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Abstract: Technological objects and processes are often characterized by fuzzy initial information
necessary for developing their models and optimization. The purpose of the study is to develop
a method for synthesizing linguistic models of fuzzy described objects and a heuristic method
for solving the multicriteria optimization problem in a fuzzy environment. Based on the expert
assessments and logical rules of conditional inference, a method for synthesizing linguistic models
was developed for describing processes with fuzzy input and output parameters. To solve the
problem of multicriteria optimization, a heuristic method based on the modification and combination
of various optimality principles is proposed. Coking reactor models were developed by modifying
the successive regression inclusion method and the least squares method. Linguistic models of the
delayed coking process were developed in the Fuzzy Logic Toolbox, allowing to evaluate the coke
quality depending on the temperature and pressure of coking reactors. Using the proposed heuristic
method, the problem of two-criteria optimization of the delayed coking process with fuzzy constraints
is solved. The results confirm the advantages of the proposed fuzzy approach compared with the
well-known approaches. Unlike them, the proposed method allows making adequate decisions in a
fuzzy environment by maximizing the use of available fuzzy information.

Keywords: chemical-technological system; decision maker; delayed coking unit; linguistic model;
petroleum coke

1. Introduction

The technological processes of processing raw materials and manufacturing products
in oil refining, petrochemicals, and other industries proceed in chemical-technological
systems (CTS) [1,2]. These CTS include a delayed coking unit (DCU) designed for deep
processing of tar or fuel oil in order to obtain high-quality petroleum coke from them and
consisting of interconnected reactors, columns, furnaces, and other units [3]. Petroleum
coke is used in the production of electrodes and anodes, is used in space technology and
electronics, and is a valuable raw material for metallurgy [4].

DCU of the Atyrau Refinery is characterized by the fuzziness of some parameters and
indicators of coke quality (volatility and ash content), which are not determined by measur-
ing instruments under production conditions. In practice, such indicators are evaluated by
the decision maker (DM), production manager, and experts in natural language in the form
of fuzzy verbal information. All this makes it difficult to develop mathematical models of
DCU units, determine the quality of the produced coke, and optimize the delayed coking
process using traditional methods. In this regard, the tasks of developing models and
optimizing the process of delayed coking in a fuzzy environment are becoming very urgent
for the science and practice of oil refining and for consumers of high-quality petroleum
coke. In this regard, the tasks of developing models and optimizing the process of delayed
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coking in a fuzzy environment are becoming very urgent tasks of science and practice in oil
refining and motivate this study.

To conduct the process of delayed coking in DCU coking reactors in the optimal
mode, it is necessary to develop models that describe the dependence of the volume,
quality indicators of coke on the input, and operating parameters, taking into account the
fuzziness of the initial information [5]. Some important indicators, quality indicators of
petroleum coke produced at the DCU, due to the complexity or impossibility of measuring
them in a production environment, are not clearly assessed by DM, experts based on their
experience, knowledge, and intuition, i.e., intelligence. This complicates the development
of mathematical models for determining such fuzzy parameters of CTS using traditional
methods [6–8]. In this regard, for the development CTS models and processes in a fuzzy
environment, it is required to develop special methods that can overcome the problems of
uncertainty due to the fuzziness of the information available.

To automate the process of optimizing the delayed coking process in a fuzzy envi-
ronment according to the selected criteria, it is required to develop a heuristic method
for multicriteria optimization of reactor operating modes based on mathematical models
and using the experience, knowledge, and intuition of DM [5]. All these conditions and
the need to develop models of coking reactors and optimize the delayed coking process,
which is characterized by fuzzy initial information, were the motivations for developing
methods for synthesizing linguistic models and multicriteria optimization of the process
under study in a fuzzy environment.

A well-known approach to solving problems of uncertainty arising due to the random
nature of the initial data is the use of probabilistic methods based on probability theory and
mathematical statistics [9,10]. But it should be noted that these methods are applicable only
under conditions when the axioms of probability theory are fulfilled, for example, the static
stability of an object and repeated experiments under the same conditions. In practice, these
conditions are often not met, which leads to the illegality of the use of probabilistic methods,
and the cause of uncertainty is the fuzziness of the initial information. Often, even with
the theoretical possibility of measuring some parameters, in practice, their measurement
may turn out to be inefficient or economically unjustified, and it is better to estimate them
as fuzzy.

In production conditions, such difficult-to-quantify CTS are quite effectively managed
by DM and experienced technologists based on their knowledge, experience, and intuition,
which are not clearly expressed [11]. Therefore, solving the problem of developing models
and crisp operating modes of fuzzy CTS based on fuzzy information became the motivation
for developing methods for synthesizing linguistic CTS models and heuristic approaches
to solving the problem of studying them in fuzzy work. The method of synthesizing
linguistic models and the heuristic approach to solving a multicriteria problem in a fuzzy
environment, proposed in this paper, are based on the use and variants of the methods of
theories of fuzzy multiple and expert assessments [5,6,11–14]. Many CTS have experienced
DMs who are subject matter experts. By properly organizing the process of interviewing
these experts and formalizing the obtained fuzzy information on its basis, it is possible
to develop models that take into account all the complex relationships among various
parameters of the CTS under study. The resulting models based on fuzzy information
can be more meaningful than models developed by traditional methods and can more
adequately describe real production systems and tasks in a fuzzy environment.

The difference between the results of this study compared to the known results on the
topic under study is that the models of complex, fuzzy CTS-DCU are developed on the basis
of a systematic approach [15,16], using the proposed linguistic method for synthesizing
models in a fuzzy environment. Based on the developed models and the proposed heuristic
method, the operating modes of DCU coking reactors are optimized under conditions of
multicriteria and fuzzy initial information.

As a result of the analysis of various methods for developing mathematical models and
optimizing complex CTS, it was revealed that research papers do not cover the development



Processes 2023, 11, 450 3 of 19

of linguistic CTS models and optimizing their modes of operation according to the vector
of criteria. In the works [6,11,17–20], the approaches to the development of mathematical
models and optimization of the parameters of technological objects, which are characterized
by the fuzziness of the initial information, are investigated and proposed. In these and other
analyzed works on modeling and optimization of complex objects, the issues of developing
linguistic models with fuzzy input and output parameters of the object have not been
studied. In addition, in the well-known methods for solving fuzzy optimization problems,
at the stage of formulation, the fuzzy problem is converted to a set of crisp problems and
then solved by existing methods [21,22]. With this approach, a significant part of the initial
collected fuzzy information (knowledge, experience of experts) is often lost, which leads to
a decrease in the adequacy of the obtained solutions to reality.

