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Abstract: Multiphase vortices are widely present in the metallurgical pouring processes, chemical
material extraction, hydroelectric power plant energy conversion, and other engineering fields. Its
critical state detection is of great significance in improving product yield and resource utilization.
However, the multiphase vortex is a complex dynamics problem with highly nonlinear features,
and its fluid-induced vibration-generation mechanism faces significant challenges. A fluid-solid
coupling-based modeling method is proposed to explore mass transfer process with the vorticity
distribution and vibration-generation mechanism. A vibration-processing method is utilized to
discuss the four flow-state transition features. A fluid-induced vibration experiment platform is
established to verify the numerical results. It is found that the proposed modeling method can better
reveal the vibration-evolution regularities of the fluid-solid coupling process. The flow field has a
maximum value in the complex water–oil–gas coupled flow process, and induces a pressure pulsation
phenomenon, and its frequency amplitude is much larger than that of the water phase and water–oil
two-phase flow states. In the critical generation state, the increasing amplitude and nonlinear step
structure of high-frequency bands (45 Hz~50 Hz) and random pulse components can be used for the
online detection of multiphase-coupling states.

Keywords: multiphase vortex; fluid-solid coupling; fluidic vibration; stochastic signal processing;
metallurgical pouring process

1. Introduction

As a typical fluid flow pattern in industrial production processes, multiphase vortices
often existed in significant engineering applications such as metallurgical casting and chem-
ical material extraction [1–3]. The vortex suction process can suck surface fluid mediums
and solid particles. Its gas–liquid suction effect will cause nonlinear shock vibration, result-
ing in many adverse effects on the industrial production process [4–6]. For example, in the
process of steel flow refining, oxidizing agents and impurities are mixed to produce liquid
steel slag and oxidizing impurities. As the steel flow flows out from the metallurgy vessel,
the vortex induces intensive disturbance reaction and irregular load, affecting molten
steel’s purity and quality, and resulting in industrial accidents [7,8]. Moreover, the vortex
entrainment phenomenon is an essential issue for safe production. The formed vortex core
tends to reduce the reliability of the fuel system, and many bubbles can result in unstable
combustion and high costs. To reduce the adverse effects caused by vortices, studying the
fluid-induced vibration generation mechanism and taking effective vortex-suppression
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measures to control the vortex-formation conditions are of great scientific value and broad
application prospects.

In practical engineering applications, the multiphase vortex-pumping process forms a
gaseous vortex core accompanied by complex physical phenomena, such as heat and mass
transfer, energy exchange, and shock vibration [9–11]. Meanwhile, the vortex-formation
process frequently occurs in thin-walled vessels with limited space. It is limited by extreme
physical conditions such as high temperature and external interference. Video signals
make it difficult to detect flow states inside flow channels, and the multiphase vortex-
induced vibration-generation mechanism is challenging to reveal. Therefore, it is of great
significance to study vibration-evolution mechanisms of multiphase vortex.

Academics have conducted numerous studies to address the issue of vortex-induced
vibration creation. Kim discussed the vortex diffusion process and found that with the
increase in the Reynolds number, the mass transfer rate between the flow area and vortex
can be improved [12]. Ann simulated the gas–liquid vortex in the turbine operation and
found that the two-phase vortex has a great influence on the inlet flow, resulting in an
inhomogeneous pipe flow [13]. Takács performed a time-domain analysis of the two-
phase vortex-induced vibration and found some vibration components in the experimental
data [14]. Based on the fluid similarity principle, Wang studied the vortex-sucking slag
phenomenon and found that the vortex was well suppressed and controlled at a blowing
flow rate of 0.16 L/min [15]. Zhang used a wavelet algorithm to analyze the non-smooth
vibrational data, and obtained the anomalous energy spectrum induced by two-phase
vortex-sucking impurities [16].

From the above literature, it can be inferred that the current research on multiphase
vortices mainly focuses on two-phase modeling, disturbance factors, and vibration features.
The fluid-induced vibration mechanism in the multiphase vortex evolution is still unclear.
Due to the complexity of the multiphase-coupling process, the dynamic characteristics of
the fluid-induced vibration are highly nonlinear, which undoubtedly increases the difficulty
of the vortex-induced vibration detection. Therefore, it is necessary to propose a fluid-solid
coupling modeling method of the multiphase vortex to reveal the fluid-induced vibration
mechanism.

