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Abstract: To solve the problem of layout design of charging stations in the early stage of the electric
vehicle industry, the user’s satisfaction and the charging convenience are considered. An electric
vehicle charging station site-selection model is established based on the kernel density analysis of the
urban population. The goal of this model is maximum electric vehicle user satisfaction and the highest
charging convenience. Then, according to model characteristics, the immune algorithm is designed
and optimized to solve the model. The optimization of the immune algorithm includes two aspects.
On the one aspect, judging that the stop condition is added in the mutation link. On the other aspect,
two mutation operators are designed in the optimized immune algorithm. Finally, the simulation
example is determined by a three-step method in Jinan City. The results show that the electric
vehicle charging station site-selection model in this paper can better meet user needs compared with
traditional models. Compared with the traditional immune algorithm, the convergence speed of the
optimized immune algorithm is improved, and the proposed algorithm is superior to the traditional
immune algorithm in terms of stability and accuracy.

Keywords: charging station; electric vehicles; immune algorithm; optimization

1. Introduction

As of 2022, the number of electric vehicles is 8.915 million, and the ratio of electric
vehicles to their charging infrastructure is around 7:1 in the early stage of the electric vehicle
industry in China. At present, the lack of electric vehicle charging infrastructure and the
unreasonable layout are the main factors restricting the development of the electric vehicle
industry [1,2].

Researchers have carried out relevant research on the layout of electric vehicle charging
stations. A Bayesian network model was proposed based on economic, environmental
and social factors, and the established model was verified through sensitivity analysis
in [3]. In addition, in literature [4], based on economic, environmental and social factors,
the multicriteria decision-making method (MCDM) was used to evaluate the location-
selection criteria of charging stations, and the fuzzy TOPSIS method was used to determine
the location-selection scheme of electric vehicle charging stations. Ren et al. evaluated
land cost, construction cost, road traffic flow, power grid conditions and the surrounding
environment to establish an electric vehicle location model that minimized the total social
cost, and the model was solved by a genetic algorithm [5]. Wu et al. comprehensively
considered economic factors, social factors, environmental factors and the characteristics
of residential quarters to establish an index evaluation system for the location of electric
vehicle charging stations in residential areas, and used the fuzzy VIKOR method to rank
the charging stations [6]. A mixed-integer programming model was proposed to maximize
the number of users charging at the charging station in [7], and a mixed genetic algorithm
was used to solve the model. A total social cost model was constructed based on economic
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cost and environmental cost in [8], and a genetic algorithm was used to solve the total social
cost mode. The above literature mainly determines the location plan from the perspective
of economic, environmental and social factors, ignoring the impact of users.

In the early stage of the electric vehicle industry, the impact of users is important.
From the user’s point of view, Jia Yongji et al. determines the location plan considering
user satisfaction [9]. However, the charging convenience of the charging station is ignored.

In response to the problems, this paper considers the user satisfaction of electric
vehicles and the charging convenience of charging stations from the user’s point of view.
The goal of the electric vehicle charging station site-selection model is maximum electric
vehicle user satisfaction and the highest charging convenience.

Location theory is divided into location theory based on point and location theory
based on path demand [10,11]. Location theory based on point mainly includes the p-
median problem [12,13], p-center problem [14,15] and coverage problem [16,17]. Some
site-selection problems such as the minimum cost of station construction [18,19], the max-
imization of revenue [20,21], the location based on the user’s position [22,23] and the
location under uncertainty [24,25] also belong to this theoretical scope. Fitting the demand
of demand points is an important link in the point location theory. The main fitting method
in the above literature is the empirical method or demand-point data set. This method is
inconvenient in urban simulations with too many demand points or no demand-point data
sets. In response to the problems, demand is fitted through nuclear density analysis.

The artificial immune algorithm is a swarm intelligence search algorithm with the
iterative process of generation and detection. It is widely used in many fields such as
vehicle scheduling, machine learning, image processing and facility location selection [26].