The novelty of the proposed fuzzy approach to modeling and optimization of complex,
fuzzy CTS lies in following:

- the proposed method of synthesizing linguistic models allows developing effective
CTS models in conditions of fuzzy input and output parameters, when other known
methods are not effective or not applicable;

- the proposed heuristic method of multicriteria optimization, in contrast to the known
methods for solving fuzzy problems, solves the original fuzzy problem without
converting it to crisp ones in a fuzzy environment. This allows, due to the maximum
use of the collected fuzzy information (knowledge, experience, intuition of DM,
experts), to make effective and adequate decisions in a fuzzy environment.

This study is devoted to the development of a method for synthesizing linguistic
models of the CTS unit and a heuristic method for optimizing its operating modes in a
fuzzy environment. The proposed methods allow, due to a systematic approach that uses
the methods of fuzzy set theory and expert assessment in a complex way, to solve the
indicated gaps in existing modeling and optimization methods.

2. Problem Statement

The investigated DCU, like many CTSs, is characterized by fuzzy initial information
about the quality of the produced petroleum coke, which is necessary for developing
models and optimizing the delayed coking process. Under these conditions, it is necessary
to develop DCU models and optimize the delayed coking process in a fuzzy environment,
based on the experience, knowledge, and intuition of DM experts [4].

In this regard, the purpose of this work is to develop a method for synthesizing
linguistic models of DCU-type fuzzy systems, formalization, formulation of the problem of
multi-criteria choice of the optimal operating mode of an object in a fuzzy environment,
and development of a heuristic method for solving it.

The proposed method for the synthesis of linguistic models, with fuzzy input and
output CTS parameters, is based on the methods of expert assessments and the fuzzy
conditional inference rule [11,12]. In addition, with crisp input, regime parameters, and
fuzzy CTS output parameters, which can also take place in practice, models are developed
based on a modification of the method of sequential inclusion of regressors and the least
squares method.

To formalize and mathematically formulate the problem of multicriteria optimization
in a fuzzy environment with conflicting criteria, i.e., decision-making problems, various
principles of optimality are modified and combined [5]. The proposed method for solving
the formulated decision-making problem in a fuzzy environment will be heuristic and,
based on the experience, knowledge, and intuition of DM and models, allows choosing the
best solution in a fuzzy environment using a computer system.

3. Object, Materials and Methods

The object of the study is the Delayed Coking 21-10/6, Atyrau Refinery, which is
characterized by the fuzziness of some of the initial information. The prospect of the
delayed coking process at the DCU is substantiated by the following factors: adaptability
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of the process to the processing of various raw materials (fuel oil, tar, and other oil refining
residues); high performance of the DCU (105 t/h for raw materials); and the ability to select
the optimal operating mode of the installation using computer systems [23].

Figure 1 shows the flow diagram of DCU 21–10/6, in which the technological process
of delayed coking takes place, and shows the connections between the main units of the
installation [3]. The raw material of the studied DCU is tar, and the target product is
petroleum coke.
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The technological process at the DCU proceeds as follows. Coking primary raw
materials through the furnaces (F-1, F-4), after heating to the required temperature, is fed
into the main distillation column C-1. In distillation column C-1, heated raw materials
and vapors of oil products from coking reactors (R-1-R-4) are separated into different
fractions depending on the boiling point (gas, gasoline, light and heavy gas oils, and
residues). Gasoline, light and heavy gas oils from column C-1 are commercial products;
the gas is used as internal fuel, and the residues are heated to the required temperature in
furnaces of secondary raw materials (F-2, F-3) and sent to coking reactors R-1–R-4. In the
coking reactors, the target product is produced: petroleum coke and the resulting vapors of
petroleum products for separation into fractions are returned to the distillation column C-1.

The volume and quality indicators of coke and other DCU products (gasoline, light,
and heavy gas oils) depend on the process conditions, and the value of the input and
operating parameters, i.e., from the operating modes of the installation. To select the
optimal operating mode of the DCU coking reactors, which provides the maximum volume
of coke with high-quality indicators, it is necessary to develop mathematical models
that describe the dependence of the volume and quality of coke on the input, operating
parameters of the coking reactors [24]. Since the qualitative indicators of coke are estimated
as fuzzy with the participation of DM and experts, it will be necessary to synthesize
linguistic models based on fuzzy input and output parameters of the coking process.

To solve the problems of modeling and optimizing the operating modes of fuzzy coke
chambers, it is necessary to solve the following problems:
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- To develop a method for synthesizing linguistic models of technological processes with
fuzzy input and output parameters. Based on the developed method for the synthesis
of linguistic models, synthesize linguistic models and conduct fuzzy modeling of the
coking process in coke reactors to assess the quality of the produced coke;

- to develop a heuristic method for multicriteria optimization of the operating mode
of coking reactors to maximize the volume of coke produced with the best quality
indicators. Application of the proposed heuristic method to optimize the coking
process and comparison of the obtained results with the results of known methods.

3.1. Linguistic Model Synthesis Method

A block diagram of the developed method for synthesizing linguistic models based
on fuzzy input and output parameters of the object is shown in Figure 2.
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Let us give a detailed description of the main blocks of the proposed method for the
synthesis of linguistic models. In block 2, fuzzy input and operating parameters of the
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process x̃i, i = 1, n are selected, affecting the optimized output parameters ỹj, j = 1, m.,
which are also fuzzy.

In blocks 3 and 4, the terms and universes of the chosen levels x̃i and ỹj are defined. At
the same time, terms (fuzzy set) are fuzzy descriptions of the values of the corresponding
levels of parameters, and universes are intervals of their numerical mapping.

In block 5, the fuzzification procedure is implemented, i.e., membership functions
are constructed that describe the degree of membership in fuzzy sets (terms). In this case,
it is recommended to construct membership functions using the Fuzzy Logic Toolbox
application of the MATLAB system [25,26].

