the specific context of existing multi-family
buildings (MFB) represents an important challenge, especially in terms of performance and technical
constraints in real conditions of use. This study concerns the actual performance of two non-retrofitted
MFB (4047 and 7563 m2), whose original fossil heat supply was replaced by a centralized monovalent
(2 × 156 kW) and hybrid (6 × 34 kW) ASHP system for space heating and domestic hot water. Based
on a detailed monitoring campaign covering two years of operation, it can be concluded that both
systems are able to supply the required temperature and cover the entire heat demand. By closely
following up these pilot projects, constraints linked to integration and operation were identified.
Optimization measures allowed us to increase the COP of the monovalent system (from 1.3 up to 3.4,
with an optimized SPF of 2.3) and to raise the HP share of the hybrid system (from 50% to 67%, with
an optimized SPF of 2.3). Both systems offer major progress in terms of CO2 savings (92% and 68%)
and increased renewable energy share (75% and 43%), considering the hourly CO2 content of the
Swiss electricity mix.

Keywords: air to water heat pump; multi-family building; retrofit; monovalent and hybrid system;
actual performance; in-situ monitoring

1. Introduction
1.1. Context and Issues

In Switzerland, buildings account for nearly 50% (100 TWh/yr) of the final energy
demand and 24% (11.2 Mio. t/yr) of the CO2 emissions [1,2], representing one of the
most important sectors for massive decarbonization. Only demand for space heating (SH)
and domestic hot water (DHW) amounts to about 94 TWh/yr [3], of which residential
multi-family buildings (MFB) and single-family buildings (SFB) represent about 80%. Of
these, 70% are still heated with individual fossil fuel boilers and around 80% of them were
constructed before the 21st century. It is estimated that 80% of all residential buildings have
an area-specific heating demand which exceeds the current minimum energy performance
value for new constructions, with 40% of them reaching more than double this threshold [4].

Given the long lifespan of buildings (typically > 100 years), existing buildings will
continue, within the next decades, to represent the overwhelming part of the energy
demand of the entire stock. It has, for example, been shown that, with an increase of new
heated area by 13% over 20 years, along with effective energy retrofit at an annual rate of
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2%, in 2035 existing buildings of the Canton of Geneva would still represent around 93% of
the entire heat demand of the sector [5]. In reality, we are however still witnessing quite
low annual retrofit rates of the building stock and a nearly ineffective way of retrofitting:
overall 1.7%, of which only 0.8% have resulted in an effective gain of at least one energy
class [6]. Furthermore, the performance gap between projected and actual energy savings
is quite significant, related to organizational disruptions along the retrofit process, as well
as user-behavioral issues [7].

Especially in urban areas, MFB represent a particular challenge. While at a Swiss level,
buildings with more than 5 households represent somewhat less than 15% of the stock,
they account for about 45% of the heated area, and in urban cantons they represent about
30% of all buildings, but 60–70% of the heated area.

A massive switch from fossil to renewable energy could drastically reduce CO2 emis-
sions of the building stock (with or without combination of envelope retrofit, which could
still stretch over several decades). This is particularly the case for HP systems, which
represent the dominating renewable heating system for new buildings but are yet rarely
installed in non-refurbished MFBs.

In dense urban areas, the air-source heat pump (ASHP) technology often turns out
to be the only available option for replacing fossil fuel boilers, since other renewable
energy sources are often limited: too long distance to a lake or river, lack of boreholes, no
groundwater or prohibition of its use (water protection), no district heating network due
to crowded soil, wood boilers prohibited in areas of excessive emissions, or limited solar
energy due to roof size [8]. In such a context, outside air is the only renewable energy
source for heat pumps available everywhere and in large quantity.

1.2. Heat Pump Market

While the potential Swiss market HP is huge (estimated up to 34 GW, respectively
75 billion CHF investment [9]), many challenges and obstacles need to be solved, in
particular for large ASHPs in MFBs. One of the most significant technical challenges for
the implementation of ASHP in MFBs is the lack of commercially available machines with
a heating capacity above 50 kWth, specifically designed for the residential sector. As a
consequence, 81% of the 2016 Swiss HP market consists of machines below 20 kWth, while
in the fossil fuel boiler market, machines above 50 kWth are almost on par with smaller
ones [10,11].

The lack of large HP models can be explained by the fact that their implementation in
existing MFB is more complex than in SFBs, mainly because of: (i) noise emissions, which
can become a barrier, typically > 70 dB(A) for industrial HPs as compared to 50 dB(A)
for residential HPs; (ii) use of refrigerant quantities that exceed the limit values for the
residential sector; (iii) HP weight and related structural constraints of the roof; (iv) HP inte-
gration in the existing distribution system, originally designed for boilers, (v) higher shares
of DHW, which can affect the HP performance; (vi) high investment cost; (vii) multiple
households with diluted decision power and related problems of governance; (viii) lack of
well-documented case studies proving the feasibility and sound operation of such systems.
Nowadays, those constraints make large ASHP (>50 kWth) an exception rather than a
standard solution, especially in non-retrofitted MFB [10,12–14].

To reach capacities adapted to existing MFBs, the two current options are cascading
smaller HP standardized for SFBs, or choosing a larger industrial product that is not
designed for residential use [14]. So far, detailed case studies demonstrating the techno-
economic feasibility and the environmental assessment of these two options have, however,
not been documented in the literature.

1.3. Monitoring

Most of the literature on monitoring of ASHP in existing buildings focuses on SFBs
(<450 m2 of heated floor area), with capacities below 30 kWth for a combined supply of
SH and DHW. For example, Erb et al. [15] monitored 105 such systems in Switzerland
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(<20 kWth) in existing, new, and renovated single-family buildings. They observe, on
average, an annual seasonal performance factor (SPF) of 2.7. Additionally, in Switzerland,
Prinzing et al. [16] measured 12 ASHPs (20–30 kWth) in renovated SFBs with floor heating or
radiators, and found an average SPF of 3.0 (range: 2.4–3.7), without decreasing comfort. In
Germany, Huchtemann et al. [17] analyzed 21 ASHP in existing SFBs formerly heated by oil
boilers, with an SPF average of 2.33 (1.77–3.05). Two large monitoring campaigns in existing
German SFBs were carried out by Miara et al. [18] and Danny et al. [19], respectively. In the
first study (2008), 35 ASHP (<14 kWth) showed an average SPF of 2.6 (2.1–3.4) in SFBs built
between 1919–1996. In the second campaign (2018), 29 ASHP achieved an average SPF
of 3.0 (2.4–3.7) in SFBs built between 1850 and 2005. As pointed out in [20], the increase
in performance between the two studies is due to an increase of HP efficiency in the last
ten years.

