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Abstract: In this paper, for the data set of the Iberian Electricity Market for the period 1 January
2015 to 30 June 2019, 19 different models are considered from econometrics, statistics, and artificial
intelligence to explain how electricity markets work. This survey allows us to obtain a more complete,
critical view of the most cited models. The machine learning models appear to be very good at
selecting the best explanatory variables for the price. They provide an interesting insight into how
much the price depends on each variable under a nonlinear perspective. Notwithstanding, it might
be necessary to make the results understandable. Both the autoregressive models and the linear
regression models can provide clear explanations for each explanatory variable, with special attention
given to GARCHX and LASSO regression, which provide a cleaner linear result by removing variables
that have a minimal linear impact.

Keywords: electricity market; machine learning; autoregressive; linear regression; GARCHX; LASSO

1. Introduction

Since the EU Directives and, most particularly, over the last ten years, EU electricity
markets have started shifting towards deregulation and increased competition. This had
led to much uncertainty in all market agents but also to increased sophistication in the
strategic behaviour of various utilities: improving efficiency either by self-improvement,
often through outsourcing, or shutting down businesses with low returns while creating
new and innovative businesses.

Therefore, market modelling accuracy becomes crucial, namely concerning price
volatility and agents’ behaviour, allowing for a timely adjustment of investment strategies
and prevention/mitigation of market risks.

On the older deregulated electricity markets, the offer and supply have already sta-
bilised. This means that even though there are still some changes in these markets, they
no longer cause any drastic and disconnected ruptures but mainly cause small continuous
shifts in the regular operation, depending on the gradual evolution of each market factor.

There are many contributions in the literature concerning electricity market operation
and price determination, spanning through different methodologies and different datasets.
It is very important to understand the current electricity market trends and to prepare
for the new challenges arriving, which will potentially change the market drastically.
However, it becomes difficult to forecast the impact of these new changes if, for each
market, it is not possible to identify the methodology that should be used. Therefore, this
paper is to consolidate these studies under a single data set to analyse the results and make
transparent the advantages and disadvantages of each methodology.

In this paper, for the same data set, 19 different models are considered from economet-
rics, statistics, and artificial intelligence. These models were chosen for being the most cited
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in the literature both from economic journals and engineering journals. The data set consid-
ered here corresponds to the Iberian Peninsula electricity market (MIBEL) from 1 January
2015 to 30 June 2019. With this setup, it is inferred which model better explains market
behaviour, evaluating the model on the results readability and reliability, computation
power requirements, usage difficulties and shortcomings.

2. Materials and Methods

This literature survey encompasses several types of models, which will be segmented
by the methodology and main goals. By methodological approach considered here in-
cludes theoretical economics models, linear regression models, autoregressive models,
regime-switching models, linear regression models with regularisation and machine learn-
ing models.

Theoretical economics models

To understand how electricity spot markets work, several theoretical models were cre-
ated. On the supply side, very differentiated product options are encountered, though they
can be grouped into two subsets that encompass their biggest difference. There are re-
newable energies that produce electricity with a low marginal cost, and there are thermal
energies that produce electricity at a high and variable cost, depending on the required
fossil fuel. Demand in this market has been mostly inelastic so far and does not affect the
market considerably. These theoretical models interpret how supply and demand meet
and formulate the connections between each variable that results in market equilibrium [1].
Afterwards, these formulations are tested through econometric models. This leads to global
insights into how each variable affects the market as well as qualitative implications [2,3].

The theoretical formulations mentioned above did not consider strategic behaviour from
the supplier side when optimising their gains. Formulating the problem as Cournot [4–7]
for price-taking firms or Bertrand [5–7] for price-setting firms, may show how different
behaviours can arise. These papers formulated the market activity as a maximisation prob-
lem for multiple intervenors, resulting in either a Nash or a Pareto equilibrium. The market
activity consisted of setup costs, marginal costs of productions and prices. A dynamic game
was also formulated where cooperation could arise [5], as well as some static competitive
games [6,7].

Within this branch of models, dispatch models can also be encountered. These models
add all factual market interaction, such as merit order of the generation, supply capacity,
renewable energies volatility, network capacity as well as all other variables mentioned
in the previous models, but disregard strategic behaviour. Dispatch models allowed for
simulations of the market and were used to determine competitive market prices [8].
With simulations of this type, it is possible to detect price deviations due to market power
or other market imperfections [8]; or study the impact of a determined variable by removing
it altogether from the system [9]; or even determine the level of uncertainty on parameters
and decision variables [10]. Another application for the simulation of dispatch models is to
study the effects of shocks in different parts of the system [11].