This paper present a fluid-solid coupling-based multiphase vortex modeling method
to explore fluid-induced vibration-evolution characteristics. A time/frequency signal
processing method is combined to extract the vibration dynamics features and detect
the critical vortex formation states. The related technical advancement is identified as
follows. (1) A fluid-solid coupling model is conducted to acquire vibration-generation
mechanism. (2) Explore the mass transfer process with the vorticity distribution char-
acteristics. (3) Discuss the four flow-state transition features with the vibration-sensing
method. (4) A fluid-induced vibration experiment platform is established to verify the
numerical results. The relevant work can provide valuable references for theoretical studies
on vortex formation mechanism, multiphase-coupling, and fluid-induced vibration, and
is of universal significance for the fluid state identification, such as metallurgy pouring
processes and pipeline transportation monitoring.

2. Mathematical Model and Solution Method
2.1. Mathematical Model

Multiphase vortex is a complex multiphase-fluid nonlinear-coupling problem, wherein
the tracking of the multiphase fluids and the dynamic evolution process of the interphase
interface are a research focus that needs attention. For the multiphase flow, the coupled
level set and volume of the fluid model with the advantages of small interface curvature
error and mass conservation are used to track with multiphase flow simulations [17–20].
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The model defines the level set function as δ, denoting the characteristic distance to
the interface. This value is negative at the upper fluid, zero at the interface, and positive at
the lower fluid. The convective transport equation [21,22] is defined as{

∂δ
∂t + (um · ∇)δ = 0
∂γ
∂t + (um · ∇)γ = 0

(1)

where um is the average velocity vector of the mixed fluid and t is the time. The normal
vector n and the mean curvature κ are calculated for the gradient perpendicular.

n =
∇δ

|∇δ|

∣∣∣∣
δ=0

κ = ∇ · n = ∇ · ∇δ

∇δ

∣∣∣∣
δ=0

(2)

In multiphase flow calculations, the mixing density ρm and viscosity µm near the
interface depend on the level set function. During the interface transition, the fluid physical
parameters, such as density and viscosity, can be smoothed using the smoothing heaviside
function. {

ρm(ϕ) = ρi[1− H(ϕ)] + ρjH(ϕ)
µm(ϕ) = µi[1− H(ϕ)] + µj H(ϕ)

(3)

where the subscripts i and j denote the upper and lower fluids, and the smooth heaviside
function is as follows.

H(δ) =


1 δ > η
1
2

[
1 + δ

η + 1
π sin(πδ

η )
]
|δ| ≤ η

0 δ < −η

(4)

where η is the simulated thickness of the interface, η = 1.5 b (the value of b is the grid
space), and the model’s liquid and gas phases are considered incompressible Newto-
nian fluids [21–23]. The continuity equation and Navier–Stokes equation [24,25] can be
described as

∂ρm

∂t
+∇ · (umρm) = 0 (5)

∂

∂t
(ρm +Vm) +∇ · (ρmVmVm) = −∇p +∇ · [µm(∇Vm +∇Vm

T)] + ρmg+ σκnδ(ϕ) (6)

where ρm is the volume average density of the mixed fluids, p is the hydrostatic pressure,
µm is the volume average viscosity of the mixed fluid, g is the acceleration of gravity, and
σκnβ(δ) is the interfacial tension, where n is the interfacial normal vector, β (δ) is the surface
function, and β is the surface tension coefficient.

