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Abstract: Pellets are solid biofuels with a combustion efficiency of 85–90%, low CO2 emissions and
costs, great comfort and versatility. However, the ash generated during combustion can present
sintering and fusibility, decreasing boiler efficiency and potentially malfunctioning. Ash composition
indexes can be useful to predict observed ash sintering and fusion but require further analysis
for a variety of feedstocks. The objective of this work was to determine the effect of the mineral
composition of pellet ash from 15 biomasses of forest and agro-industrial sources on observed pellet
ash slagging using a laboratory test. The chemical composition of pellets and the indexes B, NaK/B,
SiP/CaMg and SiPNaK/CaMg at 550 and 1000 ◦C were determined. Pearson correlation tests were
also performed between cumulative percentages of slag at different sieve sizes. The concentrations of
CaO ranged from 4.49 to 65.95%, MgO varied from 1.99 to 17.61%, and the SiO2 concentration was
between 16.11 and 28.24% and 2.19–56.75% at 550 and 1000 ◦C, respectively. Pellets of forest origin
presented a low risk of slag formation, while those from agro-industrial sources showed a high risk
of slag formation. The index SiPNaK/CaMg showed the highest correlation (R2 > 0.75) to observed
slagging using the BioSlag test.

Keywords: ash; biomass; pellets; slag; sintering

1. Introduction

Pellets are solid biofuels made from biomass densification and are mainly focused on
generating energy in the form of heat. Pellet-based heating systems have a combustion
efficiency of 85–90%, operate automatically using forced air, generate low CO2 emissions
and have low costs, great comfort and versatility [1–3]. However, despite the benefits of
using pellets and biomass for energy purposes, ash sintering and fusibility can limit boiler
efficiency and even result in equipment malfunction [4].

The amount of ash produced during the combustion of biomass materials is highly
variable, ranging from <1% for some species of conifers, reaching up to 15% in some
herbaceous materials and 25% in other agricultural residues [5–7]. The analysis of the
feasibility of using pellets from various biomass sources has been mainly based on physical,
mechanical and energy properties [8–10]. However, there are relatively fewer works that
have analyzed the formation of slags and the processes of sintering of the elements con-
tained in the ash, particularly for pellets from less studied feedstocks. However, these are
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some of the most important limitations for using pellets as an energy source in combustion
systems [11,12].

The practical problems associated with the ash behavior are sometimes catastrophic
and spectacular, ranging from major slag falls that damage the bottoms of furnaces to com-
plete plugging of convection passes. Ash deposits directly affect the internal functioning
of the boiler and can affect the design, lifetime and operation of combustion equipment,
increase the operating cost, decrease boiler efficiency, deteriorate combustion behavior with
higher combustion temperatures, retard heat transfer, cause high temperature corrosion
and provoke mechanical failures, which in some cases are irreparable [13,14].

Ash mainly consists of potassium, calcium, sodium, silicon, phosphorus, iron, magne-
sium and sometimes chlorine and sulfur [15]. Woody biomass has generally low levels of
Si and K but is high in Ca [16], whereas agricultural residues are generally high in Si and K
but low in Ca. Nevertheless, the chemical constitution of biomass is very heterogeneous,
with large variations between species, plant fractions, age, or collection date [17]. While
the majority of analyses of ash composition have focused on temperate to boreal tree and
herbaceous species [17], there are relatively fewer studies analyzing the ash composition
of forest and agricultural feedstocks in semiarid ecosystems and their implications for
combustion behavior.

The formation of slags is associated with high concentrations of K and Na that decrease
the melting point of the ashes, while the opposite effect is produced by high concentrations
of Ca and Mg since they increase the melting point [18,19]. For non-volatile mineral
elements such as Si, oxides are formed in the combustion process and adhere to the surface
of combustion particles in the form of a molten state [16]. The above affects the combustion
process by a series of physical and chemical transformations resulting from the processes
of segregation, vaporization, precipitation, nucleation and coalescence [20]. In this way,
high concentrations of alkali metals present in the biomass can form potassium silicates,
which leads to the formation of slags that can cause sintering, melting and stickiness of the
ashes and which favors the corrosion and erosion of combustion boilers [21,22]. The ratio
of alkaline earth oxides to alkaline oxides and their representation in a SiO2/CaO/K2O
ternary phase diagram, based on the analysis of micronutrients from biomass ash, have
been used to predict ash behavior [23]. In addition to the above, other indexes have been
proposed for the prediction of slag formation, such as the index (B), NaK/B, SiP/CaMg
and SiPNaK/CaMg [24,25]. Nevertheless, ash slagging indexes continue to be the subject
of ongoing research [26] and still need to be tested over a large variety of biomass sources
against observed ash slagging.

