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Abstract: To improve the air quality in urban areas, diesel buses are getting replaced by battery
electric buses (BEBs). This conversion introduces several challenges, such as the proper control of the
charging process and a reduction in the operational costs, which can be addressed by introducing
smart charging concepts for BEB fleets. Therefore, this paper proposes a real-time scheduling and
optimization (RTSO) algorithm for the charging of multiple BEBs in a depot. The algorithm assigns a
variable charging current to the different time slots the charging process of each BEB is divided to
provide an optimal charging schedule that minimizes the charging cost, while satisfying the power
limitations of the distribution network and maintaining the operation schedule of the BEBs. A genetic
algorithm is used to solve the formulated cost function in real time. Several charging scenarios are
tested in simulation, which show that a reduction in the charging cost up to 10% can be obtained
under a dynamic electricity price scheme. Furthermore, the RTSO is implemented in a high-level
charging management system, a new feature required to enable smart charging in practice, to test the
developed algorithm with existing charging infrastructure. The experimental validation of the RTSO
algorithm has proven the proper operation of the entire system.

Keywords: electric buses; depot charging; charging scheduling; real-time optimization; cost analysis

1. Introduction

In Europe, almost a quarter of the greenhouse gas (GHG) emissions can be attributed
to road transport. Electrification of this sector plays an important role in reducing these
emissions and reaching the targets set by the European Commission, i.e., a reduction in
GHG emissions with 60% by 2050 [1]. As a result, public transport operators (PTOs) of
European cities are looking at battery electric buses (BEBs) to replace their current diesel
fleet [2]. This transition however presents several challenges which must be overcome, such
as the rescheduling of the vehicle operations due to the limited range of BEBs, reducing the
total cost of ownership (TCO) and improving the power quality [3].

Looking at operational feasibility, BEBs require charging at regular time intervals. The
most prominent charging concepts are depot charging, where BEBs are charged when they
are not in operation (e.g., overnight) and opportunity charging, where BEBs are charged in
several minutes at bus stops or at the end stations of their route. Depending on the existing
bus routes, PTOs must investigate which charging concept is most suited and reliable for
their specifications. Additionally, a vehicle scheduling problem emerges, where the aim is
to optimally allocate the BEBs on the routes to accomplish the timetable, while minimizing
the fleet size, the number of chargers and the total operational costs, and to accordingly size
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the battery capacity of the BEBs and the charging power rate of the charging infrastructure.
This problem was intensively studied in [4–7], but is not given further consideration in
this research. BEBs also have a higher total cost of ownership (TCO) than diesel buses.
Jefferies et al. [8] and Lajunen [9] both performed a TCO analysis. They show that the
TCO of BEBs is 15–30% higher than their diesel counterpart. The highest share is related
to the capital costs of the vehicle and the battery, but also the operational cost which is
composed of the maintenance, the electricity and the staff costs plays an important role.
Another challenge of introducing BEB fleets in cities is the impact charging has on the local
distribution network. Mohamed et al. [10] investigated the impact of the different charging
concepts on the grid and concluded that depot charging is the best configuration.

Depot charging currently stills happens in an uncoordinated way, where BEBs are
charged with the maximum allowed power from the moment they arrive back at the depot
until they are fully charged. However, it has the advantage that smart charging can be
introduced. BEBs are available in the depot for a long time and so the charging process can
be managed in a way that is beneficial for the PTO and the distribution network operator
(DSO). Furthermore, because of the increasing amount of renewable energy resources
(RERs) and their contribution in the electricity mix, the electricity price will become variable
in the near future, especially for industrial consumers such as PTOs [11]. This leaves room
to reduce the operational costs of BEBs. Moreover, RERs such as photovoltaic panels can
even be installed at the depot to use locally generated energy to charge BEBs.