In some cases, ASHPs are used in SH mode only. For example, Xu et al. [21] monitored
the performance of 103 ASHP (8–14 kWth) in existing and new SFBs for SH in China. On
average, floor heating systems reached an SPF of 2.37 as opposed to radiator systems with a
value of 2.10. Chesser et al. [22] analyzed the in situ performance of 12 ASHPs (8.5–11 kWth)
for SH in retrofitted Irish houses. They obtained an SPF between 2.50–3.43, while the
difference to rated manufacturer COP (coefficient of performance) values amounted to
16–24%.

As a complement to preceding studies, IEA Task 50 focuses specifically on the use of
HPs for SH and DHW in new and existing MFBs. Within this task, various case studies in
different European countries are analyzed, but they mostly concern new buildings and/or
other heat sources than air [23].

1.4. Simulations

Several studies analyze the performance of ASHP in existing buildings via numerical
simulation. As is the case for monitoring, most of them focus on small ASHP (<17 kWth)
in existing SFBs [24–28]. The performance results depend on the climate consideration,
simulation method (ASHP and building), and whether they include DHW and/or SH.

Considerable attention is also paid to hybrid systems, i.e., the implementation of
ASHPs in combination with the pre-existing boiler, used for peak-load. Several numerical
simulation studies analyze the advantages of such hybrid systems in existing buildings,
as compared to monovalent boiler or HP systems. They demonstrate benefits such as
(i) primary energy savings as compared to boilers, (ii) higher performance and economic
advantages compared to monovalent HP systems, (iii) avoidance of part-load operation,
and a lower number of on–off cycles. However, most of these studies base their models
on existing single houses with capacities below 30 kWth for SH [29–34], and only a few
include DHW [35].

To the best of our knowledge, only a few simulation studies concern larger existing
buildings, with HP capacity above 30 kWth. Lämmle et al. [36] simulate larger ASHP
(52 kWth) to cover the SH demand of existing and renovated MFB built in 1995 (2112 m2

on five floors with a total of 30 apartments), with a focus on the reduction of SH tem-
peratures in order to increase the ASHP performance. They show that each Kelvin of
reduced heat pump temperature increases the SPF by 0.10–0.13 points. On the other hand,
Fraga et al. [37] performed simulations of six different HP sources (air, geothermal, deep
lake, river, groundwater, and solar) for different MFB demands (new, renovated, and
non-renovated buildings). The results show an SPF of 3.0 for non-renovated residential
buildings with an ASHP.

1.5. Environmental Indicators

Besides the intrinsic HP performance, several researchers quantified the CO2eq emis-
sions related to the use of electricity in HPs, but this is usually done by means of an average
annual CO2eq emission factor for electricity from the grid [17,25,27,29,30,38]. However,
this assumption could strongly underestimate the emissions, since the carbon content of
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electricity varies across the seasons. In winter, and in particular for ASHPs, the HP perfor-
mance drops when the building’s thermal demand is at its maximum load, which is usually
also the period when the grid has the highest CO2eq content due to the relatively high share
of fossil-fuel based power plants. A recent simulation study taking into account the hourly
electricity consumer mix of Switzerland showed that the CO2eq content of electricity used
by ASHPs is around 150 g/kWhelec, as compared to 108 g/kWhelec for the annual average
grid mix [39].

1.6. Objectives of This Study

Overall, the extant literature review shows no reliable evidence of the technical feasibil-
ity, constraints under actual conditions of use, nor of the actual technical and environmental
performance of large ASHPs, implemented in a monovalent or hybrid system, especially
in non-retrofitted MFBs. Given this knowledge gap, the public utility of Geneva, together
with the Cantonal authorities, the umbrella associations of the building industry and build-
ing owners, are setting up a program for massive replacement of individual fossil-fueled
boilers by HPs. The objective for the next 15–20 years is to realize 25,000 fuel-switch
operations (1.6 GW), with expected CO2eq savings of 450,000 t/yr. In terms of installed
capacity, around 35% of these operations concern large, non-retrofitted MFBs, mainly in a
dense urban environment, with air as the main available heat source, hence leading to the
above-mentioned challenges.

This paper concerns the monitoring and the detailed analysis of the first two pilot
projects of this program, with monovalent and hybrid ASHP (>50 kWth) implemented in
non-retrofitted MFBs. Both projects were monitored in time steps of 5 min over the first two
years of operation and they were assessed in terms of SPF, CO2eq emissions, and renewable
energy share, taking into account the actual Swiss electricity mix in hourly values. Issues
and constraints linked to the integration and operation of the system were also identified.

The present paper addresses the following research questions:

• What actual performance can we expect from ASHP systems in large non-retrofitted
MFBs?

• What are the potential constraints and issues of such systems, namely in terms of
monovalent versus hybrid HPs, as well as large industrial HP units versus bundled
standardized small HP units?

• What are the renewable energy fraction and the actual CO2eq savings based on the
actual hourly Swiss electricity mix?

2. Description
2.1. Monitorited Buildings

Located in the city center of Geneva, both pilot projects concern non-retrofitted MFBs,
with a heated floor area above 4000 m2 each. The two buildings represent the most
common building types in Geneva, constructed during the two main phases of the city’s
development:

• Project 1 (monovalent HP system): This building was constructed in 1972, during the
baby-boom period, and it is characterized by a cheap structure and a poor envelope
quality. It has a heated floor area of 4047 m2 (7 floors), and its envelope has not
undergone any retrofit.

• Project 2 (hybrid HP system): This building was built in 1992 during a construction
boom, using a pre-fabricated envelope. It has a total heated floor area of 7563 m2

(5 floors), and its thermal envelope has not been renovated.

Figure 1a shows the distribution of the normalized SH demand (climate corrected
to standard 2659 heating degree days, as given by the Swiss norm SIA 381/3 [40]) for
the stock of MFBs in Geneva, grouped according to three major construction periods [41].
While this distribution characterizes the situation in Geneva, a study has shown that it
compares well with the Swiss national building stock [3]. Red dots represent normalized
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space heating demand of the monovalent (277 MJ/m2/yr) and hybrid (259 MJ/m2/yr)
systems, respectively. It can be seen that even though their thermal envelopes have not been
renovated, their SH is lower than the median value of their respective construction period.
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Figure 1. SH and DHW heat demand of monitored buildings (red dots) compared to Geneva’s
multifamily building stock. (a) SH demand of Geneva’s multifamily building stock sorted in three
construction periods [41]. (b) Distribution of the DHW demand of 61 substations supplying residential
buildings for a total of approximately one million m2 of heated floor area [42].