In block 6, a rule base and linguistic models are created, consisting of logical rules of
conditional inference, which have the following structure:

IF x̃1 ∈ Ã1 ∨ x̃2 ∈ Ã2, . . . ,∨ x̃n ∈ Ãn THEN ỹj ∈ B̃j, j = 1, m. (1)

Linguistic models verbally describe the influence of fuzzy input parameters x̃i,
i = 1, n on fuzzy output parameters ỹj, j = 1, m and are synthesized on the basis of a
rule base, which is determined on the basis of expert evaluation methods and fuzzy set
theories. For convenience, the rule base can be arranged in the form of a table, in which,
using term sets (selected in block 3), fuzzy values of input, regime parameters x̃i and the
corresponding fuzzy values of output parameters ỹj are given. On the basis of this table,
it is possible to formalize fuzzy mappings R̃ij, which make it possible to determine the
relationship between linguistic parameters x̃i and ỹj.

For a t level term from term sets, the fuzzy mapping is defined as the Cartesian product
of the corresponding universal sets: R̃p

ij = Ãp
i × B̃p

j . To carry out calculations, it is necessary
to construct matrices of fuzzy relations µR̃ij

(
x̃i, ỹj

)
on the basis of the membership functions

of the fuzzy mapping R̃ij. In the general case, such a matrix for a level p term has the form:

µR̃ij

(
x̃i, ỹj

)
= min

[
µ

p
Ãi
(xi), µ

p
B̃j

(
yj
)]

, i = 1, n, j = 1, m.

In block 7 of the method, to determine the set of fuzzy values of the output parameters
of the process, you can use the compositional inference rule:

B̃j = Ãi
◦R̃ij

where Ãi ⊂ X, B̃j ⊂ Y, a X, Y—universal sets, i.e., universes.
Based on this rule, you can determine the values of the membership function of the

output parameters using the formula:

µt
B̃j

(
y′j
)
= max

xi∈X

{
min

[
µÃi

(x∗i ), µRij

(
x̃i, yM

j

)]}
(2)

In Formula (2) through x∗i —fuzzy values of operating parameters estimated by experts
are designated. Then, the desired set, to which the current values of the operating param-
eters belong, is defined by the formula µAi

(
x∗i
)
= max

i
µAi (xi), i.e., as a set in which the

values of the operating parameters have the maximum value of the membership function.
To defuzzify results, i.e., to determine the numerical values of the output parame-

ters yM
j from the set of fuzzy decisions, you can use the following expression:

yM
j = arg max

y′j
µBj

(
y′j
)

, j = 1, m. Thus, the numerical values of the output parame-

ters are chosen as the argument of the maximum value of the membership function of the
output parameters.

The application of the described approach to determining the numerical value of the
output parameter yM

j is justified, in the case of a sharp form of the membership function in
the region of the maximum value. If the graph of the membership function is flatter, i.e., in
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the region of the maximum value, with many points close in value, then as the numerical
values of the output parameter yM

j you can choose their average value.
To determine the volume of coke and its quality indicators based on the modification

of the method of sequential inclusion of regressors [27], fuzzy regression models were
developed, and their parameters were identified using the REGRESS program [28], which
implements the least squares method [29].

3.2. MC + PO Method

In general, the problem of multicriteria optimization of the coking process in a fuzzy
environment based on the modification of the principles of the main criterion (MC) and
Pareto optimality (PO) is written as:

max
x∈X

µ1
0(x),

X =

{
x : x ∈ Ω ∧ arg

(
µi

0(x) ≥ µi
R

)
∧ argmax

x∈Ω

L

∑
q=1

βqµq(x) ∧
L

∑
q=1

βq = 1∧βq ≥ 0, i = 2, m, q = 1, L

}
,

where µ1
0(x)—normalized main criterion; x = (x1, . . . , xn)—vector of input, mode param-

eters of DCU objects; Ω —area of definition of the vector x; ∧—logical “and”, requiring
the truth of all expressions connected through them; µi

0(x) и µi
R, i = 2, m—local criteria,

except for the main criterion and their specified DM boundary values; βq, q = 1, L—weight
coefficients of fuzzy constraints; µq(x)—membership functions that estimate the degree of
fulfillment of fuzzy constraints.

To solve the stated problem of multicriteria optimization with m criteria and L fuzzy
constraints based on the principles of MC and PO, a heuristic method MC + PO has been
developed, consisting of the following points:

1. For DM, experts determine pq, q = 1, L—the number of steps for each q-th coordinate
of the priority series for the criteria IC = {1, . . . , m}, where 1 is the priority of the
main criterion is µ1

0(x).
2. To input the values of the vector of weight coefficients β = (β1, . . . , βL), which reflects

the mutual importance of fuzzy constraints.
3. To determine the boundary values for local criteria (except for the main—the first

one), which are taken into account in the composition of the constraints µi
R, i = 2, m.

4. To calculate the lengths of steps hq = 1/pq, q = 1, L, to change the coordinates of the
vector β = (β1, . . . , βL).

5. By changing the coordinates in the intervals [0, 1] with a step hq to construct weight
vectors β1,β2, . . . ,βN, where N = (p1 + 1)·(p2 + 1)· . . . ·(pL + 1).

6. To determine the term-set for describing fuzzy constraints and construct membership
functions that estimate the degree of their fulfillment µq(x), q = 1, L.

7. Using mathematical models of the object, solve the problem of maximizing the main
criterion µ1

0(x), on an admissible set X, which is determined by the Pareto optimal-
ity principle. Identify current solutions: x

(
µi

R,β
)
; µ1

0
(
x
(
µi

R,β
))

, . . . , µm
0
(
x
(
µi

R,β
))

;
µ1
(
x
(
µi

R,β
))

, . . . , µL
(
x
(
µi

R,β
))

, i = 2, m.
8. For DM to analyze the obtained current solutions. If the current solutions satisfy DM,

then go to step 9. Otherwise, DM correct the values µi
R, i = 2, m and/or β and go to

step 3 to improve the solution.
9. The output of the best results selected by the DM: x∗

(
µi

R, β
)
, providing the maximum

value of the main criterion µ1
0
(
x∗
(
µi

R, β
))

, the values of other criteria
µ2

0
(

x∗
(
µi

R, β
))

, . . . , µm
0
(
x∗
(
µi

R, β
))

, i = 2, m and maximum degrees of fulfillment
of fuzzy constraints µ1

(
x∗
(
µi

R, β
))

, . . . , µL
(
x∗
(
µi

R, β
))

, i = 2, m.
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4. Results
4.1. Synthesis of Linguistic Models and Fuzzy Modeling of the Coking Process in Reactors to
Assess the Quality of Coke

Based on the method of synthesizing linguistic models proposed in Section 2, linguistic
models have been developed that evaluate the quality of coke from R-1–R-4 DCU coking
reactors for fuzzy modeling in the Fuzzy Logic Toolbox [25,26].