Because of these advantages, scheduling of the charging process of BEBs at depots
recently gained interest. In [12], the authors used a mathematical model to determine
an optimal charging plan for a fleet of BEBs where the goal is to minimize the energy
cost of the charging station based on a 3-stage time-of-use (TOU) rate schedule. Their
results show that the controlled charging model can sharply reduce the charging station
energy cost. In [13], the authors also investigate optimal charging for BEBs to achieve
minimum operating cost for the bus company considering a TOU electricity price. They
use a wavelet neural network to predict the power consumption and observed a reduction
of approximately 10% in charging costs. Raab et al. [14] developed an enhanced charging
strategy, based a mixed-integer linear programming (MILP), to integrate a BEB fleet into
the energy management of a power plant portfolio. They adjusted the charging schedules
in day-ahead and intraday operations to efficiently supply the energy demand for the
fleet within a multi-period optimization process. The results show that the proposed
methodology is capable of fully integrating BEB fleets in the operation of the power plant
portfolio and providing economic benefits. In [15], the authors proposed a bi-level model
where the upper level is a vehicle scheduling problem to minimize the operating cost and
the carbon emissions, while the lower level is a charging scheduling, based on dynamic
programming, to minimize the charging cost. They managed to reduce the charging cost
by 8–13% compared to uncoordinated charging. The authors of [16] formulated a MILP
model to develop a limited BEB charge scheduling algorithm for a depot equipped with
photovoltaics (PV) and an energy storage system (ESS) to maximize the profit for the bus
depot operator and minimize the overloading on the grid feeder. They conclude that the
installation of PV and ESS together with their algorithm provides a complete charging
solution for BEBs that generates revenue for the operator. Jahic et al. [17] developed a
greedy and heuristic algorithm for the charging scheduling of large-scale bus depots in
the city of Hamburg with the goal to minimize the peak load. They were able to reduce
the peak demand and flatten the peak load at the bus depot within the range of 24–43%,
depending on the covered scenario. Houbbadi et al. [18] introduced an optimal scheduling
strategy using a non-linear programming technique to manage overnight charging of a
BEB fleet aiming to minimize the battery aging cost in order to extend its lifetime. They
concluded that with their strategy it is possible to use the battery packs for almost 20 years.

The aforementioned papers mainly use more conventional mathematical program-
ming methods to show the benefits of optimally scheduling the charging process of BEBs.
However, these methods can have long computation times which make them appropriate
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for day-ahead scheduling, but less suitable for solving real-time charging scheduling prob-
lems [19,20]. This is important to enable smart charging in real-world applications such
as bus depots and is currently missing in the scientific literature. Some authors already
addressed real-time scheduling, but they focused mainly on regular electric vehicles (EVs).
One of the difficulties with real-time scheduling of regular EVs is that there is a big uncer-
tainty about when they will arrive at a charging station, making it difficult to provide an
optimal planning in terms of cost and grid impact [21]. BEBs used in public transportation
drive following a detailed timetable which means it is approximately known when they
will return to the depot and as a consequence when they can be charged. This strongly
reduces the uncertainty factor and enables to propose a fully optimal charging scheduling
where even near-future charging actions can be considered to satisfy the constraints for both
bus and distribution network operator. Still, the research that was carried out for real-time
charging scheduling of EVs gives a good overview on which optimization techniques can
be used. In [22], the authors proposed an online optimal charging scheme for EVs that min-
imizes the total system energy cost and operates in a time-receding manner with the latest
system information. The charging problem is solved with a distributed model predictive
control and modified convex relaxation technique. Yao et al. [23] used a simple on–off strat-
egy for EV charging scheduling, leading to the formulation of a computationally expensive
binary optimization problem. To reduce the computational complexity, they developed
a modified convex relaxation method which can be used in real time. However, using
such convex relaxation techniques can lead to large errors which can result in non-optimal
solutions [24]. Other researchers used learning-based techniques to implement real-time
smart charging scheduling algorithms. Frendo et al. [25] proposed a data-driven approach
to integrate a machine learning regression model in a smart charging algorithm. Their
model was trained on a large historical dataset of charging processes to predict the power
drawn by an EV over the course of the charging process. However, such a large real-world
dataset is often not available and cannot be easily obtained. Therefore, in [26], the authors
developed a deep reinforcement learning (RL)-based approach to determine an optimal
strategy for a real-time charging scheduling problem which does not require any system
model information. Wang et al. [27] also proposed a model-free RL method for charging
station pricing and scheduling strategies that deal with time-varying continuous state and
action spaces. In [28], the authors developed an online actor–critic-based smart charging al-
gorithm to schedule EV charging and customized it to improve the computational efficiency
at the cost of a less optimal charging schedule. Still, with RL-based techniques it is not easy
to achieve a robust algorithm that can operate properly under a high versatility of charging
conditions. Another type of optimization technique which has also been used for real-time
smart charging scheduling are metaheuristics. In [29], the authors developed an improved
grey wolf optimizer to solve a charging scheduling problem of EVs with short-term PV
power production in real time and to reduce the electricity costs. Su et al. [30] proposed a
rolling horizon scheduling approach based on a genetic algorithm (GA) which deals with
the online optimal scheduling problem of aggregated EVs in the energy exchange market.
Metaheuristics are able to find (near)-global solutions within a reasonable amount of time
without the need of training data and can easily adapt to different conditions because they
can explore a large search space at once [31–33].