2.2. Solid Model

The solid coupling model is a thin-walled cylindrical shell. As a single-point harmonic
force is applied, its vibration must move concurrently in the axial, normal, and circumfer-
ential directions from the force point to the surface [26–29]. This paper uses the Flügge
shell theory to set up a finite-length fluid-solid coupled dynamics model. Considering
the propagation of the vibration wave along the shell axial direction, the displacement
solutions of the Flügge equation with axial wave number [27] are obtained as follows:

us =
∞
∑

m=0

∞
∑

s=1
Ums cos(mθ) exp[iωt− ikmsx]

vs =
∞
∑

m=0

∞
∑

s=1
Vms sin(mθ) exp[iωt− ikmsx]

ws =
∞
∑

m=0

∞
∑

s=1
Wms cos(mθ) exp[iωt− ikmsx]

(7)
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where Ums, Vms, and Wms are the displacement amplitudes of the shell components in
the three directions of the column coordinates (x, θ, and r), m is the circumferential mode
number, ω is the circular frequency, kms is the axial wave number, and the subscript s is the
ordinal number of the axial wavenumber solution in the dispersion equation [29–31].

Assuming that the fluid is an ideal incompressible medium without viscosity, the
fluctuation equation for the flow field in the column coordinate system is obtained as

1
r

∂

∂r

(
r

∂ps

∂r

)
+

1
r2

∂2 ps

∂θ2 −
1

C2
f

∂2 ps

∂t2 = 0 (8)

where Cf is the wave velocity of the sound field. In this paper, the Helmholtz equation for
the sound pressure field is solved by the variable separation method [32,33]. Considering
the radiation and shell boundary coupling conditions, the sound pressure field satisfying
the fluctuation equation [33] is as follows.

ps =
∞

∑
m=0

∞

∑
s=1

Pms cos(mθ)Ym(kr
sr) exp[iωt− ikmsx] (9)

where kr
s denotes the radial wavenumber and may be determined via (kr

s)2 = k2
0 − k2

ms,
k0 = ω/Cf represents the free wave number of the fluids, Pms represents amplitudes of
acoustic pressure fields, and Ym(τ) denotes the n-order Bessel functions [34,35]. At contact
surfaces, fluid and shell radial displacements must match as follows:

− 1
iωρ

∂ps

∂r

∣∣∣∣
r=R

=
∂w
∂t

∣∣∣∣
r=R

(10)

The acoustic pressure can be calculated by substituting Equations (8) and (9) into
Equation (10). The equations of motion of the coupled system can be solved by substituting
Equations (7) and (9) into Equation (10). Due to random excitations and exhibit nonlinear
characteristics, the axial cosine-distribution harmonic load [35] can be used to analyze the
random excitation.

p(x, θ, t) = Fx cos(mθ)ϕ(x) exp[i
λ

R
x− iωt] (11)

where Fx represents the force on the unit perimeter, and ϕ(x) is the unit pulse function.

3. Fluid-Solid Coupling Numerical Model
3.1. Numerical Model

In order to track the critical transition state of multiphase vortex in real-time, a mul-
tiphase vortex numerical model based on the fluid-solid coupling is set up, as shown in
Figure 1. The numerical model in the fluid domain mainly solves the continuity equation
and turbulent kinetic energy equation to obtain the evolution law of the vortex flow field.
The mesh quality has a significant impact on the accuracy of the transient calculation
results. This section uses the Cooper algorithm [36,37] to mesh the model and accurately
capture the dynamic coupling characteristics. The total number of hexahedral multi-block
structured meshes is 335,460. The structured mesh is used to mesh the solid model, the
total mesh number of the solid domain is 12,845, and the mesh quality is adjusted to the
highest the calculation allows. The mesh division in Figure 1 shows that the model mesh
division is more uniform, and the mesh near the drainpipe is relatively dense.
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Figure 1. Fluid-solid coupling numerical model.

3.2. Boundary Conditions and Initial Conditions

To observe the multiphase vortex-formation process, the geometric characteristics of
the vessel are shown in Table 1. The momentum equation solution of the flow field needs
to determine the boundary conditions of the fluid domain, and reasonable and realistic
boundary conditions can obtain an accurate numerical solution. In Figure 1, the container
inlet is the air phase and set as pressure inlet boundary conditions, and the outlet boundary
is set as the pressure outlet. Assuming that the velocity or relative velocity at the initial fluid
wall is zero, the wall conditions are defined as no-slip wall boundary conditions. The basic
parameters of the multiphase flow medium are shown in Table 2. Here, the initial tangential
velocity and gravitational acceleration act on the flow field. In the solid model (Figure 1),
the upper and lower wall surfaces are fixed-load surfaces, and the inner wall surface is
coupled with the flow field model’s wall surface, forming a fluid-solid coupling surface.
It can realize the real-time interaction between the flow field and the solid field data, and
the outer wall surface of the shell is the free-load surface. The PC plastic (elastic modulus
2.4 × 103 Mpa) is selected as the model material to discuss vibration characteristics.