Laboratory tests to measure the risk of slag formation include the ash fusibility based
on DIN standards [27], the measurement of the compressive strength of previously heated
pellet ash, or the manual disintegration of preheated ash [11,16]. The most widely used
laboratory test for evaluating ash sintering, the ash fusibility test, has been subject to
criticism in the literature (e.g., [28]), frequently predicting a less problematic behavior
of various biomass fuels in comparison to the actual slagging tendencies observed in
commercial pellet boiler equipment (e.g., [28]). Other methods have also shown limitations:
for example, Fernández et al. [11] concluded that the compressive strength was not suitable
for predicting ash sintering trends in wood fuels and other biomass with low alkali oxide
content, while the manual disintegration test relies on subjective evaluation. Some other
methods rely on expensive experimental equipment such as the slag analyzer developed
by Hansen and Jensen [29].

The recent BioSlag method [25], also named “Testing of Pellet Ash and Slag Sieving
Assessing” (PASSA) by Rathbauer et al. [30], is a new and highly recognized method [23,25],
developed by the European “AshMelt” research project [30,31] based on the study of Vega-
Nieva et al. [25]. The method uses commonly available laboratory equipment and has been
validated for the woody and herbaceous biomass fuels of northern [31,32] and southern
Europe [4,33]. However, its performance has not yet been evaluated for other fuel sources
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of potential economic relevance outside of Europe, the thermal behavior of which in terms
of slagging risk remains largely unknown.

In this sense, although the research carried out by Carrillo et al. [10,34] established the
possibility of using pellets from different biomass sources in Mexico considering only the
physical, mechanical and energy properties, its risk of slagging is still mainly unknown,
preventing large-scale use in domestic boilers. Therefore, the objectives of this work were
(1) to measure the formation of ash slagging, using the bioslag method, in the combustion
of 15 biomass sources from forestry, agricultural and agro-industrial origin which have
already been recommended for the production of energy in the form of pellets and (2) to
investigate the relationship of observed slag formation with their ash chemical composition
and ash slagging indexes at 550 ◦C as well as to determine the chemical composition of ash
and slag at 1000 ◦C.

2. Materials and Methods
2.1. Biofuel Raw Material Selection and Chemical Characterization

Pellet raw materials were selected from 15 biomass sources of forestry, agricultural,
and agro-industrial origin. Table 1 shows the codes for biomass, source, description, as well
as the values of their proximate analysis. The pellets selected to determine the level of ash
slag were those that in different investigations were recommended for energy generation
through physical, mechanical and energy tests [10,34]. They were prepared following
the procedure described by Núñez-Retana et al. [34]. The pellets from each source were
incinerated in muffle model 1400 FB1415M at 550 ◦C according to UNE-EN 14775 (2010) [35]
and at 1000 ◦C for the BioSlag test. The concentrations of Al, Ca, Fe, K, Mg, Mn, Na, P and
Si of pellet ash samples from each source obtained at 550 ◦C and 1000 ◦C were determined
through an inductively coupled optical plasma emission spectrophotometer (ICP-OES) [36].

Table 1. Description of 15 different pellet base materials and their proximate analysis.

Code Species Source
Biomass

Description

Proximate Analysis (%)

Moisture
Content

Volatile
Material Ash Fixed

Carbon

Pipa Pinus patula Forest Pine firewood 6.52 83.90 0.47 15.62
Pidu Pinus durangensis Forest Pine firewood 5.79 85.22 0.39 14.39

Quela Quercus laeta Forest Oak firewood 5.04 81.28 1.35 17.37
Quesi Quercus sideroxyla Forest Oak firewood 4.56 83.06 0.95 15.99
Queco Quercus conzattii Forest Oak firewood 4.77 83.71 0.80 15.49

Jun Juniperus sp. Forest Tascate firewood 4.96 78.01 0.45 21.54
Pro Prosopis sp. Forest Mezquite firewood 6.38 74.55 1.33 17.33

