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Abstract: Electrochemical low-cost sensors, suitable for the monitoring of different air quality pa-
rameters such as carbon monoxide or nitrogen dioxide levels, are viable tools for creating affordable
handheld devices for short-term or dense air quality monitoring networks for long-term measure-
ments and IoT applications. However, most devices that utilize such sensors are based on proprietary
hardware and software and, therefore, do not offer users the ability to replace sensors or interact with
the hardware, software, and data in a meaningful way. Initiatives that focus on an open framework
for air quality monitoring, such as the AirSensEUR project, offer competitive open source alternatives.
In this study, we examined the feasibility of the application of such devices. Five AirSensEUR
units equipped with chemical sensors were placed next to a reference air quality measuring station
in Vienna, Austria. During co-location, concentrations of 0.20 ± 0.06 ppm, 7.14 ± 8.66 ppb, and
17.58 ± 9.90 ppb were measured for CO, NO, and NO2, respectively. The process of evaluating
the performance of the low-cost sensors was carried out and compared to similar studies. Data
analysis was carried out with the help of the basic functions in MS Excel. We investigated the linear
correlation between the sensor and reference data and thus calculated the coefficient of determination,
the average and maximum residuals, and the correlation coefficient. Furthermore, we discuss sensor
properties in regard to selectivity and long-term stability.

Keywords: low-cost sensor; air quality monitoring; nitrogen dioxide; nitrogen oxide; carbon
monoxide; electrochemical sensors; field evaluation

1. Introduction

In the past, several studies have shown the importance of air quality for the well-
being and health of humans [1–3] and the challenges that come with the assessment of
air pollutants. Since in some areas of the world, the information on air quality is either
highly sparse or non-existent due to the high cost of traditional monitoring stations [4],
the monitoring of outdoor and indoor air quality in urban areas through low-cost sensor
networks has received increasing interest by manufacturers, communities, and scientists
alike [4–6]. Triggered by this development, smart home devices that make use of such
sensors have entered the market, and different OEMs offer various solutions for how
different types of sensors can be operated and how recorded data can be stored, accessed,
and visualized [7]. On the one hand, there are commercial products that provide users
with relatively easy-to-use devices and software that, most of the time, lacks the capability
of hardware calibration but provides a direct output of concentration values in parts per
million or similar via calibration by the manufacturer. On the other hand, open source
projects, such as “AirSensEUR”, were founded to provide cost-effective, transparent, and
sustainable frameworks and devices for operating various types of low-cost sensors [8],
with the main drawback being that users need at least basic skills in electrical and software
engineering to utilize the equipment. Aside from this, usually, calibration through co-
location and the application of at least basic mathematical functions are needed to derive
the correct output of concentration levels [9,10].
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During the development of the AirSensEUR project, several sensors had already been
reviewed and/or tested and evaluated, and mathematical functions were established to
increase the accuracy and reproducibility of measurements. At the same time, the de-
velopment of software and hardware that are specifically made for the application of
mathematical functions and formulas to make complex data processing accessible to end
users is still ongoing [11]. Since most previous evaluations have been carried out by devel-
opers and experts in the field of air quality monitoring and electrical engineering [10,12], a
user’s perspective is valuable to evaluate the status of the accessibility of the framework
and highlight problems that occur in the process.

We purchased five pre-built prototypes of AirSensEUR devices in late 2019 and placed
the devices next to a municipal air quality reference measuring station in September
2020 in Vienna, Austria. We evaluated the performance of the selected sensors based
on the software provided by the AirSensEUR project or through simple data analysis
with MS Excel.

Electrochemical Sensors

Next to optical sensors that, for example, aim at the measurement of different fractions
of particulate matter, electrochemical sensors for the detection of gaseous pollutants repre-
sent the most commonly used sensors in IoT devices such as “AirSensEUR”. In general,
these low-cost sensors are based on the principle of gas passing through a permeable
membrane (filter) and creating a reaction in an electrochemical cell that mainly consists of
an electrolyte and working, counter, reference, and auxiliary electrodes (newer versions),
with a cost of around EUR 150–500 per sensor.

The working electrode is the site for either the reduction or oxidation of the chosen
gas species and is generally coated with a catalyst that provides a high surface area and
is optimized to promote the reaction with the gas of choice. Through the reaction, the
electronic charge is generated at the working electrode, which is then balanced by a reaction
at the counter electrode, ultimately leading to an electric current, which is the measurable
output signal of the sensor. The reference electrode is used to maintain the working
electrode at a fixed potential, and the auxiliary electrode works as a second working
electrode, which has no contact with the target gaseous pollutants and therefore generates
a background current related to the changes in the environmental conditions, which is used
to correct the working electrode that is in contact with the target pollutants [4,13].