Linear regression models

Linear regression models can discover a linear structure for the market interactions.
Linear regressions have been used for a long time and have become the base models
for many different studies. On a broader aspect, some studies used linear regressions to
identify the structure of the market and analysed the intervenors behaviour. Other studies
were more focused on each variable, identifying which variables affected the price and
the magnitude of such effect. The market structure was identified for the US electricity
and gas market [12], for German and Austrian electricity markets [13] and the European
electricity markets [14]. The price effects of regulatory changes were studied for Italy [15]
and Europe [16], and the effect on prices by changes in supply was studied for the European
Nordic countries [17]. The impact of a single type of intervenor was studied, either through
virtual power plants [18] or prosumers [19]. A descriptive study analysing the effect
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of all variables against the market price was performed for Texas [20] and Europe [21].
The inertia of consumers on the choice of electricity provider was studied for Texas [22],
and the price elasticity was studied for the Netherlands [23]. In all these articles, the linear
regression models were obtained through the ordinary least squares and the maximum
likelihood methods.

Linear regression models are defined first by their structure. Defining the data set
{yi, xi1, xi2, . . . , xip}n

i=1 with n observations, where y corresponds to the target variable
and xi1, . . . , xip corresponds to the explanatory variables. Furthermore, defining the set
of coefficients {β0, β1, . . . , βp} and a random error vector εi, then it can be defined how a
linear regression establishes the connection between the target variable and the explanatory
variables by:

yi = β0 + β1xi1 + · · ·+ βpxip + εi, i = 1, . . . , n (1)

In this subsection, the linear models are solved by obtaining the set of coefficients that
minimize the quadratic error. This corresponds to:

min
β0,...,βp

n

∑
i=1

(β0 + βixi1 + · · ·+ βpxip − yi)
2 (2)

Autoregressive models

Autoregressive models are linear regression models in which lags of the target variable
are added to the explanatory variable pool. This type of regression is used to find time
dependencies between the variables [24]. There are also direct autoregressions, in which
the variable pool includes the price lags [25–31]; multivariable autoregressions, where
the variable pool includes all variables, their lags and lags of the price [28,32–38]; and
autoregressions with exogenous variables that are supposed to not have time dependency,
i.e., the lags of some exogenous variables are not added [39,40].

The lag corresponds to the number of instants between the current target observation
and a past target observation. For hourly resolution data, a 24-lag period corresponds
to observing the data that occurred at the current hour in the past day. Maintaining the
same definitions of the linear regression models’ sub-section and also defining q as the max
lags considered and {φ1, . . . , φq} as the set of coefficients for the lagged variables, then the
connection between the target variable and explanatory variables is defined by:

yi = β0 + β1xi1 + · · ·+ βpxip +
q

∑
i=1

ϕjyi−j + εi, i = 1, . . . , n (3)

This model is solved by obtaining the set of coefficients that minimize the quadratic
error. This corresponds to:

min
β0,...,βp ,ϕ0,...,ϕq

n

∑
i=1

(
β0 + β1xi1 + · · ·+ βpxip +

q

∑
i=1

ϕjyi−j − yi

)2

(4)

Regime-switching models

A higher variability of models can be identified if more complexity is added to the
regressions. The most frequent version within complex regressions is Markov-switching
regimes, which assume there are different states in the world and that the market behaves
differently in each state [41–48]. The state jump event is assumed to be random following
a pre-determined distribution. Within these models, the states are supposed to be deter-
mined prior to the model usage. It is also possible to relax the latter supposition when
using Hidden Semi-Markov models, in which the model itself tries to discover the number
of states and which states exist [49]. Aside from Markov models, jump-diffusion models
are also common, which allow for state jumps in a different way. Jump-diffusion models
are a linear regression with one of the variables as a poison process, which determines the
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jump event and a corresponding weight, controlling the size of the jump. The weight is
usually a heavy tail probability distribution [48,50].

Linear regression models with regularisation

If the loss function in the linear regressions is changed, then possible outcomes are the
least absolute shrinkage and selection operator (LASSO) [51,52], the ridge regression [53]
and the quantile regression averaging [54], which behave differently than the previously
presented models. LASSO adds a penalty to the number of non-zero coefficients, leading
to a lower number of explanatory variables in the model by eliminating coefficients of
variables with little explanatory power [51,52]. Ridge regression adds a penalty to the sum
of the coefficients, leading to coefficients closer to zero when they have little explanatory
power [53]. For both these models, the connection between the target variable and the
explanatory variables remains the same as:

yi = β0 + β1xi1 + · · ·+ βpxip + εi, i = 1, . . . , n (5)

However, the minimisation problem to be solved changes. For LASSO, it is necessary
to define λ as a threshold parameter and k as the number of coefficients with a value
different to zero. Then, the minimisation problem becomes:

min
β0,...,βp

n

∑
i=1

(β0 + βixi1 + · · ·+ βpxip − yi)
2 + λk (6)

For the ridge regression, it is necessary to define a magnitude parameter λ, and then
the minimisation problem is defined as:

min
β0,...,βp

n

∑
i=1

(β0 + βixi1 + · · ·+ βpxip − yi)
2 + λ

p

∑
j=0

β2
j (7)