An immune algorithm was used to solve the problem of site selection for urban
medical-waste-disposal sites based on the actual situation of the new crown pneumonia
epidemic and the guidelines for environmental impact assessment in [27]. Li et al. used
an immune genetic algorithm to solve the traditional capacity-limited factory location
problem [28]. The immune algorithm has problems such as slow convergence speed and
low calculation accuracy. In order to improve the performance of the immune algorithm,
the algorithm is optimized to different degrees. Ali et al. proposed a hybrid optimiza-
tion method based on the immune algorithm and local search algorithm of mountain
climbing, which solved the multiobjective I-beam and machine tool optimization problems
and improved the convergence of the algorithm [29]. An improved immune algorithm
based on extracting immune vaccines and injecting vaccines was proposed in [30]. The
algorithm was used to solve the TSP problem, and it was verified that the algorithm has
a faster convergence speed. Meng et al. combined the artificial immune algorithm and
chaotic optimization algorithm, which improved the convergence speed and global search
ability of the algorithm and provided ideas for economic load distribution of complex
power systems [31]. An improved immune algorithm based on solution-space directional
optimization was proposed in [32]. This algorithm can greatly reduce the search space of
the objective function and was used to solve the problem of finding the minimum value of
multimodal functions. The simulation result indicated that the algorithm has better real-
time performance. The above literature mainly considers improving a certain performance
of the immune algorithm, ignoring the improvement of the overall performance. To im-
prove the overall performance, the improvement of the artificial immune algorithm in [33]
included two aspects. One was mutation adaptation, and the other was computing affinity
functions using vector distances with threshold limits. The improved immune algorithm
solved the location problem of logistics distribution. The simulation results showed that
the convergence speed and calculation accuracy of the improved immune algorithm was
significantly improved. The artificial immune algorithm in three aspects was improved,
including initial population generation, population update and crossover mutation [34].
The improved immune algorithm solved the problem of regional comprehensive energy
station layout and location. The simulation results showed that the improved algorithm
had higher convergence speed and calculation accuracy. However, the stability of the im-
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mune algorithm is not considered in [33,34]. The immune algorithm has problems of slow
convergence, low accuracy and poor stability. In order to solve this problem, the traditional
immune algorithm is optimized in two aspects referring to the above literature methods:
On the one aspect, judging that the stop condition is added in the mutation link; on the
other aspect, two mutation operators are designed in the optimized immune algorithm.

There are three innovations in this paper. First, the location model of the electric
vehicle charging station based on the user’s position is improved by establishing the
highest charging convention goal. Second, it provides a method for fitting demand in
location theory based on point through Aernel density analysis. Finally, the mutation link
of immune algorithm is optimized to solve problems of slow convergence, low accuracy
and poor stability.

2. Aernel Density Analysis

The area with a large population has a greater possibility of charging demand than the
area with a small population [35–37]. The population of an area can be known by perform-
ing a kernel density analysis for the population. Compared with traditional population
density analysis, kernel density analysis overcomes the problem of uniform density within
statistical cells. X represents the number of all sample points. h represents the bandwidth.
The formula for calculating bandwidth h is Formula (3). The population density of the
calculated point is Formula (1).

p =
1
h2

X

∑
x=1

K(x) (1)

POPx represents the population of the sample point x. distx represents the distance
between the calculated point and the sample point, which satisfies distx < h. The kernel
density function of kernel density analysis is Formula (2).

K(x) =
3
π

POPx

[
1−

(
distx

h

)]2
(2)

Dm is the median of the distance from the sample point to the average center. SDw is
the standard distance. The calculation formula is Formula (4).

h = 0.9 ∗min(SDw,

√
1

ln2
∗ Dm) ∗ (

X

∑
x=1

POPx)

−0.2

(3)

(Xx, Yx) is the latitude and longitude coordinate point of the sample point x. (Xw, Yw)
is the latitude and longitude coordinate point of the average center. The calculation formula
is Formula (5).

SDw =

√
∑X

x=1 POPx(Xx − Xw)
2

∑X
x=1 POPx

+
∑X

x=1 POPx(Yx −Yw)
2

∑X
x=1 POPx

(4)

(Xw, Yw) =

√
∑X

x=1 POPxXx

∑X
x=1 POPx

+
∑X

x=1 POPxYx

∑X
x=1 POPx

(5)

Population densities in different regions are classified by the natural discontinuity
grading method (Jenks) of ArcGIS [38]. The cutoff value of Jenks can be expressed as a
numerical value or a percentage. Similarly, population density values that fall between the
cutoff values can also be expressed as either a numerical value or a percentage.