The main input, operating parameters that most strongly affect the main indicator of
coke: ỹ2—coke volatility based on expert assessment, are chosen: x̃2—temperature and
x̃3—pressure in coking reactors, which are characterized by fuzziness (block 2). The selected
fuzzy parameters are described by term sets: x̃2 = {“low”, “below average”, “average”,
“above average”, “high”}; x̃3 = {“low”, “below normal”, “normal”, “above normal”, “high”};
ỹ2 = {“very low”, “low”, “medium”, “high”, “very high”} (blocks 3.4).

Further, for fuzzification, i.e., for the construction of the membership function of the
parameters x̃2, x̃3 and ỹ2 the following abbreviated terms are introduced (Table 1).

Table 1. Terms of linguistic variables and their abbreviations for constructing their membership
function and forming a rule base.

Terms of Fuzzy Parameters Symbol

Low LW

Below average BA

Average AR

Above average AA

High HG

Below normal BN

Normal NR

Above normal AN

Very low V LW

Very high VHG

Universes, i.e., universal sets of reduced linguistic variables, necessary for constructing
the membership function are shown in Table 2.

Table 2. The universes for fuzzy parameters x̃2, x̃3, and ỹ2.

Fuzzy Input Parameters Values of Fuzzy Input Variables
LW BA, BN AR, NR AA, AN HG

x̃2—temperature at the inlet of coking reactors 470–477 472–479 477–484 482–489 487–494
x̃3—pressure in coking reactors 2.4–3.3 3.0–3.7 3.5–4.2 4.0–4.8 4.6–5.5

Fuzzy Output Parameter Fuzzy Output Parameter Values
V LW LW AR HG VHG

ỹ2—volatility of coke 2–5 4–8 7–11 10–14 13–16

Further, the fuzzification procedures and other procedures of the fuzzy inference
algorithm are implemented in the Fuzzy Logic Toolbox applications of the MATLAB
package. Figure 3a,b shows the membership functions for fuzzy input parameters x̃2, x̃3,
and Figure 4 shows the output parameter ỹ2, constructed using the Fuzzy Logic Toolbox.



Processes 2023, 11, 450 9 of 19Processes 2023, 11, x FOR PEER REVIEW 9 of 20 
 

 

  
(a) (b) 

Figure 3. Membership functions of fuzzy input parameters (а) �̃�2 —temperature; (b) �̃�3—pressure 

in coking reactors. 

 

Figure 4. Membership functions of an output parameter �̃�2—volatility of coke. 

The developed rule base for the fuzzy inference system, which allows to evaluate the 

qualities—coke volatility from fuzzy input parameters, is presented below in the form of 

fuzzy production rules. 

2 3 12
 1 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs LW and is LW THEN is VLW Fx y  

2 3 22
 2 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs LW and is BN THEN is VLW Fx y  

2 3 32
 3 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs BA and is LW THEN is VLW Fx y  

2 3 42
 4 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs BA and is BN THEN is VLW Fx y  

2 3 52
 5 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs LW and is NR THEN is VLW Fx y  

2 3 2 6
 6 :   ?  ?  ?  ?  ?  ? ;x xRule IF is AR and is LW TH s LWyEN i F  

2 3 2 7
 7 :   ?  ?  ?  ?  ?  ? ;x xRule IF is BA and is NR TH s LWyEN i F  

2 3 2 8
 8 :   ?  ?  ?  ?  ?  ? ;x xRule IF is AR and is BN TH s LWyEN i F  

2 3 2 9
 9 :   ?  ?  ?  ?  ?  ? ;x xRule IF is AR and is NR TH s LWyEN i F  

02 3 2 1
 10 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is LW and is AA THEN is LW F  

12 3 2 1
 11 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AA and is LW THEN is AR F  

22 3 2 1
 12 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is BA and is AA THEN is AR F  

32 3 2 1
 13 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AA and is BN THEN is AR F  

42 3 2 1
 14 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AR and is AA THEN is AR F  

52 3 2 1
 15 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AA and is NR THEN is AR F  

62 3 2 1
 16 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AA and is AA THEN is HG F  

 

Figure 3. Membership functions of fuzzy input parameters (a) x̃2—temperature; (b) x̃3—pressure in
coking reactors.

Processes 2023, 11, x FOR PEER REVIEW 9 of 20 
 

 

  
(a) (b) 

Figure 3. Membership functions of fuzzy input parameters (а) �̃�2 —temperature; (b) �̃�3—pressure 

in coking reactors. 

 

Figure 4. Membership functions of an output parameter �̃�2—volatility of coke. 

The developed rule base for the fuzzy inference system, which allows to evaluate the 

qualities—coke volatility from fuzzy input parameters, is presented below in the form of 

fuzzy production rules. 

2 3 12
 1 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs LW and is LW THEN is VLW Fx y  

2 3 22
 2 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs LW and is BN THEN is VLW Fx y  

2 3 32
 3 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs BA and is LW THEN is VLW Fx y  

2 3 42
 4 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs BA and is BN THEN is VLW Fx y  

2 3 52
 5 :   ?  ?  ?  ?  ?  ? ;Rule IF i xs LW and is NR THEN is VLW Fx y  

2 3 2 6
 6 :   ?  ?  ?  ?  ?  ? ;x xRule IF is AR and is LW TH s LWyEN i F  

2 3 2 7
 7 :   ?  ?  ?  ?  ?  ? ;x xRule IF is BA and is NR TH s LWyEN i F  

2 3 2 8
 8 :   ?  ?  ?  ?  ?  ? ;x xRule IF is AR and is BN TH s LWyEN i F  

2 3 2 9
 9 :   ?  ?  ?  ?  ?  ? ;x xRule IF is AR and is NR TH s LWyEN i F  

02 3 2 1
 10 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is LW and is AA THEN is LW F  

12 3 2 1
 11 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AA and is LW THEN is AR F  

22 3 2 1
 12 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is BA and is AA THEN is AR F  

32 3 2 1
 13 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AA and is BN THEN is AR F  

42 3 2 1
 14 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AR and is AA THEN is AR F  

52 3 2 1
 15 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AA and is NR THEN is AR F  

62 3 2 1
 16 :   ?  ?  ?  ?  ?  ? ;x xR yule IF is AA and is AA THEN is HG F  

 

Figure 4. Membership functions of an output parameter ỹ2—volatility of coke.