Madol Malus domestica Agriculture Apple tree
firewood 5.58 82.74 2.12 15.14

Manil Mangifera indica Agriculture Mango tree
firewood 5.97 80.09 2.63 17.27

Mador Malus domestica Agriculture Apple pruns 5.14 80.41 2.46 16.46
Penn Pennisetum sp. Agriculture Maralfalfa stubble 5.84 71.93 9.71 18.36
Agat Agave tequilana Agro-industrial Agave bagasse 6.60 79.58 10.55 9.87
Cari Carya illinoinensis Agro-industrial Walnut peel 5.71 76.01 2.47 21.52

Agad Agave durangensis Agro-industrial Agave bagasse 5.84 74.89 12.30 14.48
Manih Mangifera indica Agro-industrial Mango bone 6.44 79.02 3.67 17.31

2.2. Slag Prediction Indexes for Pellets from Different Sources at Two Combustion Temperatures

The formation of slag and fouling of the ashes generated at 550 and 1000 ◦C from the
15 pellet sources was determined through four indexes, as presented in Table 2.
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Table 2. Slag indexes based on ash chemical composition at 550 ◦C and 1000 ◦C.

Slag Indexes Description Source

NaK/B (Na2O + K2O)/(CaO + MgO + Na2O + K2O) [25]
B CaO + MgO + Fe2O3 + Na2O + K2O [24]

SiP/CaMg (SiO2 + P2O5)/(CaO + MgO) [25]
SiPNaK/CaMg (SiO2 + P2O5 + Na2O + K2O)/(CaO + MgO) [25]

The NaK/B index relates the content of alkali metals (NaO and KO), elements with
high possibilities of slag formation, with earthy alkali metals, elements with a high melting
point, which reduces the risk of slag formation. Values higher than 0.50 in this index for
a specific type of biomass have been found to result in a high risk of slag formation. On
the other hand, index B, called base index or percentage of bases, relates basic elements
with acidic elements present in the ashes, and biomasses with low values calculated
with this index show a high possibility of slag formation. Additionally, the SiP/CaMg
and SiPNaK/CaMg indexes are based on the empirical relationships of ash chemistry,
which usually relate the most important elements in the processes of slag formation,
agglomeration, and ash fusibility (Si, P, K, Na) with the elements that reduce this risk (Ca,
Mg). Biomasses with values higher than 0.5 have been found to present a higher risk of
slag formation.

2.3. Slag Formation Test

The BioSlag (Test BioSlag) is a qualitative and quantitative method based on the
granulometric determination of the ashes which has shown a good potential to reproduce
the slagging observed in combustion process [25,31]. It consisted of placing 250 g of pellets
from each of the 15 biomass sources in porcelain crucibles of 284 cm2 and 5 cm height,
with three repetitions. The crucible with the pellet sample was placed in a muffle and the
temperature was raised at a rate of 10 ◦C min−1 to reach a temperature of 250 ◦C, remained
constant for 5 h to remove the volatile fraction from the samples. Then the temperature was
raised again with the same heating ramp to reach 1000 ◦C; this final temperature remained
constant for 6 h, and at the end the muffle was turned off and after the muffle was cooled
down, the crucible was weighed with the burned sample, following the protocol proposed
by Vega-Nieva et al. and Schönet et al. [25,31]. Figure 1 shows the ash produced by each
biomass source.

The slag and residues were carefully removed from the crucibles for screening by an
analytical sieve at 300 rpm for 3 min. Wire meshes with nominal openings of 3.35, 2.00,
0.85, 0.42 and 0.25 mm were used. The weight retained in each sieve was measured and the
level of sintering of each sample was measured by manual disintegration, according to the
scale shown in Table 3.

2.3.1. Percentage of Calcined Sample of Ash

The percentage of calcined sample was determined from the ash produced from pellets
calcined at 1000 ◦C, according to the following equation:

Calcined sample (%) =
Mass of calcined sample (g)
Mass of pellets sample (g)

× 100 (1)

2.3.2. Slag Severity Index of Ash

This index is based on the results of the BioSlag test and uses the data of calcined
sample (%), level of sintering and granulometric accumulation in the sieves (%). The criteria
were scaled from 0 to 1, according to Table 4.
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Figure 1. Sintered ash and slag formation from 15 pellet sources subjected to calcination at 1000 ◦C
using the BioSlag test: horizontally (A–G) pellets from forest sources; (H–K) pellets from agricultural
sources; (L–O) pellets from agro-industrial sources; (P) sintering process at 1000 ◦C.