Finally, the integration of the developed real-time algorithms with real-world charging
infrastructure and their experimental validation is still lacking. This has only been covered
in [34] for AC (slow) chargers but can only be used for regular EVs. For DC off-board
chargers dedicated for BEBs, this has not been investigated yet.

Therefore, this paper proposes a real-time scheduling and optimization (RTSO) algo-
rithm for BEB charging in a depot, aiming to minimize the charging cost for PTOs, while
satisfying the power limitations of the distribution network and the energy requirements
and timetable of each BEB. GA, a metaheuristic optimization technique, is used to solve
the predetermined scheduling problem. This paper also considers charging with a variable
charging rate, which is often neglected in the scientific literature. Finally, this paper also
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addresses the integration and validation of the developed RTSO algorithm, implemented in
a high-level charging management system (HL-CMS), with existing charging infrastructure.

The remaining of the paper is organized as follows. Section 2 gives information about
the high-level charging management system, an additional feature required for smart
charging of BEBs. Section 3 describes the methodology of the RTSO algorithm, including
the objective function and the constraints. In Section 4, the simulation and experimental
results are shown and discussed. Finally, the main conclusions of the proposed algorithm
are drawn in Section 5.

2. High-Level Charging Management System

A basic depot for BEBs typically consists of off-board chargers directly connected
to the grid, where the built-in power electronic converter (PEC) converts the AC power
from the grid side to DC power in order to charge the battery of the BEB, regardless of
the charging interface (either pantograph or plug-in), as shown in Figure 1. A low-level
controller operates the switches of the PEC to adjust the voltage and current level to what
the BEB can accept. Still, the available charging points can only charge the BEBs in a
conventional uncoordinated way.
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To introduce smart charging concepts in the charging process an additional feature
is required. This feature is a HL-CMS, which can be included in an internet-of-things
(IoT) cloud-based monitoring platform and will be a crucial part of the next generation
of charging infrastructures. It adds an additional control layer on top of the existing
configuration. In the HL-CMS, smart charging algorithms, such as the developed RTSO
algorithm in this paper, can be implemented to schedule an optimal charging plan for single
or multiple charging points in terms of cost, peak load, battery ageing, etc. Therefore, the
HL-CMS will need to gather information from the DSO about the real-time grid limitations
and tariffs, and from the PTO about the BEB charging status and requirements. When the
embedded smart algorithm has generated the charging schedules, it can be communicated
with each charging point through the Open Charge Point Protocol (OCPP), a standard open
protocol for communication between charging points and a central system. An overview of
the complete BEB depot charging architecture, including the HL-CMS and the information
flow between the different systems, is shown in Figure 1.
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3. Methodology
3.1. Problem Formulation and Assumptions

One of the most important challenges for PTOs is to reduce the operation costs of its
BEB fleet. This can be achieved by optimizing a depot charging scheduling problem in
terms of the charging costs. The difficulty in solving such an optimization problem is that
the charging process also involves other factors that need to be satisfied. BEBs operate
following a detailed timetable, so their departure time from the depot should be maintained.
Furthermore, the local distribution network cannot be overloaded as this could lead to high
additional charges for the PTO. As charging an entire BEB fleet requires a power level in
the range of MW, this implies that the BEBs cannot all charge at the same time and that the
charging needs to be scheduled over a longer period. Finally, it is also important that the
charging scheduling occurs in real time as BEBs can return to the depot later than expected
or with less energy in their battery because of traffic and weather conditions.

This research starts from the assumption that the PTO operator already has a BEB
fleet up and running, meaning that the entire planning on how to operate a BEB fleet
has been carried out considering the energy consumption, that the BEB type (standard
12 m or articulated 18 m buses), the charging technology (conductive or wireless), the
charging interface (pantograph, plug-in or ground-based), etc., are already fixed, that a
detailed operation schedule of the BEBs exists, that the depot is already equipped with the
necessary charging infrastructure and that the BEBs are properly positioned in the depot
and connected to a charging system with enough charging power to cover the charging
requirements. In fact, the proposed RTSO algorithm can be used for every BEB type that
needs to be charged in the depot, regardless of the charging technology, the charging
interface or the charging power. Information about the routes the BEBs covered before
coming to the depot is neglected as this is insignificant information for charging scheduling
algorithms. However, it is assumed that the BEBs are connected to the monitoring platform
of the PTO to track valuable data of the BEBs in operation. This allows the PTO to accurately
know the state of charge (SoC) of a BEB when it returns to the depot. The SoC is an
important battery parameter as it indicates by how much a BEB should get charged to fulfil
its next trip and is closely linked to the covered routes and the energy consumption of
the BEB.