Machine learning models

Outside of regressions scopes, it is possible to find other methods for discovering the
effects of explanatory variables in the electricity price formation. The most frequently used
methods are simulation models [55–57], neural networks [58–60], principal component
analysis [61], singular value decomposition [62], correlation methods [63,64], gradient
boosting trees [65], copula models [66] and causal determination [67]. All simulation
methods surveyed were agent-based models; they correspond to models in which the
intervenor actions are modelled, and their aggregated interactions produce the result.
In this case, the intervenors are the energy suppliers and the energy distributors [55–57].
When creating an ensemble of regression trees, one of the possible outcomes is a gradient
boosting tree, GBT for short. Overall, GBT creates thresholds within all variables, defining
several paths and each path leads to a specific regression profile. With each of these paths, it
is possible to better segment the electricity price to similar profiles and perform regressions
on themselves [65]. Neural networks are a machine learning technique that corresponds
to a set of layers that are composed of several nodes. Each node corresponds to a value
and a set of weights. The layers are ordered, and each node in a layer is computed as
a weighted linear combination of all nodes of the previous layer. The nodes in the first
layer correspond to the explanatory variables, and the final layer, in this case, has a single
node corresponding to the electricity market price. The algorithm then computes the set of
weights for each node that better explains the electricity market price [58–60].

Copula models are used to model the statistic dependency between all variables in
a model, which can then measure the dependency strength of each explanatory variable
to the electricity market price. The copula corresponds to a multivariate cumulative
distribution function. The construction of a copula is an iterative process in which each
pair of variables are joined into a two-variable multivariate distribution; afterwards, each
pair of two-variable multivariate distributions are joined into a three-variable multivariate
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distribution and so on until all variables are joined to a single n-variable multivariate
distribution [66].

Causal determination is a stronger entity than the correlation or dependency. In
addition to connecting two correlated variables, it also informs which variable is the cause
and which variable is the effect [67].

The Iberian Electricity Market: How It Works

The data relates to the period between 1 January 2015 and 30 June 2019 in the Iberian
Electricity market, known as MIBEL. The data consist of electricity prices (price), hourly day-
ahead load forecasts (demand), hourly day-ahead volatile renewable energies generation
forecasts, hourly day-ahead hydric (hydro) and nuclear generation commitment, hourly
day-ahead bombing (bombing) commitment, hourly day-ahead coal (coal) and combined-
cycle (comb_cycle) generation commitment, hourly day-ahead net electricity exportation
to Morocco (net_exp_ma) and Andorra (net_exp_ad), weekday gas and CO2 emissions
market closing price, coal price on 1-month future market and weekly water reserves as
generation potential energy from Portugal (reservoir_pt) and Spain (reservoir_sp).

MIBEL is the Portuguese and Spanish pool market. This market works as an auction,
in which bids are accepted from producers and consumers. MIBEL matches the bids
maximising the welfare, which is the sum of the gains from purchase bids, sale bids and
congestion charge for the 24-h period. The gain is defined as the difference between the price
of the matched bid and the marginal price received. Most hourly data were obtained from
OMIE, the Spanish System Operator, which included load forecasts, bombing commitments,
all generation commitments, all volatile renewable energy generation forecasts and all
electricity trades with countries outside the Iberian Peninsula [68]. Electricity prices and
reservoir data were obtained from ENTSO-E [69]. Gas and coal prices were obtained from
the Bloomberg database [70,71]. The CO2 price was obtained from Sendeco2 [72].

For this study, the full scope of MIBEL was taken into consideration, and therefore, only
the variables that have a direct impact on price formation will be used. This means that some
variables will be dropped altogether while others will be part of a linear combination to form
meaningful variables, as explained in more detail ahead. France’s electricity exportation
and importation are not considered because this electricity is traded as bilateral contracts,
which are out of the scope of the day-ahead auction. The volatile renewable energies have a
special standing by law, i.e., they enter into the market before any other generation type, and
their marginal cost is close to zero. Therefore, the volatile renewable energies do not directly
influence market price formulation but do influence the load that needs to be satisfied
by the market. This results in creating a new variable, which will be called net_demand
and corresponds to deducting the hourly volatile renewable energies forecasts from the
hourly load forecasts. Since both forecasts are volatile, which results in discrepancies
between forecast and real values, joining up these two variables will result in a variable
with higher volatility. One extra consideration is made in relation to the nuclear generation
commitment, and due to the inherent risks of nuclear generation, there is little variation on
the generation level. This corresponds to several hours of constant production and sporadic
stable ramps until reaching the new level of generation. Furthermore, the generation cost
of nuclear energy is close to zero, and although the generation capacity of nuclear energy is
close to 20%, according to ENTSO-E data [69], the average production in the considered
period is approximately 3.5% of the total generation and the maximum share of production
observed was approximately 10%. Therefore, in the case of MIBEL price determination,
nuclear generation has little significance, and therefore, it can also be deducted from the
net_demand previously defined. Thus, net_demand is equal to demand minus volatile
renewable energy generation and nuclear generation.