Since the target gaseous pollutants enter the electrochemical cell only by diffusion,
the sensors are designed in such a way that the rate of diffusion to the sensor is lower
than the rate of reaction with the working electrode. This leads to sensor output that is
directly proportional to the concentration of the target pollutant. Table 1 shows the sensors
that were examined in this study together with the parameters that were recorded by the
reference measuring station.

Table 1. Examined air pollutants.

Carbon monoxide (ppm) CO Alphasense CO-A4 [14]

Nitrogen monoxide (ppb) NO Alphasense NO-B4 [15]

Nitrogen dioxide (ppb) NO2 Alphasense NO2-B43F [16]

Commonly known advantages of electrochemical sensors are their low manufacturing
cost, linear output, good resolution and repeatability, low power consumption, and small
form factor. The disadvantages include a narrow temperature range due to the sensitivity
to temperature, cross-sensitivity to other gases, and a limited and quite short shelf life that
depends on the target gas and the environment the sensors are used in [4,6].

Tables 2 and 3 show the most important and quite well-understood interfering co-
pollutants in regard to ambient air in suburban areas according to Lewis et al., 2016. The
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observed ppb per pollutant rates were 106 ± 24 for CO; 0.2 ± 0.1 for SO2; 1.3 ± 7.2 for NO;
23.6 ± 12.3 for O3; 5.1 ± 0.2 for NO2; and 389 ± 24 (ppm) for CO2 [10,17].

Table 2. Impact of co-pollutants on sensor signal when measuring a pollutant mix with pollutant
concentrations typical for European suburban levels, expressed in percentages. Adapted from
Lewis et. al. (2016) [10].

CO O3 SO2 CO2 NO NO2

NO-B4 0 −34.12 0.14 −985.32 - −415.71

NO2-B4 0 0 0 118.94 −20.61 -

CO-A4 - 1.4 −0.01 0 0 0.40

Table 3. Cross-sensitivity (in ppb/ppb), estimated from Lewis et al. (2016). Adapted from [17].

CO O3 SO2 CO2 NO NO2

NO-B4 0 −0.020 0.013 3.2 × 10−5 - −1.057

NO2-B4 0 0 0.027 0.15 −0.054 -

CO-B4 - −0.053 −0.034 0 0 0.085

To reduce the influence of meteorological parameters and co-pollutants and to in-
crease selectivity, different approaches using the hardware and software have already
been established.

In the case of meteorological parameters, mathematical methods have been devel-
oped [11,18] to correct for their influence on sensor data, which can be integrated into soft-
ware for data treatment. Similar things can be done for the consideration of co-pollutants, as
shown by Lewis et al. [10], with the drawback being that universal correction factors could
be influenced by the concentration range of reference data, and sometimes the influence
of co-pollutants could be higher than the actual sensor reading of the target gas [10]. A
second approach, which is, for example, also followed by the “AirSensEUR” project, is the
process of co-locating sensors to reference devices and treating the collected data with an
algorithm that is designed to correct the sensor output for the influence of meteorological
parameters and co-pollutants, with the drawback that co-location might not be viable for
users. Other studies have also shown the feasibility of machine learning [10,19–21], with the
machine learning method outperforming other calibration models, such as univariate linear
regression and multiple linear regression [19], and the potential to overcome long-term
sensor drift effects to enable repeated deployment of the sensors [20].

However, there are also significant improvements and optimizations on the hardware
side. Modern electrochemical sensors include filters to protect the sensor from dust and
water and prevent the access of interfering gas to the electrochemical cell to increase the
selectivity of the sensor [13]. There is also ongoing development regarding improving the
selectivity and long-term stability of the (catalytic) sensor material, as shown in [22,23].
According to the work of Liu et al. [22], 2D nanomaterials (graphene, MoS2, BN, MXenes,
phosphorene, etc.) as the sensing layer, (working electrode) show superior performance
at room temperature in comparison to traditional metal oxide semiconductors, which
would eliminate the error caused by temperature in available electrochemical sensors.
Nevertheless, the manufacturing costs for 2D nanomaterials are still high due to their lack
of high yield and efficient engineering processes. In addition, 2D nanosheets of metal
oxides show increased robustness against temperature changes but still are not able to offer
satisfying selectivity in comparison to other 2D nanomaterials.
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2. Materials and Methods
2.1. AirSensEUR Devices

AirSensEUR (www.airsenseur.org, accessed on 30 June 2022) is an open framework
focused on air quality monitoring at low concentrations using low-cost sensors and is
composed of electronic boards (shields) and necessary hardware, firmware, and software
applications. The platform, developed by the Joint Research Center (JRC; the European
Commission’s science and knowledge service), among others, offers multiple possibilities in
regard to sensor combination by providing the needed electronics (power supply, reference
voltage, etc.) and connections on different electronic boards. Each device consists of a host
that is able to control several sensor shields through a sensor bus, send commands to sensor
shields, and retrieve sensor data [8]. By assuring interoperability and compliance with the
INSPIRE directive, the capacity to work as a node within a network of multi-sensors is
given [24].