It is also possible to benchmark these projects regarding their heat demand for DHW
production. Figure 1b shows the heat production for DHW (including storage and dis-
tribution heat losses) of 61 substations connected to a district heating network (DHN)
in Geneva [42]. The DHN supplies 434 MFBs (with about 1 million m2 of heated floor
area). Red dots represent the DHW production of the monovalent (55 kWhth/m2/yr) and
hybrid (30 kWhth/m2/yr) systems, while the black dot represents the benchmark average
(35 kWhth/m2/yr). The monovalent system is among the highest values observed for
DHW heat demand values (useful energy) found in MFBs in Geneva, whereas the hybrid
building is below the benchmark average.
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2.2. ASHP System

For both projects, given the location and legal constraints, implementation of ground
source HP or biomass boiler was not possible. At the same time, these projects are repre-
sentative of the available options to install large capacity ASHP in existing MFB, with two
distinct options: (i) large industrial ASHP units, not specifically designed for residential use
(monovalent system) or (ii) cascading of small modules designed for SFBs (hybrid system).
Table 1 summarizes the main characteristics of the two pilot projects.

Table 1. Summary of the main characteristics of the two pilot projects.

Monovalent Hybrid

Type of building Residential Mixed (residential + commercial)
Construction year 1972 1992
Heated floor area 4047 m2 7563 m2

Old heating system Oil boiler (319 kWth) Gas boilers (2 × 200 kWth)
New heating system 1 2 industrial ASHPs (2 × 156 kWth) 6 ASHPs (6 × 34 kWth) + Existing gas boiler (200 kWth)

SH demand (measured) 58 kWhth/m2/yr 64 kWhth/m2/yr
SH demand (normalized) 2 77 kWhth/m2/yr 72 kWhth/m2/yr

DHW demand 3 55 kWhth/m2/yr 30 kWhth/m2/yr
Monitoring period July 2018–June 2020 July 2017–June 2019

1 Capacity reported by manufacturer for 7 ◦C at the evaporator inlet and 45 ◦C at the condenser outlet. 2 The
normalized heating season in Geneva is 2659 heating degree days (HDD) 18/12 ◦C [40]. 3 Including storage and
distribution losses.

2.2.1. Monovalent ASHP System

In this case, the existing oil boiler was replaced by two industrial ASHP (2× 156 = 312 kWth)
installed on the roof and surrounded by sound-proofing wall panels (see Figure 2b). The nomi-
nal COP is 3.42 for an evaporator inlet temperature of 7 ◦C and a condenser outlet tempera-
ture of 45 ◦C. Each ASHP has a fixed flow rate (30 m3/h each) and 4 scroll compressors,
providing 4 power levels adjusted to the load. These units can reach up to 60 ◦C for DHW
preparation, to avoid legionella risk. The internal ASHP regulation manages the cascade
(including compressors of the two units), while an external regulation controls the elements
located in the boiler room (valve openings, activation of circulators, etc.). The oil boiler was
kept as a backup for the first year of operation, but it was eventually dismantled.
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Figure 2. Monovalent ASHP system. (a) non-retrofitted MFB and (b) industrial ASHP on the roof
with sound-proofing wall panels.

As can be seen in Figure 3, the distribution includes one storage tank for SH (1 m3)
and two storage tanks for DHW (1 m3 each). For better stratification (and as represented
by the orange line), the DHW tanks are connected in series: tank 1 for preheating, tank
2 for heating up to a 55 ◦C setpoint (respectively 60◦ once a week during 3 h, for anti-
legionella treatment). In case of DHW production, the flowrate from the ASHPs (design
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value: 30 m3/h each) is reduced by way of a three-way valve positioned before the heat
exchangers for DHW (design value: 2.3 m3/h each).
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Figure 3. Hydraulic diagram of the monovalent ASHP system. The ASHP production is measured
close to the HP units; for this reason, the measured heat production includes distribution losses. Red
lines: hot flows, blue lines: cold flows and yellow lines: warm flows.

The ASHP switches between SH and DHW production to maintain the tanks at their
respective setpoint temperatures. In the case of a simultaneous demand, priority is given
to DHW.

2.2.2. Hybrid ASHP System

Unlike the previously described pilot project, in this case the roof could not support
heavy ASHPs. Therefore, six single-family house-type ASHPs (Figure 4b) were installed on
the roof (6 × 34 kWth = 204 kWth at 7 ◦C/45 ◦C), operating in parallel with a pre-existing
gas boiler (200 kWth). The installed ASHP capacity was designed to cover 80% of the
total annual heat demand (SH and DHW), which is coherent with the HPs production
temperatures being intrinsically limited to 55 ◦C.
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Figure 4. Hybrid ASHP system. (a) Non-retrofitted MFB and (b) six air-to-water heat pumps on
the roof.

Since these ASHP are optimized for residential use, there was in principle no need to
invest in a specific soundproofing structure. The COP reported by the manufacturer is 3.5
(at 7 ◦C/45 ◦C). Each ASHP has two power levels (two scroll compressors) and operates at
a fixed water flow rate (5 m3/h).
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Of the 6 HP units, 3 are dedicated to SH production, while the other 3 provide DHW
in priority and backup SH if necessary. The gas boiler supplies the uncovered heat for SH
and DHW, either in terms of missing load or insufficient temperature levels.

The DHW and SH systems (Figure 5) each include two storage tanks of 1 m3 each
connected in series (total: 2 m3 for DHW + 2 m3 for SH). In both cases, the HPs provide
preheating of the first tank (HP tank), while the gas boiler provides the complementary
heat to the second one (boiler tank).
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Control and cascading of the diverse units is a specific and complex issue (see also
Appendix A):

- In SH mode, the 6 HP units are bundled in 2 groups, each composed of a master
HP controlling two slave HPs (which is the maximum number of slaves the internal
regulation of these master HPs can handle). Optimal heat production in relation with
SH load is provided by the internal regulation of each master HP, which controls cas-
cading of the three related units (according to the actual SH distribution temperature,
related to the SH heating curve). The master of the first HP group (dedicated to SH)
also controls complementary on/off switching of the boiler, with a parametrizable
time delay.

- In DHW mode, the 3 dedicated HP units operate independently from each other (no
integrated master/slave operation available). A “manual” cascade is induced by way
of distinct temperature setpoints for on/off switching in relation to the temperature of
the HP storage tank (common upper setpoint for HP switch off, distinct lower setpoints
for each HP switch on). In the absence of an integrated master/slave operation mode,
complementary on/off switching of the boiler is activated by a mechanical thermostat.