The developed rule base for the fuzzy inference system, which allows to evaluate the
qualities—coke volatility from fuzzy input parameters, is presented below in the form of
fuzzy production rules.

Rule 1 : IF «x̃2 is LW» and «x̃3 is LW» THEN «ỹ2 is VLW» F1;
Rule 2 : IF «x̃2 is LW» and «x̃3 is BN» THEN «ỹ2 is VLWˇ F2;
Rule 3 : IF «x̃2 is BA» and «x̃3 is LW» THEN «ỹ2 is VLW» F3;
Rule 4 : IF «x̃2 is BA» and «x̃3 is BN» THEN «ỹ2 is VLW» F4;
Rule 5 : IF «x̃2 is LW» and «x̃3 is NR» THEN «ỹ2 is VLW» F5;
Rule 6 : IF «x̃2 is AR» and «x̃3 is LW» THEN «ỹ2 is LW» F6;
Rule 7 : IF «x̃2 is BA» and «x̃3 is NR» THEN «ỹ2 is LW» F7;
Rule 8 : IF «x̃2 is AR» and «x̃3 is BN» THEN «ỹ2 is LW» F8;
Rule 9 : IF «x̃2 is AR» and «x̃3 is NR» THEN «ỹ2 is LW» F9;

Rule 10 : IF «x̃2 is LW» and «x̃3 is AA» THEN «ỹ2 is LW» F10;
Rule 11 : IF «x̃2 is AA» and «x̃3 is LW» THEN «ỹ2 is AR» F11;
Rule 12 : IF «x̃2 is BA» and «x̃3 is AA» THEN «ỹ2 is AR» F12;
Rule 13 : IF «x̃2 is AA» and «x̃3 is BN» THEN «ỹ2 is AR» F13;
Rule 14 : IF «x̃2 is AR» and «x̃3 is AA» THEN «ỹ2 is AR» F14;
Rule 15 : IF «x̃2 is AA» and «x̃3 is NR» THEN «ỹ2 is AR» F15;
Rule 16 : IF «x̃2 is AA» and «x̃3 is AA» THEN «ỹ2 is HG» F16;
Rule 17 : IF «x̃2 is LW» and «x̃3 is HG» THEN «ỹ2 is HG» F17;
Rule 18 : IF «x̃2 is HG» and «x̃3 is LW» THEN «ỹ2 is HG» F18;
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Rule 19 : IF «x̃2 is BA» and «x̃3 is HG» THEN «ỹ2 is HG» F19;
Rule 20 : IF «x̃2 is HG» and «x̃3 is BN» THEN «ỹ2 is HG» F20;

Rule 22 : IF «x̃2 is HG» and «x̃3 is NR» THEN «ỹ2 is VHG» F22;
Rule 23 : IF «x̃2 is AA» and «x̃3 is HG» THEN «ỹ2 is VHG» F23;
Rule 24 : IF «x̃2 is HG» and «x̃3 is AA» THEN «ỹ2 is VHG» F24;
Rule 25 : IF «x̃2 is HG» and «x̃3 is HG» THEN «ỹ2 is VHG» F25;

In the above rules, F1, . . . , F25 are weight coefficients that reflect the degree of
confidence in the truth of subconclusions that take values in the range from 0 to 1. In our
problem, they are all equal to 1.

The above fuzzy knowledge base is implemented using the FuzzyLogic Toolbox and
is shown in Figure 5.
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The results of fuzzy inference visualization in the RuleViewer are shown in Figure 6. The
Input field contains the values of the input variables for which the inference is performed.

The input–output surface, which corresponds to the obtained fuzzy system, which
allows to visually view the results of fuzzy modeling, is shown in Figure 7.

4.2. Development of Mathematical Models of DCU Coking Reactors

As a result of system analysis and expert evaluation of coking reactor operating
modes, the following input, operating parameters were determined that affect the vol-
ume and quality of coke produced: x1—loading (volume) of raw materials; x2 and
x3—temperature and pressure of coking reactors; x4—indicator of coking capacity of
raw materials; x5—recirculation coefficient.

The structures of fuzzy models of coking reactors are identified based on the modified
method of sequential inclusion of regressors [27] and the method of synthesizing CTS
mathematical models based on information of a different nature [30] in the following form:

ỹj = ã0j +
5

∑
i=1

ãijxij +
5

∑
i=1

5

∑
k=i

ãikjxijxkj, j = 1, 3 (3)

where ~—means the fuzziness of the corresponding parameters and coefficients; ỹj,
j = 1, 3—fuzzy output parameters (volume of coke and its quality indicators: volatility
and ash content of coke); xij, xkj—input, mode parameters; ã0j, ãij, ãijk—identifiable fuzzy
parameters (regression coefficients: free member, coefficients of the linear and non-linear
parts of the model).
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To identify the fuzzy parameters of fuzzy models (3) based on the α-level set, it is
necessary to convert fuzzy models to a system of crisp models. These models describe the
influence of input, operating parameters on the volume and quality of coke with different
accuracy (depending on the α value):

yal
j = aal

0j +
5

∑
i=1

aal
ij xij +

5

∑
i=1

5

∑
k=i

aal
ikjxijxkj, j = 1, 3 (4)

In the system of Equation (4) Lα =
{

αl , l = 1, 5, α = (0.5; 0.85; 1.0; 0.85; 0.5)
}

—is the
set of α-level, which determines the accuracy levels of crisp models. Then, to identify the
fuzzy coefficients α̃0j, α̃ij, α̃ikj of models (3), it is sufficient to determine the coefficients
α

αl
0j , α

αl
ij , α

αl
ikj of crisp models (4), that satisfy the following condition (6) at each α-level:

Jj =
5

∑
i=1

(
yαl

j − ŷαl
j

)2
→ min, l = 1, 5, (5)

where ŷαl
j —the value yαl

j , obtained on the basis of expert information processing.
Then, the problem of identifying fuzzy coefficients of fuzzy models (3) is reduced to the

problem of identifying crisp coefficients of the resulting crisp models (4) on α-level sets us-
ing well-known parametric identification methods, for example, the least squares method.