Regarding hydro, coal and combined cycle generation, MIBEL uses the merit order to
decide which generation type enters the market first. Given that MIBEL is an auction-based
market, by default, this is ruled by a price and quantity defined by each producer and each
consumer. Using the merit order means that in MIBEL, price is a combination of the price
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defined by the producer and the emission cost of CO2 that will be generated to produce the
electricity. In MIBEL, the average conversion rate to CO2 emissions across all units that use
coal is 0.9 and 0.4 for gas [65]. This results in two new variables, coal_price and gas_price.
The variable coal_price is equal to coal price on the 1-month future market plus 0.9 times
the CO2 emission market closing price. The variable gas_price is equal to the gas price on
the weekday market closing price plus 0.4 times the CO2 emission market closing price.

Furthermore, MIBEL demand must be met by the supply, which means that the sum
of all supply must equal the sum of all demand and bombing, excluding an always-present
error margin that can be caused by multiple factors, which is solved in the intra-day
market or last-minute reserve mechanisms. Figure 1 shows this through the correlation of
net_demand with coal (0.775) and cc (0.725). On the other hand, coal and combined cycle
generation are not very correlated (0.448) between themselves. In terms of modelling, this
generates an identification problem and, as such, models. The best option for this study is
to focus on the supply side, so either net_demand or the set of coal and combined cycle
generation must be removed from the problem, as their interactions are the ones that will
define the price. However, this leads to a loss of information, which can be countered on
some models by sampling the observations in relation to the net_demand quantiles.

Figure 1. Correlation values in the lower corner, scatter plots in the upper corner and histograms
with density in the diagonal for all possible time series to be used in this study.

Furthermore, the correlation between reservoir_pt and reservoir_sp is very high (0.79),
which means adding both variables can be problematic. In relation to seasonality behaviour,
both variables are very similar, as shown in Figure 2, but quantity-wise, reservoir_pt is
always smaller than reservoir_sp. This is explained by two factors. Firstly, the hydrographic
basin of Portugal is much smaller than the one in Spain. Secondly, all of the main Portuguese
rivers, except for Mondego, have their origin in Spain; therefore, the main control over the
river flow is in Spain. Given that hydro generation has a low marginal cost, the electricity
price will be affected by when hydro generation is or is not an option. Given the lower
quantity level of reservoir_pt, this variable is the one chosen to model.

Further correlations encountered are not significant in terms of causing problems
for the model performance. However, the positive correlation between coal_price and
gas_price (0.686), coal_price and price (0.523), gas_price and price (0.499) is still notable.
In the negative spectrum of correlations, there are coal_price and reservoir_pt (−0.417),
reservoir_pt and price (−0.495), bombing and net_demand (−0.469), bombing and price
(−0.54). Observing the variables histogram and distribution density function, the variables
gas_price, net_exp_ad, net_exp_ma, hydro, cc and bomb are positively skewed, with bomb
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as the most skewed one. This means that these variables are mostly observed with smaller
values. The net_demand and price variable resemble a normal distribution.

Considering Figure 2, reservoir_pt and reservoir_sp show a clear seasonality, which
was expected with the high precipitation during winter, causing the reservoirs to fill up and
the hot and dry summer to empty the reservoirs. Coal generation also presents a seasonal
behaviour. Furthermore, reservoir_pt, reservoir_sp and hydro show higher values at the
beginning of the years 2016 and 2018, which was expected as those two years were wet
years. This fact is also evident in the coal variable, as in those two periods, coal values are
lower than the remaining years.

Figure 2. Time series for all possible variables to be used in this study between 1 January 2015 and 30
June 2019.

In terms of oddities, there are two strange events in this dataset. The most noticeable
one is in gas_price within the early year of 2018, with an extreme spike. This value can
either be a result of some market power strategy or a simple error while filling in the data.
A less noticeable one is in reservoir_sp near the beginning of 2016, with a temporary cut in
the reservoir value. In this case, a market power play makes little sense, which leads most
likely to an error while filling in the database.

3. Results

In this section, most of the previously mentioned models will be applied to the MIBEL
data. Firstly, it is important to note which models will not be applied and why. Afterwards,
the analysis of the models that can be worked with will be shown.

The theoretical economy models will not be evaluated, as their results are highly and
mostly influenced by the model definition itself. These models are constructed by making
some assumptions on how the market works, and with these assumptions, the model is
created and then the data are fed into them. After that, if the outcome is consistent with the
observations, then one of the results is that the initial assumptions seem to be correct. Then,
some derivations are taken from the initial assumptions to provide some more insights.
Making this explanation short and bitter, most outcomes and insights come directly from
the initial assumptions if the model proves itself to be reliable. Therefore, the explanation
for the market using these models is not a product of the model but a product of the initial
assumptions of the author. Therefore, it is not possible to analyse the explanatory power of
the model but only the explanatory power of the author.