3. Methodology
3.1. Monitoring

For the monovalent system, the instrumentation consists of 29 sensors (Figure 3):
14 thermocouples, 6 flowmeters, 2 electric and 6 heat meters, and 1 sensor for air outlet
temperature. They allow for control of the following energy flows: HP production; DHW
heat charge (at the inlet of heat exchangers) and discharge (outlet of tank storage); SH heat
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discharge of the tank; electricity consumption of the HPs (including electricity of the HPs
circulation pump) and boiler production.

For the hybrid system, the instrumentation consists of 23 sensors (Figure 5): 12 thermo-
couples, 5 flowmeters, 1 electric and 4 heat meters, and 1 sensor for air outlet temperature.
They allow for control of the following energy flows: HP production for DHW and SH;
boiler production for DHW and SH; DHW discharge from the tanks and overall electricity
HPs consumption (including electricity of the six HP circulation pumps).

In both cases, additional data is monitored by the internal ASHP software, such as
compressor activation, defrost cycles, high pressure/low pressure alarms, SH or DHW
mode, etc.

All the data is recorded by the building management system every 5 min (instanta-
neous values) and is sent on a daily basis to a server to be cleaned and analyzed in python
later on.

The monitoring campaign covered two years of operation for each project:
July 2018–June 2020 for the monovalent system; July 2017–June 2019 for the hybrid system.

3.2. Performance Indicators

In order to evaluate the performance of the different systems and to compare them,
various energy and environmental performance indicators are used in this study.

3.2.1. Energy Performance

For short time periods (days), the energy performance of the systems is evaluated
using the HP coefficient of performance (COP), with and without auxiliaries, as defined
by Equations (1) and (2). QHP represents the amount of daily heat production. EHP is the
daily electricity consumption (without auxiliaries), while EHP+aux is the daily HP electricity
consumption, including auxiliaries.

COP1 =
QHP
EHP

(1)

COP2 =
QHP

EHP+aux
(2)

The annual energy performance of the system is evaluated by the seasonal perfor-
mance factor (SPFsys) according to Equation (3). It is defined as the ratio between annual
heat production (QHP) and annual HP electricity consumption, including HP circulators
(EHP+aux).

SPFsys =
∑ QHP

∑ EHP+aux
(3)

In the case of the hybrid system, the overall system performance is evaluated by the
Equation (4), where Qboiler is the annual heat production by the boiler and E f ossil is the
annual gas consumption.

SPFglobal =
∑(QHP + Qboiler)

∑(EHP+aux + E f ossil)
(4)

3.2.2. Environmental Performance

The environmental performance of the systems was evaluated in terms of CO2eq
emissions related to the operation of the heat generators (ASHP and boiler).

Emissions related to the ASHP electricity consumption are calculated by means of
Equation (5), where EHP.aux.h is the hourly electricity consumption of the ASHP (in kWhelec)
and felec.h (in g or kgCO2eq/kWhelec) is the hourly CO2eq content of Swiss electricity mix
during the monitoring period, taking into account domestic generation as well as imports
from neighboring countries. The latter profile is given by the work of Romano et al. [43],
which is presented in Appendix B for the period 2017 to 2020, with an overall average
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of 96 gCO2eq/kWhelec (but daily peak values, mainly in the winter, reaching 500 to 800
gCO2eq/kWhelec).

Celec = ∑
h

EHP+aux.h· felec.h (5)

For the fossil boilers, emissions are evaluated by Equation (6), with a constant emission
factor ( f f ossil) equal to 203 gCO2/kWhth for gas and 265 gCO2/kWhth for oil [44]. Finally,
the total CO2 emissions of the system (in g or kgCO2eq) were evaluated by Equation (7).

C f ossil = ∑ E f ossil · f f ossil (6)

Cglobal = Celec + C f ossil (7)

The annual renewable energy fraction from ASHP electricity consumption was as-
sessed with Equation (8), where EHP.aux.h is the hourly electricity consumption of the ASHP
(in kWhelec) and φElec.h is the hourly Swiss electricity share produced by primary energy
originating from renewable sources, according to the work of Romano et al. [43]. The latter
profile is presented in Appendix B for the period 2017 to 2020, with an overall average
share of the electricity originating from renewable sources of 47% (but daily shares values
in summer reaching 60% to 80%).

Finally, the annual renewable fraction of total heat production (βHeat.REN), including
heat extracted from the air source (Qair), is estimated by Equation (9).

EREN = ∑
h

EHP+aux.h·φElec.h (8)

βHeat.REN =
∑(EREN + Qair)

∑(QHP + Qboiler)
(9)

4. Results—Monovalent System
4.1. Annual Energy Balance, CO2 Emissions, and Renewable Energy Fraction

In the case of the monovalent system, the annual heat production (Second year of
operation, 1st July 2019 to 30th June 2020) amounts to 113 kWhth/m2/yr, with a SPFsys of
2.3, including auxiliaries, as shown in the Sankey diagram (Figure 6a). The production is
divided into 49% for DHW (55 kWhth/m2/yr, including storage and distribution losses)
and 51% for SH (58 kWhth/m2/yr). Losses related to DHW storage and the recirculation
loop account for 25% (14 kWhth/m2/yr) of the total DHW production. For this type of
building, these losses are rather low compared to 30% reported in norms [45], which could
be explained by the fact that this building has an exceptionally high DHW demand, thus
losses become less significant.

As shown in Figure 6b, 75% of the annual heat production (83.3 kWhth/m2/yr)
turns out to be renewable, of which 56% is extracted from the air, with 19% of electricity
originating from renewable sources (as given by the hourly electricity mix).

Figure 7 represents the evolution of the heat production over the 2010–2019 period,
normalized to standard weather, and subdivided by heat generator (boiler + HP). For
the 2010–2016 period, the heat production is derived from measured oil consumption,
with an estimated a boiler efficiency of 70% and an uncertainty of 5% (represented by the
error bars). In the first two years of HP operation (2018 and 2019), both the HP and the
boiler production are measured values, which were determined with the newly installed
heat-meters.

In 2018, the oil boiler had to be exceptionally turned on due to a HP breakdown.
Interestingly (and without straightforward explanation), the normalized heat produc-
tion (151 kWhth/m2/yr) was significantly above the average of the 2010–2016 period
(110 kWhth/m2/yr). A much smaller gap is observed for 2019, the second year of HP
operation (132 kWhth/m2/yr, of which 55 for DHW and 77 for normalized SH).
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Figure 7. Monovalent ASHP system: evolution of the heat production (normalized to standard
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Figure 7 also shows the evolution of the CO2eq emissions, global (boiler + HP) or
linked to electricity consumption of the HP only. While we observe average emissions
of 42 kgCO2/m2/yr during the 2010–2016 period, this value drops to 3.4 kgCO2/m2/yr
during the second year of HP operation. Due to the overall low carbon content of the Swiss
electricity mix (even if considering electricity imports from neighboring countries), the
replacement of the oil boiler by an ASHP system hence resulted in significant emissions
savings of 92%, despite a rather low SPFsys of 2.3, as well as the relatively high carbon
content of the electricity during some winter months (see Appendix B). Note that the
savings of CO2eq (92%) are higher than the renewable energy share (75%), which is due to
the share of nuclear electricity in the Swiss mix (average of 43% in 2019), which contains
little CO2eq emissions.