3. Electric Vehicle User Satisfaction Model

The user’s feelings and psychological changes are quantified in the electric vehicle
user satisfaction function. Li is the lower limit of the distance between the demand point i
and the to-be-taken point j. Ui is the upper limit of the distance between the demand point
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i and the to-be-taken point j. dij is the distance from the demand point i to the to-be-taken
point j. F

(
dij
)

is the user satisfaction evaluation value of electric vehicles at the demand
point i. The electric vehicle user satisfaction model is Formula (6) [39].

F
(
dij
)
=


1 , dij ≤ Li
1
2
+

1
2

cos
(

π

Ui − Li

(
dij −

Ui + Li
2

)
+

π

2

)
, Li < dij ≤ Ui

0 , dij > Ui

(6)

dij < Li, F
(
dij
)
= 1. As dij increases, F

(
dij
)

decreases. When dij > Ui, F
(
dij
)
= 0.

The relationship between F
(
dij
)

and dij is shown in Figure 1.
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4. User Charging Convenience

The electric vehicle charging station is different from the general power infrastructure.
Under the conditions of urban traffic, municipal planning and power quality of the power
grid, the users’ charging convenience should be maximized. Therefore, the service range
of the charging station depends on the time spent by the user in finding the longest path
of the charging station. T represents the longest road time to find the charging station.
V indicates the speed to find charging stations. ∂ is the traffic resistance coefficient. The
charging station service radius model for user charging convenience is Formula (7).

R =
TV
∂

(7)

E is the battery power of the electric vehicle. W100 is the power consumption of electric
vehicles per 100 km. If the distance that the remaining electric quantity of electric vehicle
can travel is less than R, the user’s location is not within the service range of this charging
station. Therefore, the service radius limit of the charging station is Formula (8).

R ≤ 20%E
W100

(8)

The actual distance of the service radius of the charging station is converted into the
Euclidean distance by Zhou Yuyang’s method [40]. Si represents the area of the demand
point numbered i. The service area of the charging station is Sj = πR2. The number of
demand points in the service area of the to-be-taken point Si is Formula (9).
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nij = count(Si)
(
Si ⊂ Sj

)
(9)

5. Electric Vehicle Charging Station Site-Selection Model
5.1. Suppose

For quantitative research, the following assumptions are made in the modeling process.

(1) Each demand point only goes to the nearest charging station for charging;
(2) Each demand point represents a small area of fixed area;
(3) All electric vehicles have the same battery capacity and model;
(4) While going to the charging station to charge, the driving speed of the electric vehicle

remains constant;
(5) In the study area, the demand for the demand point is the same every day, and the

demand density is equal to the population density value expressed as a percentage.

5.2. Goals and Constraints

The basic symbols are explained as follows. i indicates the number of the demand
point, i ∈ ni. ni represents the set of demand points. j represents the number of the to-be-
taken point, j ∈ nj. nj represents the set of to-be-taken points. I represents the number of
demand points. J represents the number of to-be-taken points. a represents the number of
demand points within the service scope. P represents the number of charging stations. Yij
and Yj are the decision variable.

- Objective function one: Maximize user satisfaction

The satisfaction and the level of the demand point’s own demand are considered in the
location selection of the charging station. pi represents the demand density at the demand
point i. User demand density is the number of electric vehicles with charging demand per
unit land area. S indicates the area of a demand point. Based on the electric vehicle user
satisfaction model and the results of the kernel density analysis, an electric vehicle user
satisfaction model is established as shown in Formula (10).

max f1 =
J

∑
j=1

I

∑
i=1

F
(
dij
)

piSYijYj (10)

- Objective function two: Maximize the charging convenience

Based on the user’s charging convenience, the service radius of the charging station
is calculated. Then, the service area of the charging station is obtained. By the number
of electric vehicles that fall within the service area of the charging station, the charging
convenience of the to-be-taken point is judged. The to-be-taken point with the highest
charging convenience is selected. pja represents the demand density of the demand point
number a within the service range of the to-be-taken point j. The charging convenience
model for users within the service range of the charging station is established, as shown in
Formula (11).

max f2 =
J

∑
j=1

nij

∑
a=1

pjaYj (11)

Restrictions:

(1) Each demand point can only correspond to one to-be-taken point.