In addition to these algorithms, hidden semi-Markov models and jump-diffusion
models were not studied either because these two algorithms were too sensitive to the
initial parameters. Hidden semi-Markov models, depending on their random initial states,
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would cause errors in the middle of the execution due to finding a near-singular matrix
before preforming an inverse operation. Jump-diffusion models have too many initial
parameters, and the results are highly susceptible to the model’s initial parameters, so there
was no assurance that the results were due to the algorithm’s explanatory power or the
author’s influence.

Agent-based simulation models can be framed in similar terms to the theoretical
economic models. Agent-based simulation models require a base set of assumptions made
by the author on how each agent will interact. The outcome is highly influenced by the
initial assumptions made by the author.

3.1. Input and Output Analysis

The following methodologies will be evaluated for their usage and respective results:

1. Linear regression model,
2. Linear regression model with scaled variables,
3. Ridge regression model,
4. LASSO regression model,
5. Autoregressive model (AR),
6. Autoregressive moving averages model with exogenous variables (ARMAX),
7. Vector autoregression model (VAR),
8. Structural vector autoregression model (SVAR),
9. Generalised autoregressive conditional heteroskedasticity model (GARCH),
10. Generalised autoregressive conditional heteroskedasticity model with exogenous

variables (GARCHX),
11. Gradient boosting trees model (GBT),
12. Neural network,
13. Copula model,
14. Causal model.

3.1.1. Linear Regression Models

The first group of models to be presented is the first four models in the above list,
corresponding to the more straightforward linear regression models presented in this
paper. These models are grouped together because the type of information provided is
very similar and can be easily summarised in Table 1. The values in the table correspond to
the β coefficients of the regression in which the general form is given by yi = β0 + β1xi1 +
· · ·+ βpxip + εi, i = 1, . . . , n. In this study, the intercept coefficient (β0) is omitted as it does
not give a direct inference on the impact of each variable on the goal of explaining price.
The last column is a special column for the LASSO regression model. This column explains
the order in which each variable enters the model. This value should be read because
the sooner the variable enters the model, the greater the impact it has on explaining price
variation between observations.

Table 1. Coefficient values for the linear regression algorithms and LASSO variable order.

Variables Linear Regression Linear Regression with
Standardised Variables Ridge Regression LASSO

Regression
LASSO
Order

coal_price 0.1504 2.9828 0.1413 0.1099 2
gas_price 0.6594 3.7457 0.5801 0.3331 4

reservoir_pt −0.000006 −2.682 −0.000006 0 6
net_exp_ad −0.0306 −0.5151 −0.0205 0 8
net_exp_ma −0.0006 −0.1546 −0.0009 0 9

hydro 0.0015 3.1080 0.0011 0 7
bombing −0.0051 −4.1406 −0.0045 −0.0028 3

coal 0.0019 5.8935 0.0015 0.0014 1
comb_cycle 0.0007 1.7016 0.0008 0.0001 5
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From Table 1, it is noticeable that all algorithms give a very high weight to gas_price
and coal_price. Coal has the highest coefficient when considering standardised variables.
Furthermore, even though coal’s coefficient is low in the LASSO regression, this variable
was the first to be added to the model, which means that coal can explain much of the
variance in price. LASSO also determines that reservoir_pt, net_exp_ad, net_exp_ma and
hydro add information to explain the variance of price, for which their coefficients were
zero in this model. The cutting point for the zero coefficients in the LASSO regression is
defined by the author, and for this case, it was defined as, when adding a new variable,
the coefficient being lower than 10−4.

3.1.2. Autoregressive Models

The second group of models corresponds to the autoregressive models and are method-
ologies 5 to 10 in the list at the beginning of this section. The structure of these models
differs significantly from each other, so they will be represented by selected sections of their
regression. These selections will be justified case by case.

The AR model with 48 lags has the following result for this case study

pricet =1.1825× pricet−1 − 0.2599× pricet−2 + 0.0175× pricet−3 − 0.0166× pricet−4

+ · · ·+ 0.1238× pricet−23 + 0.2861× pricet−24 − 0.3361× pricet−25 + . . . .
(8)

The dotted sections correspond to sections with small coefficients that add minimal
information to the model. The impact of the first 4 h lags and the 23 to 25 h lags is noticeable
when explaining the price in the AR model. There is a special mention of the 1 h lag with
a coefficient near 1.

The ARMAX model with p and q equal to 24 has the following representation:

pricet =− 0.0717× pricet−1 − 0.042× pricet−2 + · · ·+ 1.0273× σt−1 + 0.9061× σt−2 + . . .

+ 0.1985× coal_pricet + 0.5435× gas_pricet + 0.0142× net_exp_adt

− 0.0001× net_exp_mat + 0.002× hydrot + 0.0023× coalt + 0.0007× comb_cyclet

− 0.0024× bombingt.