Processes 2023, 11, 450 12 of 19

Processes 2023, 11, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 6. Visualization of fuzzy inference in RuleViewer. 

The input–output surface, which corresponds to the obtained fuzzy system, which 

allows to visually view the results of fuzzy modeling, is shown in Figure 7. 

 

Figure 7. The input–output surface in SurfaceViwer. Figure 7. The input–output surface in SurfaceViwer.

On the selected level sets: α = (0.5; 0.85; 1.0; 0.85; 0.5) the values of the output parame-
ters of coking reactors ỹ1, ỹ2, ỹ3 are determined. Thus, for each α = (0.5; 0.85; 1.0; 0.85; 0.5)
a set of crisp models has been obtained that allows estimating the volume of coke at the
outlet of the coking reactors and the quality indicators of the produced coke.

To identify the parameters of the models in this work, we used the REGRESS soft-
ware package, which implements the least squares method [26]. As a result, the mod-
els describing the dependence of the coke volume and its quality on the input, oper-
ating parameters of the coking reactors, after parametric identification on the level set
α = (0.5; 0.85; 1.0; 0.85; 0.5) have the form of ordinary regression equations at the selected
α levels.

The model estimating the volume of coke ỹ1 ding on the input, operating parameters
x1, x2, x3, x4, x5n the selected α-level sets after parametric identification by the least squares
method is given in Appendix A. Models estimating the volatility ỹ2 and ash content ỹ3 of
coke depending on the input, operating parameters, after parametric identification in a
similar way on the selected α-level sets, are given in Appendices B and C, respectively.

The obtained regression coefficients at different levels α
αl
ij , i = 0, 5, j = 1, 3, q = 1, 3

then for modeling on a computer will be combined according to the well-known formula
of the theory of fuzzy sets (6):

ãij = ∪
α∈[0.5÷1]

aαl
ij or µãij

(
aij
)
= sup

α∈[0,5÷1]
min

{
αl , µ

αl
aij

(
aij
)}

, (6)

where aαl
ij =

{
ãij

∣∣∣µãij

(
aij
)∣∣∣ ≥ α

}
.

The volume of oil product vapors from the output of coking reactors y4 is determined
using a regression-type model developed on the basis of experimental and statistical data [4].
Results of parametric identification of regression coefficients using the REGRESS program:

y4 = 157.165x1 + 3.445x2 − 28.085x3 − 12.07x5 + 0.988x2
1 + 0.557x2

2 − 0.156x2
3+

+0.334x1x2 + 0.015x1x2 + 0.185x1x5 − 0.05x2x3 + 0.045x2x5 + 0.004x3x5.
(7)
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4.3. Statement of Problems of Multicriteria Optimization of the Delayed Coking Process in a Fuzzy
Environment and Development of a Heuristic Method for Its Solution

Let µ0(x) =
(
µ1

0(x), µ2
0(x)

)
be the volumes of coke and vapors of oil products from

coking reactors, which are normalized criteria, where x = (x1, x2, x3, x4, x5)—e vector
of input, operating parameters of the reactors described above. Assume for fuzzy con-
straints on the quality indicators of coke ϕ(x)≥̃ bq, q = 1, 2: “coke volatility no more than
≥̃14%» and “coke ash content no more than ≥̃0.8%» the functions of their implementation
µq(x), q = 1, 2 are constructed. Suppose that the priorities of criteria IC = {1, 2} and
constraints IR = {1, 2}, the vector of weight coefficients for criteria γ = (γ1, γ2) and fuzzy
constraints β = (β1, β2) are known or determined by DM, experts.

Then, the mathematical formulation of the problem of multicriteria optimization of the
coking process based on the modification of the principles of the main criterion (MC) [31]
and Pareto optimality (PO) [32] in general form can be written as:

max
x∈X

µ1
0(x), (8)

X =

{
x : x ∈ Ω ∧ arg

(
µ2

0(x) ≥ µ2
R

)
∧ argmax

x∈Ω

2

∑
q=1

βqµq(x) ∧
2

∑
q=1

βq = 1∧βq ≥ 0, q = 1, 2

}
, (9)

where µ1
0(x) и µ2

0(x)—normalized main criterion estimating the volume of coke and the
volume of vapors of oil products from coking reactors; x = (x1, x2, x3, x4, x5)—vector of in-
put, operating parameters of coking reactors; ∧—logical «and»; βq and µq(x),
q = 1, 2—weight coefficients of fuzzy constraints and their membership functions.

To solve the resulting problem (8)–(9), the heuristic method MC + PO developed in
Section 2 is used. Let us describe the results of the application.

1. Defined for each q-th coordinate pq, q = 1, 2, the number of steps: p1 = 5, p2 = 2 for
constraints and a number of priority criteria IC = {1, 2}, where 1 is the priority of the
volume of coke, 2 is the priority of the volume of vapors of petroleum products.

2. The values of weight coefficients of fuzzy constraints β = (β1, β2) = (0.6, 04), are
defined and introduced, reflecting the mutual of these constraints.

3. Boundary values for local criteria are determined, which are taken into account as
part of the constraints µ2

R = 6 m3.
4. Step lengths are calculated using the formula hq = 1/pq : h1 = 1/5 = 0.2;

h2 = 1/5 = 0.2, to change the coordinates of the vector β = (0.6, 04).
5. Changing the coordinates in the intervals [0, 1] with a step h1 = 0.2 and h2 = 0.2, the

weight coefficients are determined β1, β2, . . . , βN , where N = (5 + 1)·(2 + 1) = 18.
6. Term-sets are defined that describe fuzzy constraints and membership functions are

constructed that estimate the degree of their fulfillment µq(x), q = 1, 2.

The task has two fuzzy restrictions on the quality indicators of coke: “coke volatility
must be less than ≤̃14%»; “the ash content of the coke must be less than ≤̃7%». For a
fuzzy description of these qualitative indicators of coke, the term set T(Y) = {low, medium,
high} is defined. For each term, membership functions are constructed that estimate
the degree of fulfillment of fuzzy constraints according to the Gaussian-type formula:

µt
1(x) = e(Qt |yi−ym

i |
Nt ), where t—the term number; Qt and Nt—coarse and fine tuning coef-

ficients identified when approximating the function graph; yi and ym
i —a fuzzy parameter

and the maximum corresponding numerical value (where the membership function takes
the maximum value). Thus, the membership functions for volatility µk

1(x), k = 1, 3 and
ash content of coke µk

2(x), k = 1, 3 are constructed in the following form:

µ1
1(x) = e(0.5|y2−6|0.60); µ1

2(x) = e(0.3|y3−0.4|0.15);

µ2
1(x) = e(0.5|y2−10|0.55); µ2

2(x) = e(0.3|y3−0.6|0.12);
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µ3
1(x) = e(0.5|y2−15|0.50); µ3

2(x) = e(0.3|y3−0.9|0.10).