Furthermore, accurate real-time electricity pricing and short-term load forecasting,
which are both essential in the deployment of urban smart grids, are considered. Real-
time electricity pricing charges consumers with a price that varies with time based on the
electricity generation in a particular time interval. With the increasing penetration of RERs
into the distribution system, it is expected that such a pricing scheme will be implemented
very soon. Short-term load forecasting is used to predict the energy requirements on an
hourly basis based on forecasted data, weather conditions and, closely linked with that,
availability of the RERs [35]. Load forecasting is especially important when the charging
infrastructure is added to already existing networks, which are not designed to deal with
the additional load that comes with BEB charging and which is often the case in cities.

3.2. Real-Time Scheduling and Optimization Algorithm

The proposed RTSO algorithm divides the charging time of each BEB into several
smaller time slots and assigns a specific variable current level to each of these time slots,
aiming to minimize the charging costs without violating the operation schedule or over-
loading the distribution network. The core of the RTSO algorithm is a GA, which is a
metaheuristic optimization technique that belongs to the class of evolutionary or nature-
inspired algorithms. It searches for an optimal solution based on reproduction and natural
selection, in line with Darwin’s theory of evolution. It is adopted in this research because
it has the ability to find (near) global optimal solutions. Since GA is population-based, it
can explore and exploit the search space more effectively, escape local minima to find the
best solution in a reasonable computation time and easily adapt to changing conditions.
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Furthermore, constraints can be handled in an easy and straightforward manner by using
penalty functions [31].

Figure 2 shows the flowchart of how the RTSO algorithm works. When a BEB returns
to the depot, the necessary information from the different stakeholders needs to be acquired
to enable the RTSO to compute a charging current level profile. From the DSO, an accurate
forecast of the grid limitation and the electricity price is required. This information is
usually sent to the PTO on regularly basis (e.g., every 4 h). From the BEB itself, the SoC and
the voltage of the battery pack should be acquired. Based on the remaining SoC, the type of
BEB that returned to the depot and the operation schedule it has for the next hours or day,
the PTO can provide the exact driving range and departure time of the BEB to the HL-CMS
at the start of the charging process. Furthermore, based on the timetable, the PTO can also
provide an estimation of the arrival time, the required driving range and the voltage level of
BEBs that will return to the depot in the near future, together with their departure time, and
include them already in the optimization process to avoid possible conflicts later on. With
all these data, the RTSO computes a charging current profile in function of time for each
BEB that needs charging. Then, the current level values are communicated with the specific
charging point and the charging process is started or resumed. The charging information
for each bus, i.e., how far the charging process has progressed, is remembered by the
HL-CMS to use the updated charging requirements when a next BEB returns to the depot.
This way, the scheduling of the BEBs happens in real time and makes the RTSO algorithm
robust to BEBs that arrive later than expected due to unforeseen traffic conditions.
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3.3. Objective Function

The GA will minimize a cost function that computes the total charging cost for all BEBs
together as described in Equation (1). The decision variables in the GA are the current levels
that the charger should send to the BEB during the different time slots the charging process
is divided in. These time slots coincide with the electricity tariff and grid limitation forecast
intervals, except for the first and the last time slot in case the arrival or the departure time
lies within such an interval.

Ccharging,tot = ∑
i

∑
n

Ichargingi,n
VBEBi ∆tn Celectricityn

(1)
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where Ccharging,tot is the total charging cost of the i BEBs that needs to be charged [EUR],
IchargingI,n

is the current level with which BEB i is charged during the time slot n [A], VBEBi

is the voltage of BEB i [V], ∆tn is the length of the time slot n [h] and Celectricityn
is the price

of the electricity during the time slot n [EUR/Wh].
Each decision variable is subject to some hard constraints, which means that they

cannot be violated at any time because this will create negative effects for the stakeholders.
When they are violated, a high penalty cost is applied to the cost function to exclude the
solution from the optimization process. The hard constraints compel that the current level
at time slot n cannot exceed the maximum current limit of the charging point, as expressed
in Equation (2), that the sum of the current levels for BEBs i at time slot n cannot exceed
the limit of the grid at that time slot, as expressed in Equation (3) and that the demanded
energy by the PTO for BEB i needs to be satisfied, as expressed in Equation (4).

0 ≤ Ichargingi,n
≤ Icharging pointmax

(2)

0 ≤ ∑
i

Ichargingi,n
≤ Igrid limitationn

(3)

(
∑
n

Ichargingi,n
∆tn

)
VBEBi ≥ Edemandi (4)

where Edemandi can be easily calculated by multiplying the required range with the average
consumption of the BEB [kWh/km].