(9)

The dotted section corresponds to sections with small coefficients that add little
information to the model. Other than the coefficients related to errors in the past hour,
the only high coefficients are related to the coal_price and gas_price variables. Any other
explanatory variable has a very low coefficient in this model.

The VAR algorithm required some constraints when defining the model. The three
variables, which are only updated in a time resolution greater than a day, have to be added
with an option for the algorithm not to use any lags on them. These variables are coal_price,
gas_price and reservoir_pt. The VAR was run up to a lag of 24 h, and it resulted in:

pricet =0.0051× coal_pricet + 0.0184× gas_pricet + 0.00000006× reservoir_pt

+ 0.0002× net_exp_adt−1 + 0.0017× net_exp_mat−1 + 0.0003× hydrot−1

− 0.0021× bombingt + 0.0011× coalt−1 + 0.0004× comb_cyclet−1

+ 1.009× pricet−1 + . . . .

(10)

Any successive lags past 1 h had a noticeable decline in the coefficient value by the
order of 10−1. In general, this methodology attributed coefficients to all variables in all lags
up to 24 h, but this resulted in small coefficients to every variable. The only exception was
the coefficient for the price at 1 h lag, which had a value close to 1.
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The SVAR algorithm had the same type of constraint as the VAR algorithm; al-
though, in this case, the coal_price, gas_price and reservoir_pt variables could not be used
in any way. The resulting equation for price is

pricet =0.8467× pricet−1 − 0.0063× net_exp_adt−1 + 0.0007× net_exp_mat−1

− 0.0017× hydrot−1 + 0.0017× bombingt−1 − 0.0002× coalt−1

− 0.0004× comb_cyclet−1.

(11)

The SVAR also produced six more equations, one for each of the remaining variables
that define the system of equations, in which each equation is an equation explaining each
variable using 1 h lags of all other variables.

The GARCH model had a run issue in which the used library could not achieve
convergence, probably due to the initial random coefficients defined by the algorithm
itself. Resulting in a “False Convergence” error. The initial and ending result defined all
coefficients as 0.05. To run this model properly, it would require finding an algorithm that
had a different initial value or that allowed to define the initial value. The author of this
paper has not found any solution so far.

The GARCHX algorithm managed to run because of the presence of the exogenous
variables permitting, in this case, a convergence. The resulting model for p and q equal to
24 is

pricet =0.6824× pricet−1 + 0.0369× pricet−2 + 0.0115× pricet−11

+ 0.0137× pricet−24 + 0.0271× σt−3 + 0.0431× coalt
+ 0.0202× comb_cyclet.

(12)

In this case, there is no section because this algorithm considered that all other coef-
ficients should be equal to zero. This algorithm gives very important information when
setting the other coefficient to zero, meaning that the corresponding variable whose coeffi-
cients are not zero are actually very meaningful. These are the prices with lags of 1, 2, 11
and 24, which are aligned with what the AR algorithm informed. It also indicates that the
errors at 3 h lags are very important, plus the current values of coal and comb_cycle.

3.1.3. Machine Learning Models

The remaining models in this study are the ones in the machine learning umbrella
and the last four models in the list in the beginning of this section. Starting with the
neural network, the case of two hidden layers was tested. Defining xi as the explanatory
variables, y as the target variable and hl

j as the nodes of each layer, where l corresponds

to the layer and j to each corresponding node in that layer, and also defining wl
i,j as the

weight connecting the nodes from layer l − 1 to layer l, then:

h1
j = f1(∑

i
xi × w1

i,j),

h2
j = f2(∑

i
h1

i × w2
i,j),

y = f3(∑
i

h2
i × w3

i,j).

(13)

It is important to notice that the activation functions f1, f2, f3 are not necessarily the
same, and normally they are not linear. This means that the resulting equation for the
price equation has a degree above 1, which therefore makes the resulting equation for y
very hard to read and explains each variable explanatory effect on y. In addition to this
main drawback of neural networks, there is another drawback, that is, the number of
observations necessary to obtain convergence. Neural networks require a high volume
of data, which was not achieved in this study. This means that the resulting equation
changed significantly between runs. A way to solve this drawback and achieve a stable
outcome is to create an assembly of neural networks, such as computing the average of
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an N number of neural networks for the same data. However, on the other side, this
would further increase the complexity of the model. Usually, this model is considered
to be a “black box” model precisely because of this fact, as it is hard to understand the
resulting model. A way to evaluate this kind of model is to fixate all variables except one
and perform small modifications on the non-fixed variable. This is called a sensitivity
analysis. However, given the fact there is multiplicative interaction between the variables,
this analysis does not suffice to understand the model.

