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Abstract: One of the main problems of well operation is the risk of uncontrolled leakage of hydro-
carbons into the environment. This problem is especially relevant for the long-term operation of
wells. The idea for this study was inspired by a real industrial problem that the authors of the article
were involved in solving. At several operating gas wells, an abnormal slope of the production tree
occurred, which raised the question of the safety of their further operation. An analysis of known
studies and current regulatory documents did not allow us to assess the safety of using a gas well
based on the measured kinematic parameters of production tree deviations. A mathematical model
for the deformation of a package of casing strings when the surface layer of the rock is displaced
is developed in the article. A boundary value problem is formulated for differential equations of
pipe bending on an elastic foundation. Based on the results of solving this problem, an unambiguous
relationship was established between the maximum bending stress in the surface pipe and the angle
of inclination of the production tree. The quantitative characteristics of the connection depend on the
geometric and mechanical properties of the pipes and on the thickness and mechanical parameters of
the formations. It was established that the existing inclination of the production tree can be achieved
due to the beginning of the plastic bending of the surface pipe under the slickenside, which does not
exclude the exhaustion of the safety margin of the surface pipe and indicates the possible operation
of the casing string in a pre-emergency state. In general, the obtained results develop analytical
approaches to assessing the behavior of underground structures of a production well in unstable
soil bodies.

Keywords: conductor casing; moving surface strata; curvature; stresses calculation

1. Introduction

In the mining industry, significant attention is paid to safety and production efficiency.
In particular, this is reflected in the annual growth of efforts and costs aimed at ensuring
the integrity of oil and gas wells [1–3]. The life cycle of a well includes several stages,
such as design, construction, operation and abandonment. One of the main problems at
the stage of well operation is the risk of uncontrolled leakage of hydrocarbons into the
environment. This problem is especially relevant for the long-term operation of wells. The
human factor has been identified as the most common cause of catastrophic accidents in
the oil and gas industry [4]. However, there are threats that are relatively independent of
human impact, for example, the destruction of casing strings due to landslides [5,6] or the
collapse of deep wells built in unstable formations such as mudstones, bischofites, shales
and layers of plastic mineral salt [7–11].
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The idea of the presented study was the result of the emergence of a real industrial
problem, in the solution of which the authors of the article were directly involved. Several
active gas wells experienced an abnormal inclination of the production tree while the
wells continued to produce. Because of this, the issue of the safety of further operation of
the mentioned wells became extremely acute. An analysis of known studies and current
regulatory documents did not allow us to assess the safety of using a gas well according
to the parameters of the production tree deviations measured on the daylight surface. It
turned out that there are no methods for such an assessment. Our study aims to fill the
identified theoretical gap.

The problem of casing string failure due to collapse or shear exists in many oil and gas
fields in a number of countries and can lead to emergencies, premature shut-in of wells and
significant economic damage [12]. Ensuring the reliability and durability of casing strings
is closely related to their strength calculations. Across the range of issues for assessing the
strength of casing strings, the most difficult are the issues of calculating collapse resistance
to external pressure. Research on this problem is carried out simultaneously in two main
areas: theoretical and experimental studies to determine the critical pressure of casing
collapse as well as determination of the design external pressure for casing strings [13,14].
It should be recognized that the problem of determining the design external pressure for
casing strings has not found a final solution to date. Difficulties in solving this problem
lie in the fact that at present there are almost no means for measuring the actual pressures
in the casing string at different stages of well construction and operation. Therefore, in
the methods of calculating casing strings, when determining the design external pressure,
there are always a number of assumptions, and design schemes do not always correspond
to the real object of study [15].

In [16], based on experimental and numerical results, expressions were obtained for
calculating the shear strength of the casing pipe at various irregularity coefficients. The
authors of [17] obtained regularities of the effect of axial length on the casing string failure.
Probabilistic estimates of the strength of casing strings are studied in the work [18]. Finite
element modeling of various scenarios of static and dynamic loads of casing strings was
carried out in [19,20]. A comparative analysis of widely used methods for predicting the
destruction of casing pipes under combined loads is presented in [21].

One of the key factors positively influencing the life of a well is the centering of casing
strings, which ensures the quality of annulus cementing [22–25]. The greatest success
is achieved through the use of centralizers with non-linear rigidity characteristics, as
described in [26–28]. Other problems of centering of long objects are discussed in [29,30].