7. Using the mathematical models of coking reactors developed in Section 2, the prob-
lem of maximizing the main criterion µ1

0(x) (coke volume) on an admissible set
X (9) is solved. Current solutions defined: x

(
µ2

R,β
)
; µ1

0
(
x
(
µ2

R,β
))

, . . . , µm
0
(
x
(
µ2

R,β
))

;
µ1
(
x
(
µ2

R,β
))

, . . . , µL
(
x
(
µ2

R,β
))

.
8. DM analyzed the obtained current solutions. Since in the first four solutions the DM

is not satisfied with the current solutions, in order to iteratively improve the solution,
he corrected µ2

R and β and the transition was carried out back to point 3. On the 5th
cycle, the best results were obtained that satisfied DM, and the transition was made to
the next point 9.

9. The best solutions chosen by DM are derived: x∗
(
µ2

R, β
)
, which provide the maximum

value of the main criterion µ1
0
(
x∗
(
µ2

R, β
))

, not worse than the boundary value of the
criterion µ2

0
(

x∗
(
µ2

R, β
))

and maximum degrees of fulfillment of fuzzy constraints
µ1
(

x∗
(
µ2

R, β
))

, µ2
(
x∗
(
µ2

R, β
))

. These results are listed in Table 3.

Table 3. Results of optimization of the coking process by the known deterministic method [33], the
proposed heuristic method and experimental results of optimization at the Atyrau Refinery.

Criterion and Fuzzy Constraints Deterministic Method Heuristic Method MC + PO Experimental Method

Coke volume, t/h—criterion y1; 22.5 23.7 23.0

The volume of vapors of petroleum
products, t/h—criterion y2; 8.0 8.5 8.4

Membership functions of fuzzy constraints:
Coke volatility ≥̃ 12%»—µ1

(
x∗
(
µ2

R, β
))

– 1.0 (·)L

Ash content ≤̃0.8 % vol.»: –µ2
(

x∗
(
µ2

R, β
))

; – 1.0 (·)L

Optimal parameters of DCU coking reactors:
x∗1—volume of raw material (tar); t; 105 105 105

x∗2—coking reactor temperature, ◦C; 489 487 488

x∗3—coking reactor pressure, kg/cm2; 5.0 5.0 5.0

x∗4—coking capacity of raw materials, %; 7 7 7

x∗5—recirculation ratio. 11 11 11

Note:—means that these parameters are not determined by this method; (·)L—these parameters are not di-
rectly measured, are evaluated in the laboratory with the participation of a person; final values µ2

R = 8;
and β = (0.75, 0.25).

5. Discussion of Results

The constructed linguistic models of the DCU coking reactors using the proposed
method of synthesizing linguistic models make it possible to fuzzily model the coking
process in the Fuzzy Logic Toolbox and select the optimal mode of operation of the reactors.
As can be seen from the results of fuzzy modeling, from the “input-output” surface in
the SurfaceViwer (Figure 7), the lower the temperature and pressure of the reactors, the
lower the coke volatility, i.e., the coke quality improves, and vice versa. This corresponds
to the developed base of rules. Hence the conclusion is that it is necessary to choose a
compromise solution when choosing the values of the input parameters of the reactors,
since on the one hand, they allow increasing the volume of coke while, on the other hand,
worsening its quality. To do this, it will be necessary to solve the decision-making problem
of choosing the best compromise solution.

The results of fuzzy inference visualization in the Rule Viewer (Figure 6) allow to
review the rules for the fuzzy inference of each rule, the resulting fuzzy set, and the
implementation of the defuzzification procedure. Figure 6 shows the simulation results in
the case when the input parameters are entered: the values of the reactor temperature are
482 ◦C and the pressure is 3.95 kg/cm2. Then, as a result of fuzzy modeling, the volatility,
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i.e., the quality of the coke, is equal to 6.09. This means that the quality of the coke is quite
high, since for high-quality coke, the volatility should not be higher than 12. Thus, by
changing the values of the input parameters of the reactors, i.e., simulating their operating
modes, it is possible to evaluate and select the best values for the coke quality.

In the developed models of coke reactors in 4.2, the input, operating parameters, and
volume of produced steam of oil products are crisp, and the volume of coke and its coke
quality indicators are fuzzy. To identify the structure and parameters of fuzzy models,
modified methods of successive inclusion of regressors (for structural identification) and
the least squares method (for parametric identification) were used. The essence of the
modification of these methods is to represent the fuzzy regression equation as a set of clear
regression equations at each set of α-level. To identify the parameters of the regression
coefficients at α levels, the REGRESS software package was used. Then the obtained values
of the coefficients at α levels are combined into one value using Formula (6) of the fuzzy
set theory.

As a result of the analysis and discussion of the optimization results obtained by the
proposed heuristic method and the deterministic method given in Table 3, the following
advantages of the proposed MC + PO heuristic method can be distinguished:

1. The proposed MC + PO heuristic method allows solving the optimization problem in
a fuzzy environment without converting the original fuzzy problem to deterministic
ones. Since when converting a fuzzy problem to a set of deterministic problems, a
part of the original, collected fuzzy information is lost, the adequacy of the solutions
obtained decreases. The proposed heuristic method, due to the maximum use of the
initial fuzzy information, makes it possible to obtain highly adequate solutions to the
problem of decision making in a fuzzy environment. In addition, as can be seen from
Table 3, the proposed heuristic method more accurately matches real, experimental
data compared to the deterministic method.

2. The proposed heuristic method for solving the decision-making problem using fuzzy
information, which is the experience, knowledge, and intuition of the DM, takes into
account its preferences and non-formalizable links between criteria and alternatives.
This allows the DM to make more efficient decisions about production problems in a
fuzzy environment.

3. In contrast to deterministic methods, the developed heuristic method based on the
principles of optimality (MC and PO) makes it possible to determine the values of the
membership function of fuzzy constraints, i.e., the degrees of their fulfillment. This
makes it possible to solve the problem of making decisions with fuzzy constraints,
which does not allow solving other methods.