The causal model provides different information than any of the previously mentioned
models. Instead of giving a coefficient, this model informs which variables cause which,
i.e., this model says that the effect on variable A is caused by variable B, usually shortened
as variable B causes variable A. The algorithm also provides extra information in the form
of the order in which the connections appear, i.e., the first links are the strongest and the
latter are the weakest. The ordered causality involving the price variable with the MIBEL
dataset is:

• Hydro causes price;
• Coal_price causes price;
• Gas_price causes price;
• Bombing causes price;
• Coal causes price;
• Price causes comb_cycle;
• Price causes reservoir_pt.

The causality algorithm created no link between price and net_exp_ad or net_exp_ma.
Although these were the results of this algorithm, it is known that bombing happens when
the price is very low, not the reverse; and when gas is setting the market price, then it is
known that comb_cycle is influencing the price and not the reverse.

The GBT and Copula algorithms will be analysed together. Their direct output is very
complex, but they provide a variable impact score, which is shown in Table 2. The GBT
impact score evaluates the gain of each variable onto the price. Therefore, the higher this
value is, the more this variable influences the model. In relation to the copula impact score,
this score measures the statistical dependency of each variable with the price variable.
The statistical dependency is a stronger measure than the correlation, but it can be inter-
preted the same as correlation. The main difference between dependency and correlation is
that correlation is usually a linear relation, but dependency is not linear.

Table 2. Impact score of each variable under the copula and GBT algorithms.

Variables GBT Copula

coal_price 0.0901 −0.018
gas_price 0.1835 0.3522

reservoir_pt 0.0521 0.4779
net_exp_ad 0.0027 −0.3704
net_exp_ma 0.0107 0.2798

hydro 0.0805 0.2514
bombing 0.2573 −0.1582

coal 0.2023 0.4916
comb_cycle 0.1206 0.2753

Table 2 shows that GBT results indicate that the most important variables are bomb-
ing, coal, gas_price and comb_cycle. In relation the copula model, the highest positive
dependencies to price are coal, reservoir_pt and gas_price. The highest negative one is
net_exp_ad.

3.2. Computation Time Analysis

In addition to the results provided by each model and any shortcomings when apply-
ing them, it is also important to analyse how long the algorithm takes to reach its results.
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Depending on the application of the models, a fast result might be more important than
the quality of the results. Table 3 shows the run time of the min (fastest run), first quartile,
median, third quartile and max (slowest run).

Table 3. Run time for each evaluated methodology in seconds.

Model Min 1st Quartile Median 3rd Quartile Max

Linear Regression 0.0090 0.0092 0.0094 0.0101 0.0128
Ridge Regression 0.0049 0.0053 0.0054 0.0057 0.0186

LASSO Regression 0.0018 0.0021 0.0022 0.0023 0.0169
AR 0.0284 0.0293 0.0302 0.0325 0.1769

ARMAX 6083 6125 6162 6205 6353
VAR 9.012 9.15 9.199 9.292 10.88

SVAR 0.1162 0.1172 0.1182 0.1249 0.328
GARCH 0.1761 0.1806 0.1831 0.1856 0.2264

GARCHX 3.146 3.196 3.218 3.322 3.393
GBT 18.24 18.52 18.89 19.34 20.7

Neural Network 12,820 13,070 13150 13,240 13,690
Copula 1786 1786 1786 1787 1836
Causal 620.9 631.6 645.8 678.4 972

The group of the linear, ridge and LASSO regression are the fastest algorithms to run,
with a speed on the order of 10−2 s. The machine learning models are the slowest ones,
except for GBT, and with the ARMAX algorithm with a minimum run time for this dataset
above 10 min. All the other algorithms run in short by a second or by a couple of seconds.
It is also worth mentioning that the first four models in Table 3 have the greatest variation
between the fastest and slowest times by a factor of 10.

4. Discussion

All papers identified in the Materials and Methods were used to explain electricity
markets, each with their own dataset. In most papers, there is a bit of bias when presenting
the preferred methodology. Every methodology has advantages and disadvantages, which
is the main goal of this section.

Starting with the linear regression models, as the name indicates, these models ex-
plore the linear dependency between the explanatory variable and the price. Electricity
markets cannot be fully explained by linear models. Nonetheless, linear models provide
the simpler and most straightforward analysis of all models discussed in this survey.
The resulting coefficients of the linear models should be interpreted as an increase of
one unit of an explanatory variable that will increase or decrease the price by the same
amount of the corresponding coefficient depending on the coefficient being positive or
negative, respectively.

In terms of setting up linear regression models, they are very easy too. The greatest
concern around these models is to avoid having the explanatory variables too heavily
correlated, i.e., having a correlation factor close to 1 or−1. As for the model parametrisation,
they require the set of explanatory variables, the target variable, and in the case of ridge or
LASSO, they require a threshold or magnitude parameter, respectively, for the loss function.
This added complexity allows for a better understanding of the model by reducing or
eliminating the explanatory power of variables, which have minimal power from the
beginning, making the model even easier to interpret.