However, since only specific shields and sensors have already been evaluated in previ-
ous studies, a standard kit of four chemical sensors, as recommended by the developers,
was purchased and mounted in the ASE boxes.

The chemical sensors were plugged into the respective AirSensEUR shields that
provide digital sensor signal output between 0 and 65,535, which corresponds to a 16-bit
analog to digital conversion [25]. The digital values can be converted to voltages using the
configuration parameters that are set by the user or given by the manufacturer and the help
of Equation (1) [11]. Table 4 shows the parameters that were used in this study. Typically,
these parameters and values have to be evaluated for each newly installed sensor type
before measurements can be carried out. In this case, the already set and proven values by
the developers were used to run the sensors, and the co-location and comparison of the
sensor and reference data were used for the conversion of digital into concentration values.

V =
(Re f − Re f AD) + (Digital + 1)× 2× Re f AD

216 (1)

Table 4. Parameters for configuration of chemical sensors in use.

CO NO NO2

Ref -(V) 1.501 1.2 1.701

RefAD (V) 0.501 0.5 0.501

Board.Zero 1.10014 0.8315 2.151

Gain 1 1 2

Rload 50 50 50

RefAFE (V) 1.642 1.663 4.302

InternalZero 67 50 50

2.2. Sensor and Reference Data

From 14 September 2020 to 21 September 2020, five AirSensEUR units, equipped with
sets of three sensors, where deployed at the reference measuring point “Taborstrasse”,
managed by the “Municipal Department 22—Environmental Protection, MA22” in Vienna,
Austria [26]. For data analysis and evaluation, 30-min mean values, calculated from the
data recorded in intervals of 1 min, were used as the reference data. Additionally, 30-min
mean values of the sensor data recorded in intervals of approximately 1 min were used.
Table 5 shows the equipment that was used at the reference measuring station that was
checked for accuracy every 24 h with the help of a multi-point ASGU-370 calibration unit
by Horiba Ltd. (Kyoto, Japan) [27]. Table 6 shows the range and average of the recorded
reference data set with the corresponding ranges of temperature and humidity that were
present during co-location.

www.airsenseur.org
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Table 5. Equipment used at the reference measuring station.

Parameter Product Description Gas Flow Rate Reproducibility Linearity

CO Horiba APMA-370 [28] 1.5 L/min ±1% ±1%

NO and NO2 Horiba APNA-370 [29] 0.8 L/min ±1% ±1%

Table 6. Average concentrations, temperature, and humidity of the reference data.

Temperature Humidity

CO 0.11–0.51 (Ø = 0.20 ± 0.06) ppm
11.1–30.6

(Ø = 20.6 ± 4.9) ◦C
29–82

(Ø = 54 ± 12.8)%
NO 0–64.93 (Ø = 7.14 ± 8.66) ppb

NO2 2.43–50.15 (Ø = 17.58 ± 9.90) ppb

2.3. Software and Data Analysis

The AirSensEUR project offers developed software in the form of an application
written in the programming language “R”, which can be used for the processing of recorded
reference and sensor data and is available via GitHub [30]. Users have to go through
the quite tedious installation process by installing the development environment for the
programming language, RStudio, and additionally needed packages and have to load the
code into the program to compile and run the app [11]. When complete, configuration data
can be loaded and sensor data can directly be downloaded from the server, where recorded
data are stored using InfluxDB, by using the graphical interface of the app. In the next step,
the reference data, which are used for calibration, have to be loaded and processed. The
app offers different possibilities to load these data into the program memory. We chose to
provide our data as an offline * CSV file. However, we were not able to successfully load
our sensor and reference data into the application and, therefore, tried to troubleshoot with
the help of the developers. Unfortunately, the problems could not be resolved in the set
time frame and it was decided to evaluate the data with the help of basic functions in MS
Excel instead.

In succession, the digital raw data from the A/D converter were plotted against the
reference data in ppb/ppm for each sensor, and the following parameters were determined:
linear regression, coefficient of determination, Pearson correlation coefficient, and residuals.