Table 3. Level of sintering of biofuels using the BioSlag Test.

Sintering Level Description

Dust Non-agglomerated ash
Weak sintering Agglomerated ash disintegrates under gentle pressure
Hard sintering Agglomerated ash disintegrates when applying strong pressure

Molten Ash is completely melted to the crucible

Table 4. Slag severity calculation based on the BioSlag Test.

Class Calculation

Calcinated percentage index The percentage values of the calcined samples are
divided by the maximum value of 10%.

Sintering level index The values are classified on dust 0.25, weak sintering 0.5,
hard sintering 0.75 and molten 1.

Accumulated slag index The percentage of accumulated slag on sieves of 3.35,
2 and 0.85 mm is divided by the value of 100.
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2.4. Statistical Analysis

The mean values and standard deviations were calculated for the chemical element
compositions of the pellet ash from each source, and the compliance with the normality of
the data was determined by means of a Shapiro test. The non-parametric Kruskal–Wallis
test was used to determine the differences between groups (p ≤ 0.05). Principal component
analysis (PCA) of elemental composition was also applied to reduce the number of primary
variables and replace them with components that explain the correlation between the
estimated variables and the common information they share, the PCA allows simplification
of the interpretation of the results with the maximum amount of information.

Pearson correlation tests were performed between cumulative percentages of slag at
different sieve sizes and silica-based indexes SiP/CaMg and SiPNaK/CaMg at temperatures
of 550 and 1000 ◦C.

3. Results
3.1. Chemical Elements Composition of the Pellet Ash from Different Sources

The chemical composition of pellet ash from 15 biomass sources generated at tempera-
tures of 550 and 1000 ◦C is shown in Figures 2 and 3, and Annexes S1 and S2, respectively.
The concentrations of CaO ranged from 8.93 to 65.95% at temperature of 550 ◦C, while
at 1000 ◦C it was 4.49–61.68%. The content of MgO varied from 3.89 to 13.66 and 1.99 to
17.61%, respectively. The concentrations of alkali metals was as follows: K2O, 2.18–56.10
and 1.04–27.36%, respectively, and Na2O, 0.81–2.46 and 1.69–4.12%, respectively. On the
other hand, the concentrations of SiO2 remained between 16.11–28.24 and 2.19–56.75%,
respectively. The transition metals were as follows: Fe2O3, 0.09–5.12 and 0.27–4.74%, respec-
tively, and MnO between 0.02–3.32 and 0.01–4.49%, respectively. Finally, the concentrations
of Al2O3 ranged between 0.03–3.69 and 0.26–10.75%, respectively. The concentration of
P2O5 was 0.55–3.71 and 1.50–19.94% at temperatures of 550 and 1000 ◦C, respectively.
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to calcination at 1000 ◦C.

Figures 4 and 5 show the relationships between the concentrations of elements and the
pellet sources evaluated by principal component analysis at 550 ◦C and 1000 ◦C, respectively.
The PCA at 550 ◦C shows a negative correlation in PC1 and PC2 between the elements
P2O5 and K2O for Penn, Manih and Queco pellets. It can be observed that concentrations
of MgO, MnO, SiO2, Fe2O3, and Al2O3 were positively correlated with PC1 and negatively
with PC2. In addition, the concentration of these elements presents similar trend for Pipa,
Pidu and Quesi pellets. The concentration of CaO and Na2O were positively correlated
with PC1 and PC2 for Agad, Agat and Cari pellets. Finally, it can be observed that Manil,
Madol, Mador and Pro pellets were negatively correlated with PC1 and positively with
PC2. It was observed that the concentrations of the elements P2O5 and K2O, MnO and SiO2
and CaO and Na2O have a high correlation value, while CaO and Fe2O3, SiO2 and P2O5
were not correlated.

The PCA at 1000 ◦C shows that concentrations of P2O5, Na2O, CaO and MgO had a
positive correlation with PC1 and negative correlation with PC2 and their concentration
affects Madol, Pro, Quela and Queco pellets. It was observed that Al2O3, F2O3 and MnO
had a positive correlation with PC1 and PC2 and mostly affected Pipa, Pidu, Quesi and Jun
pellets. The K2O and SiO2 elements were negatively correlated with PC1 and positively
with PC2 and were related to Penn, Agad and Cari pellets. Finally, Manih, Mador and Mani
pellets were negatively correlated with PC1 and PC2.