Furthermore, there is also a soft constraint applied to each decision variable, which
can be violated if needed. When this happens, a smaller penalty cost, depending on how
much the constraint is violated, is applied. This soft constraint declares that the GA should
try to keep the current level above 60% of the maximum current of the charging point, as
expressed in Equation (5). It is applied to enhance the efficiency of the charging process
and the operation of the PEC because below approximately 60%, the efficiency of a PEC
drops drastically, resulting in huge power losses.

Ichargingi,n
≥ 0.6 Icharging pointmax

(5)

An additional constraint which says that the current cannot return to zero before the
charging requirements are met is also applied. This is to prevent the charging process from
getting interrupted without the BEB being completely charged.

3.4. Initial Population

A clever initialization of the GA population will decrease the chance that the algorithm
does not find an optimal solution because the search space is reduced. However, it is still
important to give the algorithm enough freedom to explore the search space. Accordingly,
the initial population should contain many different individuals. Sets of decision variables,
representing the different current levels Ichargingi,n

with which a BEB will get charged, make
up each individual. As a result, the total number of decision variables is the sum of the
decision variables in each set, which equals the number of time slots that are assigned
to the charging process of a specific BEB that requires charging. Since for this charging
scheduling problem the required range, and thus the energy demand, for each BEB is
known in advance, as it is an input to the RTSO algorithm, an initial population can be built
where all sets and individuals already comply with the constraint given by Equation (4).
Therefore, a function was developed that assigns a random value to each decision variable
of each set, such that the sum of these random values equals the required energy demand
of a specific BEB. For some sets, the decision variables are then ordered in descending order,
ascending order or a combination of both, to imitate the behavior of the electricity tariff
and grid limitation profile for small portions of the day. Finally, each individual is built up
from a combination of these ordered and random sets, to constitute the initial population.
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Such an initial population allows the GA to quickly find some initial good solutions, while
the randomness of the values ensures optimality at the end of the optimization process.

3.5. Parameters

The performance of the GA also greatly depends on several parameters. The popula-
tion size, which specifies how many individuals there are in the population, cannot be too
small because in this case only a small area of the search space will be explored. On the
other hand, if the population is too big, the time to find the global solution will increase
and the RTSO algorithm slows down. As presented in Table 1, the population size depends
on the number of decision variables. If the number of decision variables increases because
more BEBs return to the depot to get charged, or some BEBs require a longer charging time
than others, the population size will also increase. This is needed to give the GA a larger
search space and to find an optimal solution for every BEB that needs charging.

Table 1. Overview of the important parameters of the GA and their values.

Parameter Value

Population size 100 × number of decisions variables
Elite count 0.05 × population size

Crossover ratio 0.8
Mutation rate 0.02

Stopping criteria 50
(Number of iterations without improvement in the cost function)

Other important parameters are the elite count, the crossover ratio and the mutation
rate. These parameters affect how the next generation of the population is created. The elite
count specifies the number of the best individuals that will survive the next generation. The
crossover ratio determines how many individuals of the next generation, other than the
elites, are produced by crossover, where the genes of two parent individuals are combined,
and which are produced by mutation, where random changes to the individuals are applied.
In general, crossover will be applied to the largest part of the population to exploit the good
genes of the parent individuals, while mutation is used to prevent the GA from getting
trapped in a local optimum. The mutation rate specifies how many of the decision variables
of an individual are tweaked.

Finally, some stopping criteria can also be applied to end the GA when the maximum
number of generations has been reached, or when there has been no significant improve-
ment in the cost function for a number of iterations. Table 1 provides an overview of
the values of these parameters used in this research. They have been determined by trial
and error, as they are problem-specific, to ensure an acceptable solution and a reasonable
computation time. A flowchart illustrating how the GA works is shown in Figure 3.
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4. Results and Discussions
4.1. Simulation Results

To show the benefits of the RTSO algorithm, a case study where three BEBs are charged
at the depot is examined. It is considered that the power supply of the charging equipment
is shared with other loads in the depot or even a light-rail network, which means that it
will not always be feasible to draw the maximum possible power from the distribution
grid. The fluctuations in the available power for charging are based on the typical daily
load profiles in Belgium. For the electricity prices, hourly data from the Belpex spot market
are used, at which a fixed cost of 0.15 EUR/kWh, representing network cost and charges,
has been added.