J

∑
j=1

Yij = 1 ∀i ∈ ni, ∀j ∈ nj (12)

(2) Meeting priority conditions and charging needs of electric vehicles. Formula (13)
indicates that the user satisfaction is satisfied under the condition that the charging
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convenience of the electric vehicle charging station is satisfied. Meanwhile, the
charging demand of electric vehicles is met at the to-be-taken point j.

Yij ≤ Yj ∀i ∈ ni, ∀j ∈ nj (13)

(3) Meeting demand points are allocated to corresponding charging stations. Formula (14)
indicates that the built electric vehicle charging station meets the changing needs of
all demand points.

J

∑
j=1

YijYj ≥ 1 ∀i ∈ ni, ∀j ∈ nj (14)

(4) Meeting the capacity requirements of the site-selection scheme. Formula (15) repre-
sents the number of charging stations in all site-selection schemes.

J

∑
j=1

Yj = P ∀j ∈ nj (15)

(5) Yij = 1 indicates that the user is satisfied with the electric vehicle charging station at
the to-be-taken point j. Yij = 0 indicates that the user is not satisfied with the electric
vehicle charging station at the to-be-taken point j. Yj = 1 indicates that the charging
convenience of the electric vehicle charging station is high in the to-be-taken point j.
Yj = 0 indicates that the charging convenience of the electric vehicle charging station
is low at the to-be-taken point j. Analyzing conditions are:

Yij ∈ {0, 1} ∀i ∈ ni, ∀j ∈ nj
Yij ∈ {0, 1}∀j ∈ nj

(16)

To sum up, the objective function one is Formula (17), which represents the maximiza-
tion of user satisfaction based on electric vehicles. Objective function two is Formula (18),
which indicates that the charging convenience for users within the service range of the
charging station is the highest. The location model of the electric vehicle charging station is
as follows:

max f1 =
J

∑
j=1

I

∑
i=1

F
(
dij
)

piSYijYj (17)

max f2 =
J

∑
j=1

nij

∑
a=1

pjaYj (18)

Restrictions:
J

∑
j=1

Yij = 1 ∀i ∈ ni, ∀j ∈ nj (19)

Yij ≤ Yj ∀i ∈ ni, ∀j ∈ nj (20)

J

∑
j=1

YijYj ≥ 1 ∀i ∈ ni, ∀j ∈ nj (21)

J

∑
j=1

Yj = P ∀j ∈ nj (22)

Yij ∈ {0, 1} ∀i ∈ ni, ∀j ∈ nj
Yij ∈ {0, 1} ∀j ∈ nj

(23)
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6. Optimized Immune Algorithm

In the optimized immune algorithm, the antigen is the objective function of the electric
vehicle charging station location model. Antibodies are the solutions to this objective
function. Affinity is equivalent to the ability of an antibody to resolve an antigen. In the
mutation link of the traditional immune algorithm, a mutation operator of multipoint
mutation is added. The mutation search space for the mutation operator of the traditional
immune algorithm is added. Judging stop condition is written between two mutation
operators. According to the characteristics of the electric vehicle charging station model,
the population generation of the immune algorithm, the affinity function, the crossover
operator and the mutation operator are designed. The flowchart of the optimized immune
algorithm is as follows:

Step 1 (forming a population): The element variable in each antibody consists of
the number of to-be-taken points. The length of the antibody is the capacity of the ad-
dressing scheme. The population is composed of several antibodies. For example, the
location problem is considered to select P charging stations from J to-be-taken points.
Suppose the number of the to-be-taken points is represented by 1, 2, · · · , J. Antibody
antj =

{
j1, j2, · · · , jp

}
represents a feasible solution to the objective function. It represents

that the to-be-taken point numbered 1, 2, · · · , P is selected as an electric vehicle charging
station. The similarity between j1, j2, · · · , jp is zero.