3.2. Slag Prediction Indexes of Ash from 15 Sources of Pelletized Biomass

Figure 6 and Annex S3 present the four indexes of the prediction slag formation of
ash from 15 sources of pelletized biomass calcined at 550 and 1000 ◦C. Except for the B
index at 1000 ◦C, all calculated indexes showed a non-normal distribution (p < 0.05). The
Kruskal–Wallis test and the Tukey test showed significant statistical differences (p ≤ 0.05)
between all biomass sources for all slag indexes.
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Most of the pellet ashes tested presented a low risk of slag formation at both tempera-
tures except for Penn and Manih ashes, which showed a high risk of slag formation when
using the NaK/B index (>0.5). Similar results for ashes of all origins were found using the
SiP/CaMg and SiPNaK/CaMg silica-based indexes. In this work it was found that the B
index could not clearly predict the process of slag formation in the evaluated pellets.

The BioSlag test corroborated the high risk of fusibility of Penn pellet ash since the
ash was completely melted into the crucible when it was calcined at 1000 ◦C. The Madol,
Manil, Mador and Manih pellets presented a high slag formation in the sieve of 2.0 mm.
On the other hand, Agad, Agat, Manih and Mador pellets showed high percentages of slag
in the sieve of 3.35 (Figure 7, Annex S4).

The silica-based indexes SiPNaK/CaMg and SiP/CaMg were positively correlated with
the results of the BioSlag test when using the sieve >2.00 mm (Figure 8). The highest correlation
was observed for the SiPNaK/CaMg index, with R2 = 0.75 (p-value = 2.2 × 10−16) at 550 ◦C
and R2 = 0.77 (p-value = 6.94 × 10−15) at 1000 ◦C, followed by SiP/CaMg, with R2 = 0.68
(p-value = 6.25 × 10−12) and R2 = 0.76 (p-value = 9.61 × 10−15) at 550 ◦C and 1000 ◦C,
respectively (Figure 8).
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Figure 8. Correlations of the accumulated percentage of slag >2.00 mm measured in the BioSlag test.
Graphs shown the equation and R2 values: (A) Percentage of slags and SiP/CaMg index at 550 ◦C;
(B,C) Percentage of slags and SiPNaK/CaMg index at 550 and 1000 ◦C, respectively.

Pellets from the different types of biomasses subjected to the BioSlag test showed
significant differences (p ≤ 0.05) according to the Kruskal–Wallis test. The pellets from
Penn showed great formation of slags since their ashes presented high fusibility problems
(Figure 9 in red color). On the other hand, the pellets from Jun, Pipa, Queco, Quela, Cari
and Pidu pellets were the ones that presented the fewest problems (Severity index < 0.2).
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Figure 9. Severity index calculated based on the BioSlag test. The lines above the bars show the
standard deviation, species with different letters are statistically different (p < 0.05). The bar in red
color corresponds to biomass pellets with high fusibility problems.

3.3. Percentage of Calcined Sample

The percentage of calcined samples of pellets from different sources presented sta-
tistically significant differences (p ≤ 0.05); the percentage of calcined samples of pellets
from forest origin Pipa, Pidu, Quela, Quesi, Queco, Jun and Pro varied between 0.36% and
1.54%; the percentage of calcined samples of pellets from agricultural origin Madol, Manil,
Mador and Penn ranged between 1.41 and 7.43%, and the highest percentage value was
presented by Penn (Pennisetum sp.). Finally, the percentage of pellets from agro-industrial
origin Agat, Cari, Agad and Manih ranged from 1.53 to 8.81% and was the origin with the
highest amount of slag (Figure 10).
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Figure 10. Percentage of calcined sample of the BioSlag test. The lines above the bars show the
standard deviation, the species with different letters are statistically different (p < 0.05). The bars in
red color correspond to biomass pellets with high fusibility problems.