For the simulation, BEBs operating in Brussels Capital Region are considered. It
concerns standard buses of the brand Bluebus with a length of 12 m. The average energy
consumption of the BEBs is assumed to be 1.4 kWh/km [17]. They have a battery capacity
of 272 kWh with a nominal voltage of 600 V [36]. Furthermore, it is assumed that the BEBs
reach the depot with a SoC of 10%. The maximum power of the depot chargers is fixed at
100 kW which results in a maximum current of 118 A (considering a maximum operating
voltage of 850 V, which is common for this type of off-board charger).

4.1.1. Overnight Charging at Depot

Overnight charging is crucial for BEBs because at the end of the day they will all return
with an almost fully discharged battery. It has the advantage that during the nighttime,
electricity prices and load demand are lower. Table 2 shows the charging specifications of
three BEBs. It is assumed that two BEBs arrive back at the depot after the rush hours of the
evening, while one remains in operation until midnight. Furthermore, it is assumed that all
of them need to be charged with 252 kWh (which equals to 180 km of autonomy) to be able
to operate the next day.
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Table 2. Charging specifications of the BEBs overnight.

BEB Arrival Time (h) Departure Time (h) Range (km)

BEB 1 21:00 05:00 180
BEB 2 19:30 04:00 180
BEB 3 00:15 06:30 180

Figure 4 shows how the BEBs are charged overnight: (a) depicts the hourly changing
electricity price, where it can be observed that the price drops throughout the night; (b) and
(c) and (d) show the charging current of each BEB, respectively; and (e) represents the
total charging current drawn from the distribution grid and the grid limitation. It can
clearly be seen that by using the RTSO algorithm, the charging happens mostly during
the time intervals with a low electricity price. This is to be expected since the objective of
the algorithm is to minimize the charging cost for the PTO. In fact, in this scenario, the
RTSO algorithm applies delayed charging, because the grid allows the maximum charging
current to be drawn from it.
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It can be noticed that for BEB2 (Figure 4c), there is a small peak at the start of the
charging process. The RTSO algorithm initially set a higher current, but at the arrival of
BEB3 at the depot, a new schedule is computed where the current is lower. This is due to
the GA, which is stochastic and therefore only provides a near-optimal solution which can
change every time the RTSO algorithm is run.

It is interesting to study how high the cost savings are by using the proposed RTSO
algorithm compared with uncoordinated or uncontrolled charging for the same scenario.
Because of the stochastic nature of the GA, every simulation will result in a slightly different
cost. Therefore, 25 recurrences of the considered scenario were executed and averaged.
The results are shown in Figure 5. First, it can clearly be observed that the charging cost
is significantly lower when the BEBs are charged with the RTSO algorithm than in an
uncoordinated way. With the RTSO algorithm, the average cost for each bus is EUR 42.29,
EUR 43.53 and EUR 41.80, respectively (instead of EUR 46.66, EUR 47.59 and EUR 43.54).
This means that for BEB 1 and 2, the cost reduction goes towards almost 10%. For BEB 3,
which arrives back at the depot the latest, the reduction is still 4%. This clearly shows the



Energies 2022, 15, 5023 11 of 18

benefits of charging with a smart RTSO algorithm for the entire BEB fleet. Secondly, it can
be seen that the average cost for each BEB, which value is represented by the orange bar,
lies close to the lower end of the black error bar. This illustrates that most of the solutions
proposed by the RTSO algorithm are close to the optimal one. However, it should be noticed
that the values of the cost reduction can differ depending on the charging specifications,
as already shown in Figure 5 where the cost reduction ranges from 4% to 9.4%. Another
parameter that can influence the reduction in the costs is the dynamic electricity pricing
scheme itself. In a scenario where there is a larger difference between the highest and the
lowest hourly electricity price, it is probably possible to achieve a higher cost reduction.
This can be realized when a higher share of RERs enters the distribution network.
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4.1.2. Charging at the Depot during the Day

Although BEBs are mainly charged overnight, it can happen that some of them also
need to return to the depot during the day to get charged. This will be the case for buses
that are used during the rush hours in the morning and need to be ready for the rush hours
of the evening. Of course, this also depends on the on-board battery capacity of the bus, the
length of the trajectory and the bus frequency. In the studied scenario, three buses are again
considered for charging. The charging time is limited since the buses follow a schedule
and are therefore only charged with 140 kWh (100 km autonomy). Their specifications are
summarized in Table 3. Furthermore, it is assumed that there is a limitation of the current
that can be drawn from the distribution grid because the total available power at the grid
node is also shared with other loads in the depot.

Table 3. Charging specifications of the BEBs during the day.