4.2. Heat Demand and Production

Figure 8 represents the daily heat demand and production over the two years of
operation (July 2018–June 2020). Overall, the DHW production is higher during the first
than during the second year (64.8 and 54.1 kWhth/m2/yr, respectively), as shown in
Figure 8a. There are also notable differences with regard to the pattern: (i) at the beginning
of the second heating season (around November 2019), we observe 3 short periods of
unexplained high DHW loads; (ii) except for latter peaks, the seasonal pattern is somewhat
more regular than during the first year. Regarding SH, due to slightly colder weather,
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the first year of operation (76.6 kWhth/m2/yr, for 2368 HDD) is characterized by higher
demand than the second year (58.0 kWhth/m2/yr, for 2007 HDD).
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Over these first two years of operation, the demand was almost entirely covered by the
two ASHPs, as shown in Figure 8b. In the middle of the 2018–2019 winter, the ASHP system
suffered two breakdowns (February and March 2019), and the oil boiler was exceptionally
turned on. The ASHP breakdown took an entire month to be solved, due to the necessity to
wait for a trained technician from another region of the country. During the first summer
(up to September 2018), both ASHPs were operated in parallel, while from the second
summer onwards, priority was given to one HP in order to improve the load factor, as well
as to reduce auxiliary electricity.

Furthermore, during this period the heat production temperatures were optimized as
follows (see Appendix C for more details):

- In SH mode: during the first year of operation, the SH production temperature always
remained above 50 ◦C, not taking into account the heating curve defined at the level
of the centralized automation; the latter was fixed for the second year, during which
the heating curve was also was reduced by approximately 5 K.

- In DHW mode: during the second year, adjustments in the DHW setpoint also helped
to decrease the distribution temperature, and hence the HP production, by about
3–5 K each.

4.3. HP Capacity and Heat Load

Figure 9 shows the observed load (by bins of outdoor temperature of 5 ◦C), in relation
with the related HP capacity (for a production temperature of 60 ◦C). As a complement,
Appendix D provides information concerning the respective SH and DHW shares, as well
as the actually observed HP production temperature.
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marker, and the 10% min and max outliers represented by dots.

As expected, the median HP load decreases with rising outdoor temperatures and the
related drop of the SH load (from around 100 kWth in the 0–5 ◦C range, down to around
45 kWth in the 15–20 ◦C range). In contrast, the rated HP capacity rises from 235 kW in
the lowest bin (−5 to 0 ◦C), up to 433 kWth in the highest bin (30 to 35 ◦C). As a result,
the installed HP capacity remains in all bins much higher than the observed peak load.
In the 0–5 ◦C range, where the difference between HP capacity (280 kWth) and peak load
(196 kWth) is the smallest, the capacity/load ratio hence still amounts to 143%.

The latter analysis leads to the following insights: (i) at the design stage, the only
available data were the historic annual oil consumptions, from which the heat demand
was only roughly estimated based on an expected boiler efficiency; the latter points to
the added value which can be brought by heat metering over a few weeks or months
during the project design phase, for better estimation both of the overall demand and
its separation in SH and DHW components; (ii) as observed in Appendix D, the highest
loads only occur during very few hours of the year, which leads to a reflection concerning
possible downsizing of the HP capacity and related investment to lower values (in this case
possibly by a factor 2), with sporadic peak complements covered by an electric rod.

4.4. ASHP Performance

The evolution of the ASHP system performance during the monitored period is
depicted in Figure 10. Summer 2018 is characterized by the lowest COP2, below 1.5, despite
high outdoor air temperatures. The following reasons for the low performance were
identified:

- During this period, one of the ASHP had its circulation pump constantly activated,
even when the production was off. This error caused an electricity overconsumption
of 72 kWhelec/day without production, which degraded the COP2 from 2.1 to 1.5
during summer 2018. This overconsumption represents 31% of the ASHP system’s
daily electricity consumption in summer. It becomes less important in the winter (5%).

- In the case of DHW production, the large flowrate in the ASHPs as compared to the one
in the DHW heat exchangers (see Section 2.2.1) resulted in high return temperatures
to the ASHPs, which reduced their performance. The problem was eventually solved
by letting the entire flow from the ASHP circulate through the heat exchangers.

These adjustments resulted in a significant increase of COP2 , which from May 2019
onwards reached values equal to 2 or higher, up to 3.1 when the outdoor temperature was
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highest. During the second year of operation, performance generally followed the outdoor
temperature fluctuations.

As a complement, Appendix E shows the daily measured COP2 and COP1 as a function
of the HP temperature increase (difference between HP production and outdoor). Unlike
COP2, which includes auxiliaries, COP1 values follow the ones given by the manufacturer,
which confirms that the low system performance observed during the first summer was
indeed not due to a deficiency of the ASHP units, but to non-optimal system operation.
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5. Results—Hybrid System
5.1. Annual Energy Balance, CO2 Emissions, and Renewable Energy Fraction

In the case of the hybrid system, the annual heat production of the second year is
94 kWhth/m2/yr, of which the ASHP covers 67% with a SPFsys of 2.3 (including auxiliaries
and excluding ASHP distribution losses), as shown in the Sankey diagram in Figure 11. The
gas boiler provides the rest with a monitored annual efficiency of 69% (relative to the higher
heating value, HHV). This efficiency is relatively low but typical for a non-condensing
boiler, dating from the construction of the building. The overall system performance,
including ASHP and boiler efficiency (SPFglobal), is equal to 1.28. This value is relatively
low but is explained by the malfunctioning described below. With a boiler efficiency of 90%
(on HHV) and without ASHP breakdowns, the SPFglobal of this system would increase up
to 1.7. The total annual heat demand is composed of 68% for SH (64 kWhth/m2/yr) and
32% for DHW production (30 kWhth/m2/yr).
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As shown in Figure 11b, 43% of the annual heat production (46 kWhth/m2/yr) turns
out to be renewable, of which 34% is extracted from the air and 9% of electricity originates
from renewable sources (as given by the hourly electricity mix).