4. Discussion
4.1. Chemical Elements Composition of Pellet Ashes from Different Sources

The concentration of the alkaline earth metals CaO and MgO in the ashes of the pellets
was slightly reduced when subjected to calcination processes at 550 and 1000 ◦C because
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they are refractory elements and remain solid at high combustion temperatures. La Puerta
et al. [37] found similar results in CaO (31.79%) and MgO (8.17%) concentrations on Pinus
pinaster pruning, while Moilanen [38] reported values for pine sawdust of CaO (41.8%)
and MgO (11.8%) and for pine bark of 40.6 and 4.5%, respectively. These last data are very
similar to those obtained for Pipa and Pidu pellets. Some authors registered concentrations
up to 36.5% for CaO and 9.22% for MgO from oak shavings [25]. Contents of CaO (45.56%)
and MgO (7.48%) have been found in forest residues, although values of 35.7 and 4.4%
have also been reported on the same material type [39]. Except for Penn and Manih pellets,
agricultural and agro-industrial pellets had CaO contents greater than 30%, and the MgO
contents were greater than 4%. This contrasts with some authors who report very low
values of CaO for herbaceous plants. For example, in bamboo plants, CaO values of 4.46%
were reported, and in banana grass (Pennnisetum sp.) the value was 4.09%. These values
are very similar to the Penn sample analyzed at 1000 ◦C (4.49%) as well as to Arundo grass,
with values of 2.98% and 5.41%. In addition, there are reports of 3.31% in reed canary
grass [38,40]. High CaO contents in biomass have been associated with bark residues.
High concentrations of CaO and MgO can counteract low melting points, caused most
often by the contents of K and Na, so it is recommended to add limestone, dolomite or
periclassic to fuels made from straw or herbaceous plants as a way to control slag formation,
agglomeration and SO2 emissions.

The K2O content in the pellet ash from all sources shows a considerable reduction
from 550 ◦C to 1000 ◦C, agreeing with previous observations for K volatilization. Different
behavior was shown by the Na2O concentrations. However, this element did not change
between both temperatures because alkali metals such as K2O are the least stable oxides
that make up the ashes, so at combustion temperatures above 550 ◦C they can be reduced in
the form of metal vapor or could even react with water vapor to form stable and relatively
volatile hydroxides (KOH and NaOH). On the other hand, it was observed that K loss
from 550 ◦C to 1000 ◦C, caused by volatilization, is greater in fuels with low silica contents,
supporting previous observations [41]. The K2O contents at 550 ◦C were higher in the
ashes of pellets from forest origin, as shown for Quela (21.29%), Pro (29.75%) and Queco
(29.95%). Regarding to the percentage of K2O in ashes produced at 1000 ◦C, the values
were relatively low for Quela (4.87%), Pipa (6.97%) and Quesi (7.46%). Similar values were
reported in wood samples with K2O contents of 16.78% and 0.77% for Na2O, while in the
pruning of pines, K2O concentration was 22.32%, with 0.42% for NaO2. For agricultural
samples, such as olive wood, the values were 24.7% and 3.4%, respectively, and for vine
shoots the values were 22.3 and 5.4% for K2O and Na2O, respectively [37,41]. As can be
seen, biomass of herbaceous origin was the most problematic when used in combustion due
to its high K2O content; concentrations of 49.08% have been found in banana grass, 53.38%
in bamboo and 56.69% in Cynara stems, and a very similar value was obtained for Penn
samples, which are ashes of Pennisetum sp. pellets [40]. Pellets with high concentrations of
K and with relatively high amounts of silica and low amounts of Ca and Mg can react with
the Si dispersed in the organic structure of the biofuel and form an alkaline-sticky silicate
melt that is the principle for the formation of slags [28].

The highest SiO2 content at 550 ◦C was in the pellet ashes from Pipa (28.24%), Penn
(27.32%) and Agad (23.68%), followed by Pidu and Quesi with 22.49 and 21.10% respectively,
while for ashes generated at 1000 ◦C, the highest concentrations were in Penn (56.75%),
Agad (38.34%), Quesi (30.65%), Cari (30.03%) and Manil (29.84%). Therefore, it is shown
that the content of SiO2 increases when increasing the combustion temperature, mainly
in samples of agricultural and agro-industrial origin. Similar results have been obtained
by burning Miscanthus giganteus grass (54.4%), wheat straw (64.3%) and spruce wood
(49.5%) at temperatures above 900 ◦C [42]. Viana et al. [43] found high concentrations
of this element in the woody biomass of shrubs Ulex europaeu (33.6%), Cytisus multiflorus
(16.6%) and Erica australis (17.0%). In general terms, wood free of contamination contains
very limited amounts of Si, so it does not represent high risk of the formation of sticky
silicates in heaters that work above 1000 ◦C; the opposite happens with contaminated
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wood since this favors the formation of sticky silicates and slag problems [44]. Pellets with
high concentrations of Si and alkali metals tend to form slags, such as pellets made from
herbaceous materials or straw [45].