Table 1. Boundary conditions of the numerical model.

Item Parameter

Gravity magnitude/(N) 9.81
Gas zone height/(m) 0.3
Oil zone height/(m) 0.05
Water zone height/(m) 0.2
Vessel height/(m) 0.55
Vessel diameter/(m) 0.5
Pipe length/(m) 0.15
Pipe diameter/(m) 0.022

Table 2. Physical parameters of fluid mediums.

Medium Kinetic Viscosity/
(m2·s−1)

Dynamic Viscosity/
(Pa·s)

Density/
(kg·m−3)

Oil 1.01 × 10−6 2.4 × 10−3 730
Water 1.01 × 10−6 1.01 × 10−3 998.2
Gas 1.48 × 10−5 1.79 × 10−5 1.225

The numerical calculation process is based on the ANSYS commercial software. The
pressure implicit split operator (PISO) algorithm is used to deal with pressure–velocity cou-
pling and ensure convergence efficiency [38–40]. The pressure staggering option (PRESTO)
solves the pressure discretization interpolation problem [41,42]. The level set function
is the Hamilton–Jacobi equation. It is discretized in the fifth-order weighted essentially
non-oscillatory (WENO) format in space and the third-order total variation diminishing
(TVD) Longo-Kutta format in time [43–45]. In addition, the second-order windward format
is used to discretize the momentum and turbulent kinetic energy.
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4. Numerical Simulation Results
4.1. Multiphase Vortex Evolution Process

Multiphase vortex is a complex turbulent mechanics phenomenon. Due to the varia-
tion of suction force, the interface evolution law takes on highly nonlinear characteristics.
In this section, a volume fraction profile is selected to study the dynamic evolution of a
multiphase vortex, as shown in Figure 2, where the green region is the water phase, the
pink region is the oil phase, and the purple region is the air phase. The figure shows that
with the initial disturbance velocity driving, the liquid level near the wall rises, and the
center of the free-liquid surface depresses and forms a multiphase-coupling phenomenon.
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In Figure 2a, the multiphase vortex is formed under gravity and initial velocity. The
turbulence intensity of the flow field increases, and the water phase is mainly in the
drainage pipe. In Figure 2b,c, the vortex scale keeps increasing, the interface becomes a
V-shaped opening, and the pipe’s interior is mainly water–oil two-phase flow. As oil and
water flow from the pipe, the outlet suction promotes the fluid’s convergence. A small
amount of air is pumped by the drainage outlet, as shown in Figure 2d. The strong suction
force effect can overcome the viscous resistance of the fluid and break the energy barrier at
the interface center. In Figure 2e, the multiphase fluid at the outlet is unstable, and the fluid
composition is a mixture of water, oil, and air. When the flow field forms an air column
connected to the outlet atmosphere, the fluid velocities are zero, as shown in Figure 2f.
Multiphase vortex in the formation process has a fluid-composition transition, and the
flow state and vibration generation are intrinsically linked to the fluid-composition change.
The fluid-composition change will affect product quality and production efficiency and is
significant for the metallurgical pouring process, chemical process extraction, and other
industrial production processes.