2.3.1. Linear Regression and Coefficient of Determination

Linear regression analysis (method of least squares) was carried out with the help of the
linear fit feature in MS Excel. The principle of the calculations is shown in Equations (2)–(4).
We calculated the 30-min mean values for the sensor data and compared them to the 30-min
mean values of the reference data.

n

∑
i=1

(yi − a× xi − b)2 → minimum (2)

n

∑
i=1

(yi − ŷi)
2 → minimum (3)

ŷ = a× x + b (4)

To rate the linear regression for each sensor, the coefficient of determination (R2) was
calculated with help of the function “=RSQ()” in MS Excel. The mathematical principle of
the calculation is shown in Equation (5) and the results for R2 are values between 0 and
1, where 1 is interpreted as a perfect correlation between the two input data sets and 0 is
interpreted as no correlation.
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R2 =
∑n

i=1
(
ŷi − Ȳ

)2

∑n
i=1

(
yi − Ŷ

)2 0 ≤ R2 ≤ 1 (5)

2.3.2. Pearson Correlation Coefficient

The correlation between the sensor and reference data was determined with the
Pearson correlation coefficient (rxy) and the help of the function “=PEARSON()” in MS Excel.
The mathematical principle of the calculation is shown in Equation (6). The resulting values
vary between −1 and 1, where −1 is equivalent to a perfect negative linear correlation, 0
means no correlation, and 1 is equivalent to a perfect positive linear correlation.

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1 (xi
2 − x)2

√
∑n

i=1(yi − y)2
1 ≥ rxy ≥ −1 (6)

2.3.3. Average and Maximum Residuals

With the help of the equations derived from the linear fit, the residuals were calculated
for each datapoint.

Example:
y = ax + b, with a = −0.0555 and b = 3437.5

For the raw sensor data, x = 61,441.989. This results in y = 27.469 ppb, compared to the
recorded real value of y = 25.08 ppb.

Therefore the residual for x = 61,441.989 results in: ∆y = y − y = −2.389 ppb.
Afterwards, the average and maximum absolute residuals for each sensor were found

with the help of the =AVG() and =MAX() function in MS Excel, and the average deviation
as a percentage (%) was calculated.

3. Results

The results derived from this study mainly consist of the calculated linear equation,
the coefficient of determination, the linear correlation, residuals, and diagrams for each
investigated sensor.

3.1. Nitrogen Dioxide (NO2)

The examined NO2 sensors showed a quite significant negative correlation to the
reference data, with rxy ranging from −0.6721 to −0.8622, but they also showed significant
deviation in the form of high average residual values ranging from 4.8903 to 6.0326 ppb
and maximum residuals from 30.055 to 33.313 ppb. The plotted data (Figure 1) suggest that
the deviation increased with rising concentrations. Table 7 shows the calculated values for
the NO2 sensors.

Table 7. Calculated values for data analysis of NO2 sensors.

290 A 291 A 2921 458 A 4583

Slope −0.0555 −0.0498 −0.0238 −0.1069 −0.0862

Intercept (ppb) 3437.5 3074.8 1453.7 6650.8 5348.5

R2 0.6438 0.5724 0.4157 0.6734 0.7434

rxy −0.8024 −0.7566 −0.6721 −0.8206 −0.8622

∆ymax (ppb) 32.969 32.558 30.551 30.055 33.313

∆yavg (ppb) 4.8903 5.348 6.0326 4.9808 4.2677

∆yavg (%) 28.09 30.70 35.24 39.75 24.98
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Figure 1. (a–e) Plotted data points (blue dots) and trend line (red) for the examined NO2 sensors.



Energies 2022, 15, 5688 8 of 12

3.2. Nitrogen Oxide (NO)

The examined NO sensors showed a weak correlation with the reference data, with rxy
ranging from 0.3342 to 0.3961, significant deviation with the high average residual values
ranging from 65.184 up to 69.275%, and maximum residuals from 52.262 to 55.833 ppb. The
plotted data (Figure 2) show the presence of outliers, which leads to high uncertainty when
predicting the concentration values of NO. Table 8 shows the calculated values for the
NO sensors.
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Figure 2. (a–e) Plotted data points (blue dots) and trend line (red) for the examined NO sensors.
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Table 8. Calculated values for data analysis of NO sensors.