Step 2 (affinity value): The electric vehicle charging station site-selection model is
processed through a linear weighting method. f it(ant) is the affinity value of antibody
ant. ω1 and ω2 are the weight coefficients of each target and satisfy ω1, ω2 ∈ (0, 0.5]. The
affinity value is Formula (24).

f it(ant) = 1−
(

ω1 f
′
1 + ω2 f

′
2

)
(24)

max f1 and min f1 are the maximum and minimum values of f1. max f2 and min f2 are
the maximum and minimum values of f2. The formula for calculating f

′
1, f

′
2 is Formula (25).

f
′
1 =

f1 −min f1

max f1 −min f1

f
′
2 =

f2 −min f2

max f2 −min f2

(25)

Step 3 (generate parent): The parent is generated based on the affinity value of the
initial population of each generation. The antibody with a small affinity value is selected
in the initial population to be retained as an elite. The remaining antibodies are used as
parents. The parents are selected according to the expected reproductive rate. p is the
expected reproductive rate value. ∂ is a fixed value whose value range is (0, 1). Cv is the
concentration between the antibody and the population, The formula for the expected
reproductive rate is Formula (26).

p = ∂
f it(ant)

∑ f it(ant)
+ (1− ∂)

Cv

∑ Cv
(26)

M is the total number of antibodies. S
′
v,s is the number of antibodies that meet the

requirements, and its value is the sum of all S
′′
v,s values. Cv is calculated as Formula (27).

Cv =
∑j∈M S

′
v,s

M
× 100% (27)

T is the diversity evaluation parameter. Sv,s is the concentration between antibodies.
The expression of the judgment condition S

′′
v,s is Formula (28).
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S
′′
v,s =

{
1, Sv,s > T
0, Sv,s ≤ T

(28)

kv,s represents the similarity between antibodies. Sv,s is calculated as Formula (29).

Sv,s =
kv,s

P
× 100% (29)

Step 4 (crossover and mutation): The judgment stop condition is added in the mutation
process. Therefore, the invalid search space is excluded from the iterative process of the
algorithm whose convergence speed is improved. antt+1 represents a mutated antibody.
antt represents primary antibody. The judgment stop condition is formula (30).

i f f it
(
antt+1) < f it

(
antt)

continue
end

(30)

Two crossover operators and two mutation operators are designed, namely crossover
operator a and crossover operator b, and mutation operator c and mutation operator d. The
2-point crossover method is used in the crossover operator process, and a partial mapping
method was used to exclude duplicate variables. For multipoint mutation of mutation
operator c, the chance of solving the optimal solution group is increased. The search space
of the mutation operator d is reduced by referring to related literatures, and the probability
of obtaining the optimal solution can be improved in the algorithm.

The crossover and mutation operators of antibodies are designed to solve the problem
according to this paper. Suppose nj =

{
j1, j2, · · · , jp, · · · , jJ

}
is the set of to-be-taken points.{

j1, j2, · · · , jp
}

is the crossover operator a.
{

j5, j6, · · · , j2p
}

is the crossover operator b.{
j1, j2, · · · , jp

}
is the mutation operator c. The search space of the mutation operator c

is c =
{

jp+1, · · · , jJ
}

and satisfies c ∩ c = ∅, c ∪ c = nj.
{

j1, j2, · · · , jp
}

is the mutation
operator d. The search space of the mutation operator d is d′.

The case of crossover operator a and crossover operator b is shown in Figure 2. The
middle-part set {j3, j4, j5, j6} ⊂ a and {j7, j8, j9, j10} ⊂ b is formed by randomly selecting the
intersection position r1, r2. The exchanged crossover operator a =

{
j1, j2, j7, j8, j9, j10, j7, · · · , jp

}
and crossover operator b =

{
j5, j6, j3, j4, j5, j6, j11, · · · , j2p

}
are obtained by exchanging the

intermediate part sets with each other. The set of repeated elements is {j7} in the crossover
operator a. The set of repeated elements is {j5, j6} in the crossover operator b.
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The weight of the crossover operator can be reduced by the mapping substitution
method in Figure 3. The set of repeated elements {j7} is replaced in the crossover operator
a by the set {j3} in the crossover operator b. Then, the set of repeated elements {j5, j6} is
replaced in the crossover operator b by the set {j7, j8} in the crossover operator a.
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The mutation operator c is shown in Figure 4. The mutation position set {jr1, jr2, jr3}
is randomly selected in the mutation operator c. The mutation position set

{
j
′
r1, j

′
r2, j

′
r3

}
is randomly selected in the mutation search space c. The mutated mutation operator
c =

{
j1, · · · , j

′
r1, · · · , j

′
r2, · · · , j

′
r3, · · · , jP

}
is obtained by replacing the set {jr1, jr2, jr3} ⊂ c

with the set
{

j
′
r1, j

′
r2, j

′
r3

}
⊂ c.
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Figure 4. The mutation process of the mutation operator c.