To explore the vortex flow field law, the vorticity distribution cloud diagram is ob-
tained, as shown in Figure 3. It can be seen that the vorticity intensity is more significant
due to the flow velocity inside the drainpipe. In Figure 3a,b, the vorticity is smaller at the
free-liquid surface. The fluid microclusters on the surface have characteristic perturbation
patterns at different times and spaces, resulting in fluid microclusters with different velocity
gradients along the radial direction. However, in the central region of the vortex, the vortic-
ity values are larger. In Figure 3c,d, the velocity of the vortex surface increases as the vortex
evolves, and the vorticity continues to increase in the region above the surface and pipe. The
turbulent kinetic energy reaches a maximum, and the rapid macroscopic mixing of turbu-
lent vortices promotes high transport efficiency of turbulent mass, momentum, and energy.
In Figure 3e,f, the vorticity distribution does not change significantly, indicating that the
flow field has a maximum value in the complex water–oil–gas coupled flow process. If the



Processes 2023, 11, 568 7 of 17

vortex formation is to be suppressed, it must be carried out before the multiphase-coupling
process, which is of great significance in guiding the vortex-suppression control.
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4.2. Effect of Initial Disturbance Velocity on Vortex

Figure 4 shows the level height of the vortex critical formation state under different
initial perturbations. The figure shows that the flow field is in dynamic equilibrium, and
the liquid-level height of the water and oil phases increases with the initial disturbance
velocity, tending to increase linearly. However, the difference in liquid height between the
oil and water phases does not increase linearly. When the initial disturbance is minor, both
the early and middle of the drainage process are mainly a single water-phase fluid, so the
oil phase still maintains a high share. However, in the late stage, the water- and oil-phase
fluids flow out from the orifice together, the process is delayed when the disturbance is low,
and the share of the water phase in the early stage decreases faster. Hence, the liquid-level
difference between the water and oil phases is larger during the vortex critical formation
state. As the initial perturbation speed increases, the centrifugal force on the fluid in the
container increases, and the fluid can reach the critical penetration state quickly. At this
time, the container’s overall share of water and oil is still at a high level, and the level
difference is relatively small.
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Figure 5 depicts the evolution of the total pressure in the flow field with the draining
process. It can be seen from the figure that the changing trend of the total pressure under
different initial disturbance velocities is the same. At the early stage of the drain, the
pressure curve decreases rapidly with the volume fraction decrease in water and oil phases,
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and the drain is the water phase. In the middle of the drain, the total pressure curve
decreases continuously, the decline rate decreases slightly, and the drain is water–oil two-
phase fluid. The mixing density is less than the pure water phase. In the late stage of the
drain, the pressure shows an oscillation phenomenon, the draining process is a complex
water–oil–gas coupling state, and the flow rate is unstable. With the increase in the initial
disturbance speed, the pressure curve becomes steeper and steeper, and the vortex has a
faster energy accumulation and release rate in the late stage of the drain. As drain time
decreases, the upper air phase can penetrate the pipe quickly, resulting in complex pressure
oscillation. The above laws can provide helpful guidance for the suppression control of
vortex-induced vibration.
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4.3. Generation Mechanism of Fluid-Structure Coupling Vibration

In order to reveal the vortex-induced vibration mechanism, the time-domain waveform
of the vibration signal is analyzed as shown in Figure 6, where the horizontal coordinate
is the sampling point N, and the vertical coordinate is the vibration amplitude At. In
Figure 6a, it can be seen that when the pipe is in a single aqueous-phase fluid state, the
intensity of the vibration signal is weak, the amplitude ranges from −0.002 × 10−3 m·s−2

to −0.002 × 10−3 m·s−2, and there are many nonlinear pulse components. In Figure 6b,
when the oil phase is mixed with the water phase, the vibration signal shows promi-
nent pulse components at the sampling point N = 520, and the vibration amplitude is
0.028 × 10−3 m·s−2. Then, the vibration signal decreases, indicating that the water and
oil phases flow out from the pipe evenly. However, the amplitude of the vibration signal
suddenly increases at N = 1000, indicating that the flow state changes at this time, and a
small amount of gas and oil–water phases begin to mix.