To assess the stress–strain state and limit equilibrium in zones of displacement of the
surface strata and in areas of unstable or damaged foundation, it is appropriate to use
the methods developed for analyzing the integrity of underground pipelines as extended
rod-shell systems [31–35]. In particular, for pipelines built in mountainous areas, such
calculations of strength parameters can be carried out according to the kinematic char-
acteristics of the movements of the damaged foundation [36,37]. On the basis of simple
schemes for the interaction of rods with the surrounding rock, many other studies involving
innovative methods of well construction can be carried out [38–42]. Models of rod [43–45]
and plate [46–48] structures resting on elastic or inelastic Winkler foundations are effective
for such engineering simulations. The results of limit state calculations based on 1D models
can be refined, taking into account the stress concentration in a pipe thread [49–53] and
through the application of fracture mechanics methods to closable crack-like defects in bent
and compressed cylindrical shells [54–59]. In this case, the model of contact of crack edges
along a line has proven itself well [60–63].

Therefore, the initiation of this study is the inclination of the production tree at the
production well Bytkiv-40, located in the Carpathians on the territory of the Bytkiv gas
condensate field (Figure 1). The directly measured deviation of the upper part of the surface
string from the vertical reaches 6◦ and is associated with shear processes. Within the area
where the well is located, a planned-altitude geodetic survey, ground-based geophysical
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surveys using electrometric methods [64], as well as a detailed complex interpretation of
well logging data for the upper part of the section [65] were performed. The geophysical
prerequisites for landslide hazard include anomalies of geophysical parameters, which, by
their physical content, are unconditionally associated with the activation of landslides, in
particular, zones of low electrical resistance, lithologically consistent with clays, which are
potential slickensides with a depth of up to 7 m.
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Figure 1. Production tree incline.

The interpretation of the described problem does not fit into the typical algorithms
that are offered to the manufacturers by the current directive documents. Bibliosemantic
analysis showed that today there is no method for analytical evaluation of the safe use of
underground structures of a production well by the parameters of production tree inclines
measured on the daylight surface.

The aim of this work is to explain the possible mechanism of casing string curvature
in the surface displacement zone and to develop a model for estimating the maximum
stresses from the kinematic parameters of the production tree inclinations.

2. Materials and Methods
2.1. Output Data and Problem Statement

We study the formulated problem of estimating the stress state of casing pipes accord-
ing to ground measurements of the incline of the production tree on the basis of a well-tested
model of the interaction of rods with the base through the Winkler interlayer [66,67].

Direct measuring (Figure 2) set the angle of inclination of the surface casing to the vertical:

θ0 = arcsin
113

1180
≈ 0.096 ≈ 0.1 rad ≈ 5.5◦
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Figure 2. Angle θ0 measurement scheme.

According to geophysical studies, the probable displacement of the upper rock layer
occurred above the slickenside at depth b = 7 m.

Let us consider the behavior of a casing string in surface rock layers. We direct the
axis Oz with the beginning on the daylight surface along the axis of the column deep into
the Earth (Figure 3).

A cemented surface casing with a conductor casing is modeled by a piecewise ho-
mogeneous rod with tubular cross sections, which in the shear section (0 ≤ z ≤ b) bends
by the forces of plastic resistance of the rock, and below the slickenside (z > b) interacts
with bedrock according to Winkler’s law with an elastic bed coefficient k. The reinforcing
effect of the cement stone on the mechanical behavior of the casing in the cemented areas is
not taken into account. At small angles of production tree inclination, the interaction of
the conductor with the internal uncemented technical, production and flow strings from
above through the wellhead equipment flanges and through contact at depth is neglected.
Such assumptions significantly simplify the solution of the problem, transferring it to the
category of linear ones.

Let us investigate the distribution of forces, moments, angle of rotation and transverse
movement of the column and estimate the magnitude of the maximum stresses.
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Figure 3. Calculation scheme of the problem: 1—surface casing, 2—conductor casing.

2.2. Boundary Value Problem of String Bend

The boundary value problem for the system of differential equations of string bending
has the following form:

(a) equation in the region:

EJy′′′′ = mq, z ∈ (0, a); (1)

EJ2y′′′′ = q, z ∈ (a, b); (2)

EJ2y′′′′ + ky = 0, z ∈ (b, ∞); (3)

(b) boundary and matching conditions:

M(0) = 0, Q(0) = 0; (4)
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y(a− 0) = y(a + 0), y′(a− 0) = y′(a + 0),

M(a− 0) = M(a + 0), Q(a− 0) = Q(a + 0); (5)

y(b− 0) = y(b + 0), y′(b− 0) = y′(b + 0),

M(b− 0) = M(b + 0), Q(b− 0) = Q(b + 0); (6)

M(∞) = 0, Q(∞) = 0. (7)

where
y is a horizontal displacement of the string axis;
q = σYD2, σY is a plastic resistance of the rock;
m = D1/D2, D1, D2 are outer diameters of the conductor and the surface casing;
a is a conductor length;
b is a depth of the slickenside;
EJ1 ≈ π

16 D3
1t1, EJ2 ≈ π

16 D3
2t2 are the bending rigidity of the pipes of the conductor and

surface casing, respectively;
t1 and t2 are their wall thickness;
E is Young’s modulus of pipe material;
EJ = EJ1 + EJ2 = EJ2(1 + n) is a total rigidity of the conductor with a coaxial surface

pipe (n = EJ1
EJ2
≈
(

D1
D2

)3 t1
t2

, if the pipes are connected perfectly, n = 0, if the pipes slide
mutually, and only the windage of the conductor is taken into account);

M is a bending moment;
Q is a transverse force;
k is a bedrock coefficient.
An analytical study of the boundary value problem (Equations (1)–(7)) was performed

using the method of initial parameters [68], which turned out to be effective in simulating
casing rod centralizers [69].