Concentrations of metalloids such as Fe2O3 were relatively low at 550 ◦C; the highest
content was presented in the ashes from Pipa (4.17%), Jun (3.40%) and Pidu (3.30%), while
for MnO, the greatest values were in Pidu (3.33%), Quesi (1.76%) and Queco (1.53%). In
Fe2O3 at 1000 ◦C, concentration for Quesi was 4.75%, for Pidu was 4.17% and for Jun was
4.12%, and for MnO in Pidu pellets, it was 4.49%, for Queco it was 2.89% and for Cari it
was 1.77%. There are reports of Fe2O3 contents similar to those obtained in the present
work in pellets from walnut husk (2.4%), red oak wood (9.5%), wheat straw (3.5%) and
hazelnut husk (3.1%) [46]. The pollutants in residues and/or additives in biofuels increase
the agglomeration of metalloids in combustion equipment [47].

Finally, the highest concentrations of Al2O3 at 550 ◦C were registered in Pipa pellets
(3.69%), Agat (2.21%) and Pidu (2.13%). The content of P2O5 on Manil was 3.71%, for
Manih was 2.97% and for Quela was 2.14%. At 1000 ◦C, the content of Al2O3 was 10.75% in
Pipa, 6.60% in Pidu and 6.59% in Quesi. The P2O5 concentration for pellets from Quela was
19.94%, for Manih was 19.75% and for Manil was 18.78%. There are reports of The Al2O3
concentration for biomass for forest residues was 3.55%, for almond shell was 2.7%, for red
oak wood was 9.5%, for walnut husk was 2.4% and for wheat straw was 3.5%. The P2O5
contents were 0.44%, 4.5%, 1.8%, 6.2% and 3.5%, respectively [11,48]. During combustion
processes, Al forms alumina (Al2O3), which is a solid compound that does not participate
significantly in the chemistry of ash [49]. It has been found in wood pellets and chips
where high concentrations of P form low melting point phosphate salts, which cause the
formation of partially molten ash particles that aggravate agglomeration, slag formation
and fouling of boilers [50]. During combustion, K-rich phosphates have very low melting
points ranging from 650 to 700 ◦C [51], which is why phosphate-rich ash reacts by forming
layers of silicate/phosphate coatings that are responsible for the agglomeration process.
During this process, potassium reacts with the Si present in the organic structure and/or
mineral surfaces of the biofuel, the melt of sticky silicate is formed locally on these surfaces,
and other ash-forming elements such as calcium and magnesium, which are frequently
found in wood-derived fuels, could then dissolve in the melt [45]. However, the problems
related to P for ash continue to be a confusing process and further studies are required.

The relationship among chemical components in ashes was explained by PCA, which
allows the reduction of sets of variables, and in addition to that, it can explain up to 88%
of the elements variation and create groups in principal components CP to facilitate the
interpretation of the studied data [52]. The PCA grouped samples with similar ash element
concentrations at 550 ◦C. The elements CaO and Na2O were grouped with the pellets from
Agat, Car, Agad and Jun; K2O and P2O5 were grouped with the pellets from Penn, Manih
and Queco; and the concentrations of Al2O3, Fe2O3, SiO2, MnO and MgO were grouped
with the pellets from Quesi, Pidu and Pipa. The samples of Madol, Manil, Mador, Quela
and Pro were not associated with any element in the CP. At 1000 ◦C, the concentrations of
CaO, Na2O, P2O5 and MgO were grouped with the pellets from Madol, Queco, Quela and
Pro; Al2O3, Fe2O3 and MnO were grouped with the pellets from Pipa, Pidu, Quesi and Jun;
the elements SiO2 and K2O were grouped with the pellets from Cari, Agad and Penn; and
finally, the pellets from Manih, Mador and Manil were not associated with any element in
the CP. Therefore, if any of these groups were burned together, they would present similar
results.