Figure 12 represents the evolution of the heat production over the 2010–2018 period,
normalized to standard weather, and subdivided by heat supply system (boiler + HP). The
heat production is given by the measured heat production of the boiler (entire period) and
the HP (2017 and 2018). In contrast to the first project, the normalized heat production
in 2017 and 2018 (98 kWhth/m2/yr and 102 kWhth/m2/yr) was 29% and 26% lower,
respectively, than average over the 2010–2016 period (138 kWhth/m2/yr).
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Figure 12. Hybrid ASHP system: Evolution of the heat production (normalized to standard weather)
in kWhth/m2/yr and CO2eq emissions in kgCO2eq/m2/yr, over the 2010–2018 period. Each year
runs from July to June (e.g., 2018 = 1st July 2018 to 30th June 2019).

Figure 12 also indicates the evolution of the CO2eq emissions (HP + boiler). While we
observe average emissions of 40 kgCO2/m2/yr during the 2010–2016 period, this value
drops to 18 kgCO2/m2/yr during the first year of HP operation (57% savings) and to
13.1 kgCO2/m2/yr during the second year of HP operation (68% savings) as a result of
adjustments and optimization explained below. As for the monovalent case, the savings of
CO2eq (68%) are higher than the renewable energy share (43%) due to the share of nuclear
electricity in the Swiss mix (average of 41% in 2018).

5.2. Heat Demand and Production

Figure 13 represents the daily heat demand and production over the first two years
of operation (July 2017—June 2019). Overall, the DHW production is very similar for
both years (31.3 and 30.3 kWhth/m2/yr), which is also the case for the seasonal pattern.
Due to similar weather constraints, SH for the first year of operation (61.1 kWhth/m2/yr,
for 2431 HDD) is also comparable to the second year (64.2 kWhth/m2/yr, for 2368 HDD).
However, with regard to the seasonal pattern, we observe especially high SH peaks during
the first winter due to outdoor temperature dropping to −9.8 ◦C in February 2018, but
otherwise unexplained. Also note two failures in the monitoring system, during 5 days in
April 2018 and 3 days in June 2019.

While the hybrid ASHP system was sized to cover 80% of the annual demand with the
HPs, it only amounted to 50% during the first year of operation, with an increase up to 67%
during the second year (Figure 13b). This can be explained by the following malfunctioning
and the related adjustments:

- In SH mode: during the first year of operation, the system suffered several HP shut-
downs when the boiler was activated, caused by high SH return temperatures being
directed to the HP storage tank (see Figure 5), which in turn was causing high-pressure
alarms on the HPs. The problem was eventually solved by: (i) implementation of a
three-way valve on the SH return flow which, when the SH return temperature is too
high for the HP, is now redirected towards the boiler instead of the HP storage tank;
(ii) increased delay for boiler switch-on, leaving more time for the HPs to operate in
stand-alone mode.
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- In DHW mode: during the first year of operation, the “manual” cascading of the
3 dedicated HPs was causing a slow thermal response of the storage tank, leading to
complementary switch on of the boiler for reaching of the desired DHW temperature.
The problem could eventually be solved by defining identical on/off setpoints in
each HP, getting rid of the cascading effect (all 3 HPs switched on and off at the same
time), reducing the thermal response of the storage. However, this adjustment induces
shorter and numerous HP on/off cycles, which reduces the life expectancy of the
machine and decreases the performance, as shown in several studies [46,47].

- At the beginning of the second heating season, in November 2018, SH is provided
only by the boiler, due to a manual valve which remained closed, preventing heat
distribution by the HPs. Between March and April 2019, SH is again provided only by
the boiler, due to a breakdown of the HPs.

Additionally, during this period the heat production temperatures were adjusted as
follows (see Appendix C for more details):

- In SH mode: during the second year of operation, the heating curve was limited to
a maximum of 50 ◦C, compatible with the maximum HP production temperature of
55 ◦C, so that the boiler had to not be activated for insufficient temperature, but only
for missing capacity.

- In DHW mode: during the second year, adjustments in the setpoints allowed to
increase the HP production temperature and reduce the temperature of the boiler,
contributing to an increase of the HP share in DHW production.
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5.3. HP Capacity and Heat Load

Figure 14 shows the observed load (by bins of outdoor temperature of 5 ◦C) in relation
with the related HP capacity (for a production temperature of 50 ◦C), as well as with the
complementary capacity of the boiler. As a complement, Appendix D yields information
concerning the respective SH and DHW shares, as well as the actual observed HP and
boiler production temperature.
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Figure 14. Hybrid ASHP system: Hourly heat load (kWth by bins of outdoor temperature of 5 ◦C),
in relation with the HP and boiler capacity (July 2018 to June 2019). The heat load is represented by
boxplots, with 50% of the hourly heat load within the box (median +/−25%), 80% within the upper
and lower marker, and the 10% min and max outliers represented by dots.

Again, the median HP load decreased with rising outdoor temperatures and related
drop of the SH load (from around 130 kWth in the 0–5 ◦C range, down to 20 kWth in the
15–20 ◦C range).

In the range from −5 to 0 ◦C, the ratio between capacity (138 kWth) and load (232 kWth)
only amounts to 59%, but this bin represents less than 3% of the annual delivered heat.
At first sight, it looks like the HP capacity should cover the overwhelming part of the
annual load, almost down to the 0 ◦C outdoor threshold, which should in principle lead
to higher coverage than the observed value of 67%. The interdependencies are, however,
more complex, in particular in DHW mode, during which: (i) the 55 ◦C temperature HP
limitation actually limits the contribution of the HP to pre-heating; (ii) the 3 remaining
HP units (i.e., half of the total capacity) can by far not cover the SH load at low outdoor
temperatures (in the range between −5 and 0 ◦C), since they add up to a total capacity of
around 80 kWth, which cannot even satisfy the lowest observed load in this bin; in the range
between 0 and 5 ◦C, they add up to around 100 kWth, representing 10% of the observed
loads. Disentangling of these effects and estimation of the optimal expectable HP coverage
is unfortunately not possible with the available monitoring data (namely due to missing SH
return temperature and/or related flowrate) and will hence be addressed in a later stage by
way of numerical simulation.

Finally, the 200 kWth boiler capacity exceeds by far in all cases the missing HP pro-
duction. However, since the boiler is pre-existing, this can not be seen as an oversizing or
over-investment issue.

5.4. ASHP Performance

In the first year of operation, the COP2 varies widely due to the ASHP breakdowns,
changes in the hydraulic configuration, as well as optimization of the regulation (Figure 15).
In contrast, in the second year, the COP2 varies between 2 and 3 and follows the outdoor
temperature fluctuations, except for some malfunctioning periods.
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Figure 15. Hybrid ASHP system: Daily heat production (kWhth/day) and electricity consumption
(kWhelec/day) of the two ASHP, as well as COP2 of 6 heat pumps (including auxiliary electricity).