BEB Arrival Time (h) Departure Time (h) Range (km)

BEB 1 12:15 15:30 100
BEB 2 11:30 14:40 100
BEB 3 13:00 16:45 100

In Figure 6, the results for charging BEBs during the day are shown. (e) now also
depicts the current profile of uncoordinated charging to illustrate the difference between
charging with and without the RTSO algorithm. It can be clearly noticed that uncoordinated
charging violates the grid limitation while this is not the case for the proposed algorithm,
since it allows one to control the DC current of the off-board charger (as illustrated in (b),
(c) and (d)). Moreover, the fact that future charging actions are included satisfies both the
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grid limitations and the PTO requirements. Without, the current profile of BEB2 would
show a peak around 14:00, when the electricity price is low, but it would be impossible to
charge all three buses together without violating the limitation of the distribution grid. This
shows the added value of the RTSO algorithm for both the PTO and the DSO. Compared
with uncoordinated charging, there is no cost reduction in this scenario due to the heavy
grid limitation that is imposed. Nevertheless, by satisfying the limitation, PTOs will not be
charged an additional fee and may thus save money in this way.
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4.2. Experimental Results

To verify how the RTSO algorithm behaves in a real-world charging scenario, experi-
mental tests are performed on an existing charger. For practical reasons, they are executed
with only one conventional EV (passenger car), instead of three BEBs as used in the sim-
ulations. However, the obtained experimental results remain relevant for charging BEBs
in a depot because of the following reasons. First of all, it should be emphasized that a
conventional EV generally has a lower battery capacity (<100 kWh) and voltage (<500 V)
compared with a BEB and requires a lower charging power (<100 kW). This has an impact
on the charging current and the charging time, but because battery degradation is not
(yet) included in the RTSO algorithm, these different parameters do not change anything
regarding its main functioning. The RTSO algorithm is still able to find an optimal charging
schedule with these input parameters. Secondly, the main contribution of the experimental
testing is to establish the communication between the HL-CMS and the charging infras-
tructure via OCPP to actually send the optimal charging profile, computed by the RTSO
algorithm to the EV, and not to exactly reproduce the simulation results. Finally, and most
importantly, an off-board charger, which directly provides DC current to the battery of the
EV, is used for the experimental testing. This is the dedicated charging technology for BEBs,
since they are not equipped with an on-board AC charger such as conventional EVs [37].
The off-board charger has a CCS Combo 2 connector which needs to be plugged in into the
EV and which is also the standard charging connector for BEBs in depots. Furthermore,
for both conventional EVs and BEBs the communication with the off-board charger is
established using ISO 15118. Therefore, the term EV hereafter also refers to BEBs.

To be compatible with the HL-CMS, the developed RTSO algorithm is first translated
from MATLAB to a Python-based framework running on a Linux operating system. The
HL-CMS uses OCPP 1.6J to communicate with the charger. OCPP 1.6J allows the HL-CMS
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to initiate the control of the charger with a charging schedule using JSON over web sockets.
The charging schedule is basically a list of time slots with their maximum charge power or
current, and some values to specify the time period and recurrence of the schedule. There
are three different types of charging profiles that can be sent using OCPP:

1. ChargePointMaxProfile, where the charger has one or more local charging profiles
that limit the current to be shared by all connectors.

2. TxDefaultProfile, where the default schedules for new transactions are used as the
charging profiles.

3. TxProfile, where the schedule constraints that apply to a transaction are determined
by merging the ChargePointMaxProfile with the TxProfile or the TxDefaultProfile.

The HL-CMS uses TxProfile to send the charging schedule to the charger. The sequen-
tial information flow between the EV, the charging station and the HL-CMS is shown in
Figure 7. When an EV (or BEB) has been connected to and authorized by the charger, the
power is switched on and the charging of the EV starts. The communication between the
EV and the charger happens via the standardized protocol ISO 15118. Next, the HL-CMS
receives a start of transaction request and runs the embedded RTSO algorithm which
computes the optimal charging profile. This profile is then sent back to the charger which
accepts it and provides the charging current to the EV. Every time slot, this current gets
updated. During charging, the optimal schedule can be updated when new information of
the DSO becomes available. When the EV is fully charged, a disconnection request is sent
to the charger which ends the charging, switches off the power and sends a request to stop
the transaction to the HL-CMS.
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The experimental test setup is depicted in Figure 8. The EV is not directly connected
to the off-board charger with the CCS Combo 2 connector, but with a measurement unit
in between. This device can measure the DC voltage of the EV’s battery, the DC charging
current that is applied and also read the communication messages that are sent between
the EV and the charger. This identifies the causes of charging failures. To enable smart
charging via OCPP, an ethernet connection is established between the charger and the
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HL-CMS with the embedded RTSO algorithm. The details of the downscaled experimental
setup are provided in Table 4.
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Table 4. Details of the experimental test setup.