In Figure 6c, the amplitude of the vibration signal increases and reaches the maximum
value at some point. In this process, the vibration signal morphology presents nonlinear
characteristics due to the mixed transport of water, oil, and gas. The amount of gas increases
and mixes with water and oil, forming a complex multiphase flow coupling pattern, and
its amplitude is −0.02 × 10−3 m·s−2~−0.02 × 10−3 m·s−2. Compared with the single
water-phase flow, the amplitude of the vibration signal is increased by ten times. The peak
value of the vibration signal at N = 980 can reach 0.43 × 10−3 m·s−2. This characteristic is
consistent with the vortex critically penetrating the drain pipe. In Figure 6d, the amplitude
of the vibration signal decreases when it is a single air phase, but a small amount of impulse
component is present. Based on the time-domain waveform, it can be inferred that there
are a series of random shock vibration components in the multiphase-mixing process. The
signal has a transient sudden-change characteristic with the maximum amplitude in the
critical penetration state. According to this amplitude characteristic, the formation time
point of the vortex can be detected using a vibration sensor, which is important for active
control of vortex in engineering.
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Although the time-domain characteristics can predict the vortex critical formation
state, in practical engineering applications, various noise interferences can affect the time-
domain waveform profile, resulting in the original accuracy loss of results. The frequency
spectrum is the coordinate axis that converts the dynamic signal into frequency by Fourier
transform, and the frequency distribution is used to describe the amplitude distribution
of the signal. Figure 7 shows the vibration signal spectrum in different flow states, where
the horizontal coordinate is the frequency and the vertical coordinate is the amplitude.
In Figure 7a,b, when the pipeline flows in a single water phase and oil–water two-phase
trend, the frequency amplitude of the signal is 1.62 × 10−7 m·s−2. In Figure 7b, when the
pipe is mixed with water and oil, the vibration signal’s frequency amplitude increases,
decreases, and increases in the range of 35~45 Hz. In Figure 7c, when the pipeline is mixed
with water–oil–gas flow mode, the spectrum structure has no prominent feature, and the
frequency amplitude increases significantly, reaching a peak of 5 × 10−5 m·s−2 at 49.8 Hz.
The intense vibration pulse component is generated under the above mixed flow mode. In
Figure 7d, the frequency amplitude of the vibration signal decreases, and the frequency
amplitude is smaller, from 0 to 40 Hz. Still, the amplitude increases from 45 to 50 Hz, and
there are a certain amount of random pulse components. From the above characteristics,
it can be seen that the frequency amplitude in the multiphase-mixing process is much
larger than that of the single water-phase and water–oil two-phase flow states, and the
increment of the frequency amplitude is concentrated in the range of 45~50 Hz. Therefore,
the above combined characteristics can be used as the key to the identification of the vortex
multiphase coupled flow state.

In the vortex-formation process, the frequency components of the vibration signal have
time-varying characteristics. The pipeline is excited by the random signal, and the vibration
signal’s simple time and frequency-domain analysis cannot obtain the local information
of both time and frequency domains [46–48]. The joint time–frequency analysis can better
analyze the evolution of frequency and energy of the shock vibration signal with time.
It can visually describe the vibration energy evolution of the vortex formation process.
Figure 8 shows the three-dimensional time–frequency spectra of the vibration signal under
different flow states. From the figure, it can be seen that the frequency range of the vibration
signal is concentrated in the range of 30~50 Hz. In Figure 8a,b, the spectral structures of the
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vibration signals differ significantly. The former has a series of wave peaks, and the latter
has fewer wave peaks. In Figure 8c, the wave peaks of the vibration signal reach their peak
near the sampling point N = 1000, and the frequencies are mainly concentrated in the range
of 30~50 Hz. It indicates that the pulse components generated by the multiphase-mixed
flow mode are concentrated in the high-frequency band, which is closely related to the
vortex critical penetration moment. In Figure 8d, the signal has uniform peaks, and the
amplitude decreases compared with the multiphase-mixed state. Therefore, the waveform
and peak at 30 to 50 Hz can be critical for vortex multiphase-mixed flow pattern detection.
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5. Multiphase Vortex-Induced Vibration Observation Experiment
5.1. Experimental Platform Construction