As a complement, Appendix E shows the daily measured COP2 and COP1 as a
function of the HP temperature lift (difference between HP production temperature and
outdoor temperature). As for the monovalent system, the COP1 values are closer to the
ones given by the manufacturer. However, the extensive pipe system connecting the ASHP
on the roof to the boiler room (see Figure 4b) induces relatively large heat losses (not
taken into account by the monitoring system, see Figure 5). During a specific monitoring
campaign over two winter weeks in November 2018 (with outdoor temperatures between
0 and 10 ◦C), these losses were estimated at 760 kWhth/day, representing 24% of total daily
delivered heating during this period. When taking these losses into consideration, the
COP1 values follow the ones given by the manufacturer, which confirms proper functioning
of the ASHP units.

6. Discussion
6.1. Synthetic Comparison of the Case Studies

The main results of both case studies are summarized hereafter, in terms of heat
demand and production, as well as system performance and environmental performance
(for the latter, see Table 2).

Table 2. Summary of the main results of the two pilot projects.

Monovalent Hybrid

SPFsys 2.29 2.28
SPFglobal 2.29 1.28

HP fraction 100% 67%
Renewble energy fraction

(
ηHeat.yr) 75% 43%

Emissions before ASHP renovation 42 kgCO2eq/m2/yr 40 kgCO2eq/m2/yr
Emissions after ASHP renovation 3.4 kgCO2eq/m2/yr 13.1 kgCO2eq/m2/yr

Emissions savings 92% 68%

In each case, the results concern the second year of operation. For comparison between
the 2 cases (with distinct heated surface) as well as benchmarking with other buildings, the
annual energy demand as well as the HP and boiler design capacities are expressed per m2

of heated surface.
When normalized to standard weather conditions, both buildings have similar SH

demands (76.8 vs. 72.1 kWhth/m2/yr) and are representative of non-retrofitted MFB,
although within the lower range of the overall distribution for their respective construction
periods. They notably differ in terms of DHW production (54.1 vs. 30.3 kWhth/m2/yr),
representing very high vs. average to low values when compared to benchmark values.

The first building is equipped with a monovalent ASHP system (58 Wth/m2 for design
conditions of −10 ◦C outdoor and 60 ◦C heat production), which turns out to be largely
oversized when compared to actual peak loads (with an oversizing ratio of around 140%).
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The second building is equipped with a hybrid ASHP system (18.2 Wth/m2 for design
conditions of −10 ◦C outdoor and 50 ◦C heat production) with a complementary gas boiler
(26.4 Wth/m2). At an outdoor temperature below 0 ◦C, the ratio between HP capacity and
observed heat load amounts to 59%, but rises very quickly with temperature, reaching 90%
in the 0–5 ◦C range and more than 100% above 5 ◦C.

As a result, the annual heat share supplied by the HP amounts to 100% in the first
case, as opposed to 67% in the second case. The latter value is lower than the expected 80%,
due to accidental switch-off, temporary breakdown of some HP units, as well as complex
master/slave control.

The SPFsys of the HPs (including auxiliary electricity for circulation from the HP units
to the technical room) amounts in both cases to 2.3, but the renewable energy fraction
(air source + renewable fraction of electricity, taking into account the hourly mix) differs
significantly, i.e., 75% in the first case, as opposed to 43% in the second case, due to
complementary use of gas. Finally, the related CO2eq emission savings amount to 92% for
the monovalent system, and up to 68% for the hybrid system.

While the CO2eq savings are particularly impressive with the present Swiss elec-
tricity mix, with an SPFsys of 2.3 as measured here, with the EU28 annual electricity mix
(294 g/kWhelec) the savings would still amount to around 66% with the monovalent system
and to only around 55% for the bivalent one [20], which indicates the need to further reduce
the gap between project and implementation (as is also the case for SFBs), as well as to
further improve the intrinsic performance of ASPF units. This is even more important since,
in parallel to the rapid development of renewable electricity, electrification is progressing
in other sectors, in particular mobility.

6.2. Issues Identified

While both systems are able to provide the entire heat demand of the non-retrofitted
buildings, both in terms of load and of temperature, the following issues were identified:

- Monovalent system: The two industrial ASHP models are able to fully supply the
current heat demand of the non-retrofitted MFB, however the following issues which
occurred during the first year of monitoring had to be solved: (i) internal setpoints
of the industrial ASHP, which were not considering the heating curve defined at
the level of the centralized automation; (ii) constantly activated circulation pumps,
even when the production was off; (iii) high return temperatures to the ASHP, due
to incompatibilities between HP units and DHW heat exchanger; (iv) HP breakdown
during an entire month, due to lack of a trained technician who ultimately came from
another region of the country.

- Hybrid system: Compared to the monovalent project, this project has a high level of
complexity in terms of hydraulic concept and regulation, since it was necessary to
combine the operation of smaller ASHP units in cascade, along with the old existing
boiler. Several types of malfunctioning were identified and solved: (i) high return
temperatures causing heat pump failures when operating in parallel with the boiler;
(ii) limited master-slave control and related cascade of HP units and boiler; (iii) heat
losses in the pipes connecting the ASHP located on the roof to the boiler room. Fur-
thermore, residents of an apartment on the top floor of the building reported excessive
noise from the HP, which could be heard from open windows. This was confirmed
acoustic measurements, after which the air inlets and outlets of the heat pumps were
equipped with adequate sound absorbers.

7. Conclusions

This study concerns the actual performance of two non-retrofitted multi-family build-
ings, whose original fossil fuel boilers were replaced by a monovalent air source heat pump
system in the first case and a hybrid system with a complementary gas boiler in the second
case. Based on a detailed monitoring campaign covering two years of operation each,
the main findings show that, even in non-retrofitted buildings, both systems are able to
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supply the required temperature levels and cover the entire heat demand (space heating
and domestic hot water). A close follow-up of these pilot projects allowed us to identify
issues and constraints linked to integration and operation of such systems in large existing
buildings. Optimization measures enabled us to significantly increase the COP of the
monovalent system, from 1.3 up to 3.4 during the last summer, with an optimized SPF of
2.3. For the hybrid system, the HP share was increased from 50% to 67%, allowing to reach
an optimized SPF of 2.3. Both systems offer major progress in terms of CO2 savings (92%
and 68%) and increased renewable energy share (75% and 43%), taking into account the
actual Swiss electricity mix and its CO2 content at hourly level.