3. Results and Analysis

Using the technique of initial parameters [60], solutions of Equations (1)–(3) satisfying
conditions (4), (5), and (7) were constructed in the following form:
when z ∈ [0, b]

Q(z) = −q(mz− (m− 1)(z− a)H(z− a)),

M(z) = −q

(
m

z2

2!
− (m− 1)

(z− a)2

2!
H(z− a)

)
,

y′(z) = θ0 −
q

EJ2

(
m

1 + n
z3

3!
+

mn
1 + n

z3 − a3

3!
H(z− a)− (m− 1)

(z− a)3

3!
H(z− a)

)
,

y(z) = −∆ + θ0z

− q
EJ2

(
m

1+n
z4

4! +
mn

1+n

(
z4−a4

4! − a3(z− a)
)

H(z− a)− (m− 1) (z−a)3

3! H(z− a)
)

;
(8)

when z ∈ [b, ∞)

Q(z) =
2
γ

qbe−
z−b

γ

(
(A + B) cos

z− b
γ

+ (B− A) sin
z− b

γ

)
,

M(z) = 2qb2e−
z−b

γ

(
−B cos

z− b
γ

+ A sin
z− b

γ

)
,

y′(z) =
qb2γ

EJ2
e−

z−b
γ

(
(B− A) cos

z− b
γ
− (A + B) sin

z− b
γ

)
,

y(z) =
qb2γ2

EJ2
e−

z−b
γ

(
A cos

z− b
γ

+ B sin
z− b

γ

)
. (9)
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where
γ =

(
4EJ2
kD2

)1/4
is a characteristic length parameter that decreases with an increase in

the degree of sticking of the string in the bedrock;
k is a coefficient of subgrade reaction (Pa/m);
θ0, ∆, A, B are arbitrary constants;
H(z) is the Heaviside function.
Satisfying the matching conditions of (6), we obtain

A = −1
4

(
m
(

1 + 2
γ

b

)
− (m− 1)(1− α)

(
1− α + 2

γ

b

))
,

B =
1
4

(
m− (m− 1)(1− α)2

)
,

θ0 =
qb3

3!EJ2

(
3!

γ

b
(B− A) +

m
1 + n

+
mn

1 + n

(
1− α3

)
− (m− 1)(1− α)3

)
,

∆
b
= θ0 −

qb3

4!EJ2

(
4!

γ2

b2 A +
m

1 + n
+

mn
1 + n

(
1− α4 − 4!α3(1− α)

)
− (m− 1)(1− α)4

)
, (10)

and α = a/b.
Thus, Equations (8)–(10) represents solution of the problem i at a given load q.
Let us investigate the function of the bending moment to the extremum. From the

condition Q = 0 we find a stationary point z∗ = b + γarctg A+B
A−B .

Therefore, ∣∣∣∣M∣∣∣∣max =

∣∣∣∣M∣∣∣∣(z∗) = qb2
√

2(A2 + B2)e−arctg A+B
A−B .

This moment corresponds to the maximum stress in the surface pipe σmax = |M|maxD2
2J2

or

σmax =
qb2D2

2J2

√
2(A2 + B2)e−arctg A+B

A−B . (11)

Excluding from relations of Equations (10) and (11) the value qb2, we obtain the
relationship between the highest stress in the surface string and the angle of inclination of
the production tree θ0, which is the only parameter available for direct measurement:

σmax =
3
2

Eθ0
D2

b
F,

F =
2
√

2(A2 + B2)e−arctg A+B
A−B

3! γ
b (B− A) + m

1+n + mn
1+n (1− α3)− (m− 1)(1− α)3 .

In a similar way, a relationship was established between the horizontal displacement
of the top of the surface pipe and its angle of rotation:

∆ = bθ0G,

G = 1− 1
4

4! γ2

b2 A + m
1+n + mn

1+n
(
1− α4 − 4!α3(1− α)

)
− (m− 1)(1− α)4

3! γ
b (B− A) + m

1+n + mn
1+n (1− α3)− (m− 1)(1− α)3 .