Based on the principle of the vibration detection method, a multiphase vortex-induced
vibration experimental platform is designed to realize the vibration signal-detection process,
as shown in Figure 9. The vibration signal acquisition consists of a target position module,
a constant current adapter, a vibration sensor, and a two-core cable. A piezoelectric
acceleration sensor with a built-in integrated circuit is selected to measure the vibration
of the fluid impinging on the pipe. The sensor base is fixed by a threaded connection to
avoid damage to the internal inductive devices, and the sensor base is bonded to the wall of
the drainpipe and the experimental bench. Since the piezoelectric sensor has a high input
impedance, the two-core cable’s relatively weak charge signal is collected during vortex
shock. The high-impedance output signal is converted to a low-impedance output signal
by gain amplification with a constant current adapter.
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Figure 9. Vibration detection experiment platform of the multiphase vortex. 1—Vibration sensor,
2—Transparent cylindrical container, 3—Two-phase fluid medium, 4—Aluminum test bench, 5—
Adjustable throttle, 6—Rectangular overflow container, 7—Constant current adapter, 8—Dual core
cable, 9—Data acquisition card, 10—PC control system.

In the water model experiment, the industrial PC sends signals to control the T-
agitator and provides a certain initial disturbance speed of the flow field. Then, the stirring
is stopped, and the drain port is opened. At this time, the signal acquisition device and
the draining process of the container are carried out synchronously. As the fluid impacts
the pipeline, the vibration sensor receives the fluid-induced signal and transmits it to the
constant current adapter through the signal line. The signal transmits to the PC control
end after amplification, filtering, sampling, and A/D conversion, and carries out real-time
processing, display, and storage of the vibration signal. When the vibration signal mutates,
the PC control end sends the control signal to close the pipe port, and sends the alarm
signal at the same time.

5.2. Experimental Vibration Characteristics

Figure 10 depicts a typical time series of the experimental time-domain waveform.
The horizontal coordinate is the sampling point N, the vertical coordinate is the vibration
amplitude At, and the sampling frequency is 100 Hz. Analyzing the time-domain waveform
of the vibration signal, the simple harmonic component, the periodic component, or the
transient pulse component contained in the time-domain waveform signal can be obtained.
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(b) Oil–water two-phase, (c) Gas–oil–water mixing phase, (d) Single gas phase.

Figure 10a shows the time-domain waveform from a single water phase. The time-
domain waveform has a series of uniform pulse components at the initial disturbance
velocity. It is indicated that the radial impact force components of the single fluid in the
drainpipe do not cause sudden changes in the vibration amplitude. With the stabilization
of the vortex flow field, the amplitude of the vibration signal is concentrated in the interval
of −0.006~0.006 m·s−3. Figure 10b shows the time-domain waveform of the signal when
the two phases are mixed in the draining process. There is an abrupt peak change, and
the peak is in the amplitude range of −0.06~0.05 m·s−3, related to mixing the oil phase
with the water phase in the drainpipe. Figure 10c shows the time-domain waveform of the
multiphase-mixed fluid in the draining process. The maximum of the signal amplitude can
be reach 0.4 × 10−3 m·s−2, which is in agreement with the numerical results in Figure 6.
It can be seen that the amplitude of the vibration signal increases continuously and has
a highly nonlinear characteristic. The time-domain structure of the signal is consistent
with the numerical results. This nonlinear pulse component is related to the irregular scale
and random quantity of the pumping bubbles, which induces the complex multiphase
coupled pressure pulsation phenomenon. In Figure 10d, the signal amplitude has apparent
decreasing, which is agree with the numerical results in Figure 6d.

The variance of a vibration signal can reflect the varying degree of the signal around
the mean value, i.e., it indicates the degree of fluctuation of a signal [49,50]. The variance
of four vibration signals with different drain states is processed based on the above time-
domain waveform. If the continuous vibration signal is x(t), and the discrete vibration data
series as {xn|n = 1, 2, 3, . . . , N}, then the variance of the signal is

σx = (
1
n

n

∑
i=1

(xi − x)
2

)
1
2 (12)

where x is the mean value of the discrete vibration data.
The variance of each vibration signal sample data is calculated based on the above

time-domain waveform. The results are shown in Figure 11, where the horizontal axis
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is the sampling point number N, and the vertical axis is the variance value of vibration
signal At. From the figure, it can be seen that the variance signals in Figure 11b,c have
prominent abrupt change characteristics, and the sudden change in time point corresponds
to both the fluid state from single to two-phase mixing and multiphase-coupling state
with bubble pumping. The signal variance in Figure 11c has a series of random pulse
components and an apparent abrupt peak. It is indicated that the coupling energy shock
causes the shell deformation to increase, enhancing nonlinear shock-pulse components and
causing the violent vibration phenomenon. The subsequent disappearance of the signal
pulse components indicates that the gas phase has penetrated the drainpipe.
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Figure 11. Variance analysis diagrams of different drain states. (a) Single water phase, (b) Oil–water
two-phase, (c) Gas–oil–water mixing phase, (d) Single gas phase.