Element Details

DC charger Nexxtender Direct 45 kW
Measurement unit comemso charging analyzer /

EV BMW i3 42 kWh

Two identical tests are performed. As an input for the RTSO algorithm, a range of
180km and a charging time of 2 h are selected. A similar dynamic electricity tariff profile as
for the overnight simulation scenario is used. To have enough decision variables during
the optimization process, it is assumed that the tariff changes every 15 min instead of every
hour as used in the simulations. The charger has a maximum current of 90 A. The results of
the experimental tests are shown in Figure 9 in blue and orange, respectively.

The charging process is first started in an uncontrolled way, where the maximum
current of 90 A is provided to the EV. After 150 s, smart charging with the HL-CMS begins.
For a better perceptibility, the charging current is updated every minute instead of every
15 min. It can be noticed that the profiles sent by the HL-CMS have a similar behavior as in
the simulation scenarios since both are proposed by the RTSO algorithm. This confirms the
proper implementation of the RTSO and of the communication between the HL-CMS and
the charger.

The charging status, which gives information about when the EV is ready to accept
current, is also shown in Figure 9 in yellow. It can be observed that it takes approximately
30 s between the start of the communication between the EV and the charger, i.e., the Signal
Level Attenuation Characterization (SLAC) phase, and the actual current demand from the
charger by the EV. This is important information as it indicates the time the HL-CMS has to
run the RTSO algorithm and schedule the charging session. In this particular test scenario
with one EV, the RTSO algorithm (in Python, but with the same settings as provided in
Table 1) managed to provide a solution within 10 s. This shows that the algorithm can also
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schedule the charging session of multiple vehicles within the connection time of an EV
with the charging infrastructure.
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5. Conclusions

The transition from diesel to battery electric buses brings several challenges with it.
One of them is to efficiently charge the buses without affecting their operational schedule,
violating grid limitations and avoiding load peaks at a minimal charging cost. To deal with
this challenge, smart charging algorithms need to be applied to the charging process of
BEBs in a depot. This requires the introduction of a HL-CMS, which adds an additional
control layer to the charging infrastructure where algorithms can be implemented to control
the charging rate in real time. This real-time implementation with variable charging rate for
BEBs is currently lacking in scientific literature. Therefore, in this paper, an RTSO algorithm,
based on a GA, is developed. It not only aims to minimize the charging cost for the PTO,
but it also considers the constraints of the grid operator, the operation schedule of the BEBs
and the efficiency of the charging process.

Several simulation scenarios were tested to validate the developed RTSO algorithm.
For the considered scenarios, the RTSO algorithm managed to reduce the charging cost
up to 9.4% compared with uncoordinated charging and satisfy the grid limitations where
uncoordinated charging could not. Furthermore, the developed RTSO algorithm was
implemented in a HL-CMS and real-time communication with existing off-board charging
infrastructure was established. The experimental validation demonstrated the correct
operation of the RTSO algorithm for a real-world use case, where it was observed that
the execution time of the developed algorithm was lower than the time for the charging
infrastructure and the EV to exchange the communication messages at the start of the
charging process.

Still, further improvements to the RTSO algorithm are possible and will be considered
in the future. First of all, bus-to-grid (B2G) functionalities can be included, which implies
that the charging current can also become negative and that the BEBs are discharged to
support the grid. This is especially useful in depots where a lot of power is potentially
available for grid services [38]. Secondly, the cost function can be upgraded with battery
and charger parameters to extend their lifetime. Finally, upscaling and implementing
the RTSO algorithm for an entire fleet of BEBs should also be considered. In such a case,
the GA that is now used as the core of the RTSO algorithm will probably not be able
to find a satisfactory solution within the connection time, even when using parallelized
computing. Learning-based algorithms will in this case need to replace the GA. However,
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the GA can be used to create a complete database, which can then be used to train the
learning-based algorithms.
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Abbreviations

BEB battery electric bus
B2G bus to grid
DSO distribution system operator
ESS energy storage system
EV electric vehicle
GA genetic algorithm
GHG greenhouse gas
HL-CMS high-level charging management system
IoT internet of things
MILP mixed-integer linear programming
OCPP open charge point protocol
PEC power electronic converter
PTO public transport operator
PV photovoltaic
RER renewable energy resource
RL reinforcement learning
RTSO real-time scheduling and optimization
SLAC signal level attenuation characterization
SoC state of charge
TCO total cost of ownership
TOU time of use
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