Numerical studies of the solution were performed for specific parameters of the casing
pipes of the Bytkiv-40 well: E ≈ 2 · 1011 Pa, D1 = 529 mm, D2 = 325 mm, t1 ≈ t2 ≈ 10 mm,
a = 5 m, b = 7 m. Then n ≈ 1.628, m ≈ 4.312, α = 5/7.

According to the results of Equations (8)–(10), the distribution of the transverse force,
bending moment, angle of rotation and lateral displacement were studied (Figure 4). The
graphical results of the force and deformation analysis of the interaction of underground
structures of a borehole with a soil body are presented in a dimensionless form, since in this
case one solved dimensionless option corresponds to a whole group of possible dimensional
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problems. Therefore, in Figure 4, going from left to right, we have: the results of the force
analysis—the distribution of the shear force (Figure 4a) and the distribution of the bending
moment (Figure 4b) along the length of the underground well structure; the results of the
deformation analysis—the distribution of the angles of rotation of the cross sections of the
system (Figure 4c) and the distribution of transverse displacements (Figure 4d). The trans-
verse force is equal to zero on the daylight surface, as a whole it changes nonmonotonically,
changes symbol once and has a kink in the area of the slickenside. The bending moment
behaves nonmonotonically and has an extremum outside the slickenside. The rotation
angle graph has linear and non-linear sections, which are associated with the design feature
of the underground part of the well. The angles of rotation over the entire interval of the
study retain a constant symbol, which determines the interval of monotonous change in the
graph of transverse displacements of the underground structure of the well. The maximum
values of the angle of rotation and transverse displacements are reached on the daylight
surface.
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At different values of the coefficient of subgrade reaction of the layered bedrock,
corresponding to the values γ/b = 2; 1; 0.5, we found the value of the maximum stress in
the surface pipe and the lateral displacement of the surface pipe at the wellhead, achieved
at a given angle of inclination: θ0 ≈ 0.1 rad ≈ 5.5◦ (Table 1).
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Table 1. The results of the calculation of mechanical parameters.

Coefficient of
Subgrade Reaction

k, Pa/m

γ
b

Maximum
Stresses

σmax, MPa

Angle of
Inclination

θ0, rad

Lateral Displacement
on the Surface

∆, m

4.3 · 103 2 150 0.1 1.82

6.9 · 104 1 293 0.1 1.20

1.1 · 106 0.5 540 0.1 0.95

It is difficult to establish the value of the coefficient of subgrade reaction of the layered
bedrock with a cement layer of long-term operation. Therefore, in the calculations, the
value k varied over a wide range. A change of value k by a factor of 16 corresponds to a
change of value γ by a factor of two.

As can be seen from Table 1, increasing the degree of sticking of casing pipes in the
bedrock at a given θ0 leads to a significant increase in maximum stresses in the wall of the
surface pipe. For real θ0 ≈ 0.1 rad, ∆ ≈ 1 m and k ≈ 105–106 Pa/m stresses within the
string may reach up to σmax ≈ 350–500 MPa. At the same time, according to [18], the yield
strength for casing pipes of strength group D is σY = 373–552 MPa.

Thus, production tree inclination θ0 ≈ 0.1 rad can be achieved due to the beginning of
the plastic bending of the surface pipe under the slickenside, which does not exclude the
exhaustion of the margin of safety of the surface pipe and indicates the possible operation
of the casing in the limit state, and this is, in turn, a sign of a pre-emergency situation.

4. Conclusions

In order to explain the mechanism of casing string curvature as a result of the displace-
ment of the surface strata and to assess the safety of pipes in unstable ground, a calculation
scheme for determining the stress in the casing pipe based on the observed deflection of
the ground part of the well structure is proposed for the first time.

A mathematical model was developed for the deformation of a package of casing
strings when the upper rock layer is displaced. Based on the results of solving the boundary
value problem for the differential equation of bending, a relationship was established
between the maximum bending stress in the surface pipe and the slope angle of the
production tree. The quantitative characteristics of this connection depend on the geometric
and mechanical properties of the pipes and the thickness and mechanical parameters of
the formations. It was established that the existing inclination of the production tree can
be achieved due to the beginning of the plastic bending of the surface pipe under the
slickenside, determined at a depth of 7 m, which does not exclude the exhaustion of the
margin of safety of the surface pipe and indicates the possible operation of the casing string
in the limit state, and this is, in turn, a sign of pre-emergency situations.

Passive waiting can lead to further plastic bending of the surface casing and the
destruction of the integrity of the strings. Therefore, it is recommended to continue instru-
mental observations of the inclination of the string, perform another survey near the well in
order to determine the halo of gas contamination, and carry out engineering work to reduce
the slope load on the well. In the future, when designing a well, it will be necessary to
provide for the study of the upper part of the section in order to prevent the exploitation of
the territory in complicated geological, hydrogeological and geomorphological conditions.

Future studies of the described problem should be developed, taking into account the
inelastic properties of the unstable foundation.
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