It should be noted that the two case studies differ both in terms of system setup (mono-
valent vs. hybrid) and choice of HP units (large industrial units vs. small units designed for
SFB). However, the system setup and the HP type are not intrinsically related: in principle
large HP units could also be used in bivalent setups, or small units in monovalent mode.
When making a choice, the following features of the various options should be considered:

- Monovalent systems are in principle easier to integrate and to regulate, in particular
regarding interaction between HPs and boiler and related operating temperatures.
They are, however, easily subject to oversizing (and related overinvestment), due to the
targeted 100% share. The latter raises the question whether to consider “monovalent”
HP systems with direct electric heating for extreme peak loads. This should be further
analyzed in terms of the related energy mix, grid connection capacities, as well as
cost aspects.

- Besides a comparative advantage in terms of cost and space, hybrid systems represent
a flexible option for existing buildings, in view of forthcoming retrofit and the related
decrease of heat load.

- Large industrial HPs need less space and hydraulics, with the complementary advan-
tage of reduced heat losses, but they currently require specific constructive measures
in terms of noise reduction and possibly for structural reasons linked to their weight.

- Bundling of small HPs developed for the SFB market offers an advantage regarding
weight distribution on the roof. Currently (at least based on this project), their inte-
grated control systems are not yet suitable for integrating a large number of units and
their production temperature does not always meet the requirements.

Finally, most of the malfunctioning observed in the two pilot projects was due to incor-
rect information/parameterization of the devices, which could be corrected by optimizing
the system regulation, but in some cases non-optimal hydraulic configuration was also
encountered, which was adapted as far as reasonably possible.

As these pilot projects show, the implementation of such systems requires adequate
professional training and careful execution, linked to specificities of HP systems as com-
pared to fossil fuel boilers (namely in relation with temperature issues). Particular attention
must be paid to the design of the hydraulic circuit and the regulation to ensure the efficiency,
reliability, and durability of such systems, especially in the case of hybrid systems. The
adequacy of the hydraulic integration should also be verified at each stage of the project
(pre-design, design, implementation, commissioning, follow-up).

As an outlook, future research will deal with the following aspects:

• Sensitivity analysis by way of numerical simulation, in order to derive robust sizing
and integration rules.

• Specific focus on control strategies and cascading, with the objective of robust and
flexible control strategies for heat pump manufacturers and engineering firms.

• Alternative and/or complementary system integration, i.e., by combination of heat
pump systems with photovoltaics (PV) or hybrid photovoltaic thermal solar collector
(PV-T).

• Optimal/flexible strategies for combined fuel-switch and envelope-retrofit, in terms
of energy performance, CO2 savings, cost, and architectural constraints.
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Nomenclature

Acronyms
ASHP Air-Source Heat Pump
DHN District Heating Network
DHW Domestic Hot Water
HDD Heating Degree Days
HP Heat Pump
MFB Multi-Family Buildings
SFB Single Family Buildings
SH Space Heating
Symbols
Celec Annual emissions from HP electricity consumption (kgCO2eq)
C f ossil Annual emissions from boiler consumption (kgCO2eq)
Cglobal Annual total emissions of the system from electricity and gas consumption (kgCO2eq)
COP Coefficient of performance of the heat pump
COP1 Daily coefficient of performance of the heat pump without auxiliaries
COP2 Daily coefficient of performance of the heat pump with auxiliaries
EHP Heat pump electricity consumption without auxiliaries (kWhelec)
EHP+aux Heat pump electricity consumption with auxiliaries (kWhelec)
EHP+aux.h Hourly heat pump electricity consumption with auxiliaries (kWhelec)
EREN Annual renewable energy from ASHP electricity consumption (kWhelec)
E f ossil Gas or oil boiler consumption (kWhth)
QDHW DHW demand including storage and distribution losses (kWhth)
QHP Heat pump production (kWhth)
QHP.DHW HP production for DHW (kWhth)
QHP.SH HP production for SH (kWhth)
QHP1 Heat pump production of the first machine (kWhth)
QHP2 Heat pump production of the second machine (kWhth)
QSH SH demand without storage losses (kWhth)
Qair Heat extracted on the air source (kWhth)
Qboiler Boiler heat production (kWhth)
Qboiler.DHW Heat boiler production for DHW (kWhth)
Qboiler.SH Heat boiler production for SH (kWhth)
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SPFglobal Overall seasonal performance of the heat pump and boiler
SPFsys Annual seasonal performance factor of HP with auxiliaries
TDHW.dis DHW distribution temperature at the storage outlet ( ◦C)
THP Temperature at condenser output ( ◦C)
THP.DHW DHW temperature at the heat exchanger inlet ( ◦C)
THP.SH SH temperature before the mixing valve or before the tank ( ◦C)
TSH.dis SH distribution temperature after the mixing valve ( ◦C)
Tair Outdoor temperature ( ◦C)
Tboiler.DHW DHW temperature of the boiler before the tank ( ◦C)
Tboiler.SH SH temperature of the boiler before the tank ( ◦C)
felec.h CO2 content of Swiss electricity mix in hourly values (gCO2eq/kWhelec)
f f ossil Emissions factor from gas or oil consumption (kgCO2/kWhth of gas)
βHeat.REN Annual renewable share of total heat production (%)
φElec.h Hourly Swiss electricity share produced from renewable sources (%)
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of operation.
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Figure A6. Hybrid system: Daily production and distribution temperatures for SH in the (a) first
and (b) second year of operation. Daily temperatures for DHW in the (c) first and (d) second year
of operation.
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Figure A7. Monovalent and hybrid system; (Top) Sorted hourly heat production, decomposed in
DHW and SH, as well as in HP and boiler, with related design capacities (kWth); (Bottom) Heat share
(by bins of outdoor temperature of 5 ◦C), segmented in SH and DHW, as well as in HP and boiler.
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Note: For the hybrid system, the increase of DHW after hour 6000 relates to an
unexplained malfunctioning at the end of the heating season (17 days in June 2019), during
which activation of the boiler induces peaks in charging of the DHW tank, with related
overheating (above the DHW set point).
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Figure A8. Monovalent and hybrid system, HP production temperature (by bins of outdoor tem-
perature of 5 ◦C); (Top) SH mode; (Bottom) DHW mode. The temperature spread is represented by
boxplots, with 50% of the hourly heat load within the box (median +/−25%), 80% within the upper
and lower marker, and the 10% min and max outliers represented by dots.
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Figure A9. Hybrid system, boiler production temperature (by bins of outdoor temperature of 5 ◦C),
SH mode, and DHW mode. The temperature spread is represented by boxplots, with 50% of the
hourly heat load within the box (median +/−25%), 80% within the upper and lower marker, and the
10% min and max outliers represented by dots.
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