If the mutation operator c satisfies the judgment stop condition, the mutation operator
d is not calculated. If not satisfied, mutation operator d is determined by Figure 5.

The affinity search space ((1− visual) f it(d), f it(d)) is determined according to the
affinity value of the mutation operator d. The affinity value of any antibody within the
affinity search range is less than the affinity value of the antibody d. The variant search
space d′ is determined by randomly selecting an antibody. index is the index collection of
antibodies in visual. antindex is the mutation search space index. The method of randomly
selecting antibodies is formula (31).

antindex = index(ceil(rand ∗ siza(index, 2))) (31)

The mutation operator d and the normal search space d′ satisfy d ∩ d′ = ∅, d ∪ d′ = nj.
The mutation operator d is shown in Figure 6. The mutation position set {jr} is randomly
selected in the mutation operator d. The mutation position set

{
j
′
r

}
is randomly selected in

the mutation search space d′. The mutated mutation operator d =
{

j1, · · · , j
′
r, · · · , jP

}
is

obtained by replacing the set {jr} with the set
{

j
′
r

}
.

If the similarity between set
{

j
′
r

}
and other variable sets in the mutation operator d

excluding set {jr} is not zero, the random mutation position is selected in the mutation
search space to replace the set {jr}. If the mutation operator d after mutation does not
meet the judgment stop condition, the mutation operator d is mutated in the normal search
space again.
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7. Region and Points Are Selected

An example is determined using the three-step method. The three-step method
includes selecting the central urban area based on the weight, selecting the demand point
based on the area type and selecting the to-be-taken point based on the unit grid. The
selection of the central city mainly considers the influence of the regional economy, personal
GDP, population parameters and car ownership on consumers’ willingness to buy electric
vehicles. By establishing a decision-making team composed of 10 researchers in the field
of electric vehicle charging station site selection, the expert evaluation parameters were
obtained by scoring the above four factors respectively and taking the average value. The
scoring standard is Table 1.

Table 1. The scoring standard table.

Degree Score

Big impact 5
Greater impact 4
General impact 3
Lesser impact 2

No impact 1
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The weight of each urban area is obtained by combining the expert evaluation param-
eters with the linear weighting of each factor. xr is the weight value of the urban area r.
xir represents the expert evaluation parameter of the influence of factor i on the purchase
of electric vehicles in the urban area r. fir represents the value of factor i within the urban
area r. fiz represents the total value of the factor i. x4 represents the expert evaluation
parameter of the impact of car ownership on the purchase of electric vehicles. f4r represents
the value in car ownership. f4z represents total car ownership. The weight of each city area
is Formula (32).

xr =
3

∑
i=1

xir
fir
fiz

+

(
1− f4r

f4z

)
x4 (32)

Areas with dense population, high traffic flow and high probability of charging
demand are selected as demand points. The area types of demand points include working
areas such as factories, schools and hospitals, business areas such as supermarkets and
restaurants, parking lots, residential areas and tourist areas. The central city is divided into
cells of equal area. According to the characteristics of the road distribution in the cell, the
layout of demand points and the charging station for electric vehicles that have been built,
several to-be-taken points are selected.

8. Simulation
8.1. Analysis of the Example

In this paper, Jinan City was selected for the research. The expert evaluation parame-
ters of the regional economy, personal GDP, population parameters and car ownership in
each district are 3, 5, 4 and 2, respectively. The weight of each district is Figure 7.
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The Lixia region with the largest weight value is selected. the number of demand
points is 378. The number of to-be-taken points is 155. The locations of demand points and
to-be-taken points are determined at the Lixia region in Figure 8.

For the Lixia area kernel density analysis, the population density distribution map is
shown in Figure 9.

Through sensitivity analysis, the number of charging stations is determined in Table 2.
The number of electric vehicle charging stations is 53, which is determined by selecting the
maximum difference in average satisfaction with the number of adjacent stations.

In this paper, the parameters of the optimized immune algorithm are set as follows.
The population size is 100; the memory bank capacity is 20; the number of iterations is 400;
the crossover probability is 0.5; the mutation probability is 0.4; the diversity evaluation
parameter is 0.95; the affinity search range is 0.0001. The site-selection scheme is shown in
Figure 10. The circle represents the demand point. The diamond represents the to-be-taken
point. The red square represents the to-be-taken point selected to build the charging station.
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Table 2. Sensitivity analysis of the number of electric vehicle charging stations constructed.