290 A 291 A 2921 458 A 4583

Slope 0.0093 0.0051 0.0059 0.0051 0.0055

Intercept
(ppb) −79.714 −43.078 −49.794 −42.119 −46.688

R2 0.1569 0.1117 0.1186 0.1133 0.1319

rxy 0.3961 0.3342 0.3444 0.3366 0.3632

∆ymax (ppb) 52.888 55.833 55.262 54.88 54.755

∆yavg (ppb) 4.7318 4.854 4.8199 5.0138 4.7744

∆yavg (%) 65.184 69.275 68.432 69.046 67.5

3.3. Carbon Monoxide (CO)

In comparison to the other sensors, the CO sensors showed the strongest linear correla-
tion with the reference data, with rxy ranging from 0.9315 to 0.9549, R2 ranging from 0.8676
to 0.9119, a maximum residual from 0.2418 to 0.2504, and an average residual ranging from
8.0213 to 10.453%. The plotted data (Figure 3) shows the quite high correlation. Table 9
shows the calculated data for the CO sensors.
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Figure 3. (a–e) Plotted data points (blue dots) and trend line (red) for the examined CO sensors.
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Table 9. Calculated values for data analysis of CO sensors.

290 A 291 A 2921 458 A 4583

Slope 0.0001 0.0001 0.0002 0.0002 0.0002

Intercept
(ppm) −0.8022 −0.8623 −0.969 −0.9736 −1.0046

R2 0.9108 0.8676 0.8757 0.9104 0.9119

rxy 0.9544 0.9315 0.9358 0.9542 0.9549

∆ymax (ppm) 0.2499 0.2479 0.2504 0.2418 0.245

∆yavg (ppm) 0.0165 0.0195 0.0202 0.0179 0.0176

∆yavg (%) 8.0213 9.4142 10.453 9.1793 9.0554

4. Discussion

Our results show that in the case of the NO2 and the CO sensors, a quite high correla-
tion (R2(NO2) = 0.6169, R2(CO) = 0.8953) with the reference data was achieved without any
data treatment. Similar studies, such as [31], indicate that our findings are in the expected
range or, as in the case of NO2, show even better performance of the sensors without
further data treatment. For the NO sensors, we achieved a slightly lower R2 value of ~0.13
compared to the already low 0.18 value found in [31]. Table 10 shows the calculated R2

values from our study in comparison to other results.

Table 10. Comparison of results.

Parameter Our Results * E. S. Cross et al. [31] **

R2 R2

NO2 0.62 0.21
NO 0.13 0.18
CO 0.90 0.78

* 30-min mean values, n = 325. ** 5-min mean values, n = ~30,000

Since there are several meteorological parameters, such as temperature, humidity [32],
and other pollutants such as O3, that lead to false sensor readings and are even able to
totally exceed the real influence of the measured gas, for example, as shown in [10,12,31],
a relatively high deviation between different studies is expected. In addition, a quite
significant drift of the sensor output over time has to be considered. Furthermore, the
usage of complex calibration models or algorithms, machine learning, and complex data
treatment is considered state-of-the-art, which usually leads to much higher correlations
between the true reference data and the (predicted) sensor data [7,19]. To achieve the best
results with these techniques, the right combination of sensors also has to be considered.
If, for example, O3 has a strong influence on the NO2 sensor, the levels of O3 have to be
measured so that data can be fed into the respective model for data treatment. Since we
were not able to utilize the algorithm offered within the AirSensEUR project yet, we were
not able to analyze our data in more detail, and only a comparison to the simple linear
correlation data was viable. In conclusion, it is important to not only compare the raw
sensor data to the reference data but to compare data that were treated with software
or models that are tied to the respective hardware framework. However, as pointed out
in another study [7], even with sophisticated statistical analysis, the comparison of data
models with data that aims to compare sensor to reference data is complicated and most of
the time does not lead to conclusions. Factors such as the geographical location, weather
situation, recording intervals, measurement range, and others have a strong impact on the
collected data and the statistical characteristic of the data series [4,7,10,17].

In general, there is a need for easy-to-use, open, and standardized tools for the com-
parison and validation of sensor data since the impact of air quality on human health
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is evident, and smart homes should provide correct and validated data accordingly. In
conclusion, manufacturers of smart home or IoT devices should offer transparency and
cross-platform compatibility and interoperability throughout the whole process of calibra-
tion, data handling, and evaluation. The fact that interoperability seems to be a general
issue with smart home devices [33–35] leads to the conclusion that efforts have yet to be
intensified before electrochemical low-cost sensors can be applied in a meaningful way.
In regard to the AirSensEUR project, we did not encounter any meaningful problems
when handling the pre-assembled hardware (prototypes), but despite it being open source
software, we encountered several issues with the included software application and were
not able to use it accordingly. Therefore, in addition to transparency, easy-to-use software
based on universally acknowledged data analysis models has to be offered to gain the
interest and trust of smart home users.
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