4.2. Slag Prediction Indexes of Ash from 15 Sources of Pelletized Biomass

Melting at 1000 ◦C was observed for agricultural pellets (Penn), with the highest
values of K2O (56% at 550 ◦C) and NaK/B index (0.82), together with the highest values
of SiP/CaMg and SiPNaK/CaMg (2.28 and 6.77). This supports previous observations in
some herbaceous biofuels (rice straw, wheat straw, corn straw) that the behavior of ash
melting is influenced by the alkali/alkaline earth ratio and that the chemical composition
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of these pellets can reach very high values of K and very low values of Ca. [53] The level
of SiO2 in Penn samples was above the threshold of >25 % proposed for this element by
Toscano et al. [33], supporting that high silica contents in low P fuels can be an indicator
of slagging risk [40], particularly when accompanied by alkali metals. This also supports
observations using chemical equilibrium model calculations by Öhman et al. [45], who
suggested increased formation of “sticky” silicate melt (i.e., increased slagging tendency)
when higher SiO2 contents were added to the fuel ash composition at typical burner
operating conditions. The Mani sample, with the second highest K2O (42% at 550 ◦C)
and high NaK/B, also presented significant slagging problems, with 28.3% of slag > 3.15,
but lower than Penn, which might be explained by a relatively lower SiO2 content (18%).
Furthermore, samples with similar levels of Si to Penn, but with lower K levels, showed
a less problematic behavior, supporting the notion that the presence of both elements, Si
and K, might be required for significant ash melting and slagging to occur. This would
agree with the observations of Gilbe et al. [28], who found that, according to the calculated
chemical/physical slag formation processes, potassium containing biomass fuels relatively
rich in silicon (either dispersed in the organic structure or contaminated with sand) with
relatively low amounts of alkaline earth metals (Ca, Mg) retain a part of the potassium,
forming a sticky alkali-silicate melt which is a prerequisite for the slag formation process.

In this sense, the indexes based on SiP/CaMg and SiPNaK/CaMg best explained the
measured value of slags in the BioSlag test by sieve of 2.00 mm, with a value of R2 > 0.75
obtained for the prediction of pellet slags. These results support the good predictability (R2

> 0.7) of those indexes for slag formation [31].
In addition to capturing full ash melting, the BioSlag test also captured moderate

levels of slagging for a variety of pellets, supporting the previously observed sensitivity of
this test for capturing varying degrees of ash slagging [20,39] for a further variety of woody
and agricultural fuels. Future studies could analyze the use of biomass mixtures or include
additives to minimize the slagging tendency, validated both with both laboratory BioSlag
tests and combustion experiments in operational boilers.

4.3. Percentage of Calcined Sample of Pellets

The percentage of calcined samples of pellets from 15 biomass origins was highly vari-
able, with pellets from forest origin presenting lower values (0.35–1.54%). Correa-Méndez
et al. [54], when studying and evaluating the physicochemical characteristics of sawdust
and shavings of Pinus leiophylla, P. montezumae and P. pseudostrobus, also reported low ash
content values (0.26 ± 0.3% and 0.34 ± 0.30%, respectively), similar to those in pellets made
from wheat straw mixtures that have very high ash contents (11.43–13.06%) [55]. In the
present work, it was found that pellets from Agat, Penn and Agad had values of 6.64, 7.43
and 8.81%, respectively. Pellets from forest origin with low percentages of calcined samples
meet the standards for manufacturing pellets and briquettes because they have low ash
contents, and a strong relationship was found between ash content and slag formation.
Similarly, high contents of Ca and Mg increase the melting point of ash, and additionally
point out that a high ash content can affect combustion equipment and residential users by
increasing cleaning processes [54]. Some pellets have highly varied ash contents, as was
reported for poplar wood (2.2%) and grass (8.5%); the latter generates more ash due to its
high content of K2O [56].

5. Conclusions

The behavior of pellets made from biomass in different combustion processes is of
great importance and applicability, and the formation of slag is associated with the chemical
composition of the material and the temperature at which it is combusted.

Biomass recommended for producing pellets for their low risks of slag formation are
from forest origin, such as Pinus patula, P. durangensis, Quercus laeta, Q. sideroxyla, Q. conzattii,
Juniperus sp. and Prosopis sp., while pellets from agro-industrial sources (Pennisetum sp.,
Agave durangensis, Agave tequilana and Mangifera indica bone) showed a high risk of slag
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formation at 550 and 1000 ◦C. The chemical composition of biomass sources affects the
level of sintering and slag formation. Pellets from biomass origins with low or moderate
CaO values and very high amounts of K2O and P2O5 have high risks of sintering, while
combustion at low temperatures can greatly reduce the formation of slags. On the other
hand, the indexes NaK/B, SiP/CaMg, and SiPNaK/CaMg were effective for the prediction
of slag formation risks, as measured by the BioSlag test.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15145026/s1. Data used to elaborate some graphics were
added to Annexes S1–S4.
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