Number of Sites Built Average Satisfaction

51 60.63%
52 65.82%
53 74.7%
54 79.94%
55 83.18%
56 85.04%
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Figure 10. Site-selection scheme.

The traditional site-selection scheme only considers the electric vehicle user satisfac-
tion. That is, objective function 1 is solved. The average service capacity represents the
average number of demand points served by each charging station within the scheme. The
average charging convenience represents the number of electric vehicles that fall within
the service range of an average charging station within the scheme. In Table 3, the average
service of the site-selection scheme in this paper can serve 12 more demand points than
the traditional site-selection scheme. The user density is 3% higher than the traditional
site-selection scheme. The average charging convenience is 462 vehicles higher than the
traditional site-selection scheme. The comparison between the site-selection scheme in this
paper and the traditional site-selection scheme is as follows:

Table 3. Comparison of two site-selection schemes.

Average Service Capacity Average User Density Average Charging Convenience

Traditional site selection 116 70% 4195
Site-selection plan in this paper 128 73% 4657

8.2. Algorithm Comparison

The traditional immune algorithm and the optimized immune algorithm were inde-
pendently run 20 times. In Table 4, the optimal solution of the immune algorithm after
optimization is 0.00518 smaller than that of the traditional immune algorithm. The average
solution of the optimized immune algorithm is close to the optimal solution. The standard
deviation of the optimized immune algorithm is 0.03131 smaller than that of the traditional
immune algorithm. This shows that the calculation accuracy of the optimized immune
algorithm is 0.00518 higher than that of the traditional immune algorithm. The search
accuracy of the optimized immune algorithm is higher than that of the traditional immune
algorithm. The stability of the optimized immune algorithm is 0.03131 higher than that
of the traditional immune algorithm. Table 4 is the comparison of search accuracy and
stability performance of the immune algorithm.
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Table 4. The comparison of search accuracy and stability performance.

Optimal Solution Average Solution Standard Deviation

Traditional
immune algorithm 0.17493 0.21110 0.04843

Optimized
immune algorithm 0.16975 0.18391 0.01712

In Figure 11, the traditional immune algorithm and the optimized immune algorithm
obtained the optimal solutions in the 351st generation and the 320th generation, respectively.
The convergence speed of the optimized immune algorithm is 31 generations higher than
that of the traditional immune algorithm. The convergence curves of the traditional immune
algorithm and the optimized immune algorithm are as follows:
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9. Conclusions

At present, China’s ratio of electric vehicles to their charging infrastructure is around
7:1. The lack of electric vehicle charging infrastructure and the unreasonable layout are the
main factors restricting the development of the electric vehicle industry. In the stage, it is
most suitable to determine the location scheme of electric vehicles based on the position
of users.

In this paper, a user-based location scheme is proposed. To improve the location model
of electric vehicle charging stations in the scheme, the highest charging convention goal is
added in the model. The immune algorithm is optimized to improve the convergence speed,
accuracy and stability of the immune algorithm for large cases. The optimization process
includes two aspects: First, judging that the stop condition is added in the mutation link;
second, designing two mutation operators in the optimized immune algorithm. Finally,
the Lixia District of Jinan City is taken as the simulation by analyzing people’s willingness
to buy electric vehicles. Through nuclear density analysis, the population quantity in the
region is analyzed to determine the demand at the demand point.

The experimental results show that the electric vehicle location model in this paper
serves 12 more demand points than the traditional electric vehicle location model. The
average user density increased by 3%. The average charging convenience is 462 more
than the traditional site-selection scheme. The performance improvement of the immune
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algorithm is as follows. The calculation accuracy of the optimized immune algorithm is
0.00518 higher. The search accuracy of the immune algorithm is higher. The stability of
the optimized immune algorithm is 0.025 higher. The convergence speed of the optimized
immune algorithm is 31 generations higher.

The user’s satisfaction and the charging convenience are considered in the paper.
However, user travel rate is one of the important factors based on user position. Further
considering user’s satisfaction, the charging convenience and user travel rate, the electric
vehicle location model is established.
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