The autoregressive models are highly dependent on the past history of all used
variables. Depending on the autoregressive model, the explanatory variables may be only
the target variable past history, or it may accept other explanatory variables too. Starting
with the AR and GARCH models, these only depend on the price history to explain the
price in the present. These models conceptually make little sense for the electricity market
as they assume that nothing else affects the price formation other than the price in the past.
That being said, these models are linear, so they are easy to understand, even though it
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may be hard to fully explain some of the terms, as it is hard to explain, for example, why
the last 48 h impacts the current price. It is known in electricity markets that there are
specific periods on the day in which prices are higher or lower. This fact leads to accepting
that the last couple hours and the hours near the 24 h mark before explaining the model.
However, the rest of the terms make the model too confusing and harder to explain.

The VAR, SVAR, ARMAX and GARCHX add exogenous explanatory variables to the
model. These variables can exceed the lags in the VAR and SVAR models, or just current
values in the ARMAX and GARCHX. The VAR model adds all lags for all explanatory
variables. For example, if 24 h lag is considered as well as the dataset explanatory vari-
ables for this model, which was six exogenous plus the price, it results in 24× 7 = 168
coefficients to understand. Furthermore, having this many coefficients dilutes the value of
each coefficient.

The SVAR model has two drawbacks for electricity markets. Firstly, it fails to present
information about contemporaneous events in the equation information. Secondly, it makes
the assumption that the remaining variables are explained by each other as well as by the
price of the hour before.

The GARCHX has similar behavior to the LASSO regression and adds multiple lags
to the price and the past errors of the ARMA and GARCH algorithm. It also adds the
exogenous variable’s current values. However, it only presents the coefficients that have
a meaningful effect on the price. This makes the GARCHX model much easier to understand
and explain than the remaining presented autoregressive models.

These models also require removing highly correlated explanatory variables, but they
also require giving special attention to variables that do not update hourly. If the variable
does not update hourly, most of these models do not function properly if the variable is
included. Furthermore, the GARCH algorithm has shown that convergence issues may
arise. To set up this model, aside from the variables, it is necessary to set the number of lags
and the number of past errors to be considered by the model. In terms of run time, these
models stand in the middle in terms of speed, providing results in a couple of seconds,
even if the result is a non-convergence error.

The machine learning models immediately bring an extra set of complexity as these
models are nonlinear models. This means it is not possible to obtain direct coefficients for
the explanatory variables. This increased complexity also brings about a second disadvan-
tage, i.e., the time to run these models can ascend to several minutes in this study dataset,
with the exception of the GBT model, which stood only near 20 s.

Even though these models have complex algorithms backing them up, the causal
model has a very direct result. This model output states which variable directly influences
the other. The order in which it provides this information is also indicative of how much
confidence there is in the output. However, this outcome also shows a problem for the
MIBEL dataset in that some causality directions do not agree with common knowledge on
the MIBEL market, which leaves a certain distrust of the entire output. This model allows
adding some rules to avoid some impossible connections, but if too many rules are created,
then the outcome is defined by the author and not by the model.

Opposing the direct results of causal model, there is the neural network. This model
is highly complex to the point of not being possible to obtain any type of clear impact of
the explanatory variables on the price. Furthermore, for the model set up, it is necessary
to indicate how many hidden layers should be in the model. A higher amount of hidden
layers may or may not translate into an increase in the final model degree, and there is no
straightforward way to verify if it increased or not.

The final models studied here are the GBT and the copula models. Both of their
outputs are easy to analyse and indicate how strongly the explanatory variable is related to
price. Furthermore, the copula model output also reveals a direction of the relation, e.g., if
the explanatory variable causes an increase or decrease in the price. As for setting up the
model, the GBT model has many options to be defined, e.g., to define the threshold levels,
the number of random tree models to train, and learning speed to make convergence faster,
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among others. In addition, it is necessary to give the target and the explanatory variables
separately, and then the model is set. The copula model needs to be given all variables,
including the price in the same dataset. Then, it is necessary to define the method of
shaping the copula structure. In this study, it was defined as a copula centred on the price.

Overall, the model chosen to explain electricity markets is not an easy task. This
survey allows obtaining a more complete view of the most cited models used to explain
electricity markets. However, by analysing each model, it is possible to observe their
strengths. The machine learning models appear to be very good at selecting the best
explanatory variables for the price. They provide an interesting insight into how much
the price depends on each variable from a nonlinear perspective. However, afterwards, it
might be necessary to make the results understandable in order to reach every reader. Both
the autoregressive models and the linear regression models can provide a clear explanation
for each explanatory variable, with special attention to GARCHX and LASSO regression,
which provide a cleaner linear result by removing variables that have a minimal linear
impact. This gives a choice to the individuals who are trying to understand how the
electricity market works. If there is a belief that past events up to a certain point are
important, then the autoregressive models would be a good choice; or if is preferred to
select the explanatory variables to introduce in the study, then the model choice would be
linear regression.
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