According to the time-domain waveform, the vibration signal has randomness during
multiphase coupling, and it is impossible to find the internal law. Hence, the frequency
spectrum power or amplitude spectrum is widely used for online detection. Figure 12
shows the power spectrum analysis of the vibration signal. The horizontal axis is the
sampling frequency Fre, and the vertical axis is the power spectrum density Ap. Figure 12a
shows the power spectrum of a single fluid. The spectrum amplitude increases in 10~20 Hz
and 45~50 Hz. The latter characteristics are in agreement with the numerical results in
Figure 7a. Figure 12b shows the power spectrum of the two-phase fluid. It can be seen that
the critical transition of the flow state has a certain effect on the amplitude increase, but
the effect on the spectral structure is insignificant. Figure 12c shows the power spectrum
of multiphase fluids. The coupling energy diffusion causes a significant increase in the
range of 40~50 Hz, and the randomness of the frequency distribution in the high-frequency
band is enhanced. Figure 12d shows the power spectrum of a single gas fluid. It has
a significantly reduced frequency amplitude compared with the former. However, the
spectral structure changes significantly, and is related to the vibration energy wave of the
fluid-impacting shell after the vortex penetration.
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Figure 12. Power spectrum under different drainage states. (a) Single water phase, (b) Oil–water
two-phase, (c) Gas–oil–water mixing phase, (d) Single gas phase.

From the whole drain process, the multiphase fluid flowing from the pipe needs to
go through four stages: single water phase, water–oil two-phase mixing, multiphase fluid
mixing, and single gas phase. The amplitude of the vibration signal exists in the process of
increasing to the peak, and then decreasing instantaneously. There is a significant change
in the frequency amplitude and structure in the high-frequency range of 40~50 Hz. During
the multiphase coupling in Figure 12c, the frequency of the vibration signal decreases
significantly at 48 Hz, leading to a complex nonlinear characteristic of the structure in
the frequency spectrum from 40 to 50 Hz. However, the nonlinear pulse component of
the vibration signal under fluid impact decreases significantly after the multiphase fluid
penetrates the pipe.

6. Conclusions

The investigation on multiphase vortex-induced vibration has essential scientific
research value and engineering application prospects. In this paper, a fluid-structure
coupling vibration modeling method is proposed to reveal the vortex-induced vibration
evolution mechanism. The main conclusions are as follows:

(1) A multiphase vortex dynamics model is set up to obtain the evolution laws of the
vortex formation. The vortex formation has two critical transitions, which induce the
single flow to change into a two-phase flow and multiphase flow. The vorticity values
in the central region are larger and the energy shock wave in the coupling process
causes pressure oscillation.

(2) The frequency amplitude in the multiphase-mixing process is much larger than that of
the single water-phase and water–oil two-phase flow state. In the critical penetrating
state, the signal has transient distortion characteristics with the largest amplitude. The
vibration signal has a high amplitude frequency component in 45~50 Hz, resulting in
a highly nonlinear frequency structure.

(3) The different density of fluid medium leads to randomness and nonlinear impact
vibration. The amplitude of the vibration signal exists in the process of increasing
to the peak, and then decreasing instantaneously. The vibration amplitude of the



Processes 2023, 11, 568 15 of 17

45~50 Hz high-frequency band increases obviously, which is related to the large
deformation caused by the fluid energy impact on the shell and the sharp noise caused
by gas-phase suction during the critical transition. The frequency range of 45~50 Hz
amplitude and structure evolution can be used to detect the critical vortex time.
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