4. The proposed principle of developing a heuristic approach to solving decision-making
problems in a fuzzy environment allows developing other heuristic methods based
on the modification and combination of other optimality principles, such as maximin,
ideal point, etc. This allows the DM, when solving decision-making problems, de-
pending on the current production situation and the availability of initial information,
to choose and use a more efficient method.

The optimization results presented in Table 3 show that the proposed heuristic method
for solving a multicriteria optimization problem with fuzzy constraints provides better
results compared to known deterministic methods. This is justified by the fact that the
heuristic method makes it possible to improve the values of the criteria (the volume
of coke by 5.33%, the volume of vapors of petroleum products by 6.25%) compared to
the deterministic method with full fulfillment of the requirements of fuzzy constraints
(µ1
(

x∗
(
µ2

R, β
))

= 1, and µ2
(

x∗
(
µ2

R, β
))

= 1).
The main constraints of the proposed approach to modeling the optimization of the

coking process include the complexity of assessing the degree of membership of fuzzy
parameters to fuzzy sets, adequately describing them, and some difficulties for decision-
makers in the process of choosing a solution. In the future, they can be eliminated by
developing a special system for assessing the degree of membership of fuzzy indicators in
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fuzzy sets and preparing and training decision-makers for the decision-making process.
For the development of this study, it is planned to automate and algorithmize the process
of evaluating and choosing the best solution as much as possible.

6. Conclusions

The problems of modeling and optimization of the delayed coking process in a fuzzy
environment are investigated, and approaches to their solution are proposed. Details of the
main findings of the study and conclusions include:

(1) A method for synthesizing linguistic models has been developed, which allows synthe-
sizing linguistic models based on fuzzy information from DMs, experts, representing
their experience, knowledge, and intuition in natural language. Unlike other well-
known methods for developing models with crisp input and fuzzy output parameters,
the proposed method allows synthesizing CTS linguistic models with fuzzy both input
and output parameters of the system. The proposed method of linguistic synthesis is
systemic and comprehensively uses the logical rules of conditional inference, methods
of expert assessments, and fuzzy set theories. Such a systematic application of the
listed methods is required due to the effect of synergy and the property of emergence
in order to obtain an effective solution to the problems under study, which cannot be
obtained using separate methods.

(2) Based on the modification and combination of the principles of optimality of the main
criterion and Pareto optimality, the proposed heuristic method allows to effectively
solve problems of multicriteria optimization in a fuzzy environment. The proposed
heuristic method differs from the known methods for solving fuzzy optimization
problems in the fact that the problem is posed and solved in a fuzzy environment
without preliminary transformation of the original fuzzy problem into a set of crisp
problems. This allows to save and maximize the use of the collected fuzzy information,
i.e., knowledge and experience of DM, experts to get more efficient and adequate
solutions to a production problem in a fuzzy environment.

In the above analysis and comparisons of the results of solving the problem of opti-
mization of the delayed coking process by the proposed heuristic method and deterministic
method (Table 3), the advantages and effectiveness of the proposed approach are substanti-
ated. In the proposed heuristic method for solving problems of two-criteria optimization
with fuzzy constraints, the degree of fulfillment of fuzzy constraints is estimated by the
values of the membership function of these constraints µ1

(
x∗
(
µ2

R, β
))

и µ2
(
x∗
(
µ2

R, β
))

.
As can be seen from Table 1, the values of these functions are equal to 1, which means
complete (100%) fulfillment of the requirements of fuzzy constraints.

(3) On the basis of the proposed methods, linguistic models of coking reactors are syn-
thesized, which make it possible to evaluate the quality of coke depending on the
temperature and pressure of the reactors, and the problem of two-criteria optimization
with fuzzy constraints is effectively solved.

The novelty of the proposed methods and results lies in the effective use of the knowl-
edge, experience, and intuition of DM, experts in the development of models and solving
problems of multicriteria optimization.
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Notations

yM
j the calculated values of the output parameters

yE
j experimental (real) values of the output parameters

RD permissible deviation
X, Y universal sets, i.e., universes
Ãi, i = 1, n, B̃j, j = 1, m fuzzy subsets, input, output parameters of CTS
x = (x1, . . . , xn) vector of input, mode parameters of the object
y = (y1, . . . , ym) vector of output parameters of the object
xi, i = 1, n input, mode parameters of the object
yj, j = 1, m output parameters of the object
x̃i, i = 1, n fuzzy input, mode parameters of the object
ỹj, j = 1, m fuzzy output parameters of the object
R̃ij fuzzy mappings between input, output linguistic variables

of CTS

µR̃ij

(
x̃i, ỹj

)
fuzzy relationship matrices describing fuzzy relationships

β = (β1, . . . , βL) weight vector of fuzzy constraints
µ0(x) =

(
µ1

0(x), . . . , µm
0 (x)

)
normalized vector of criteria

µi
R, i = 2, m boundary values of local criteria specified by DM

(except for the main ones)
µq(x), q = 1, m membership functions that evaluate the degree of fulfillment

of fuzzy constraints

Appendix A. Model Estimating the Volume of Coke Depending on the Input,
Operating Parameters

ỹ1 = −
(

0.5
287.1710 + 0.85

288.1720 + 1
289.1725 + 0.85

290.1727 + 0.5
291.1731

)
+
(

0.5
11.581900 + 0.85

11.583900 + 1
11.585940 + 0.85

11.587950 + 0.5
11.589537

)
x1+

+
(

0.5
8.711019 + 0.85

8.711024 + 1
8.711029 + 0.85

8.711034 + 0.5
8.711039

)
x2 +

(
0.5

71.08033 + 0.85
71.08323 + 1

71.08333 + 0.85
71.08353 + 0.5

71.08373

)
x3−

−
(

0.5
0.77850 + 0.85

0.87850 + 1
0.97890 + 0.85

0.99000 + 0.5
0.00550

)
x4 −

(
0.5

0.010301 + 0.85
0.011201 + 1

0.011701 + 0.85
0.012054 + 0.5

0.013515

)
x5+

+
(

0.5
0.00150 + 0.85

0.00250 + 1
0.01250 + 0.85

0.02250 + 0.5
0.03070

)
x2

1 +
(

0.5
0.16525 + 0.85

0.17700 + 1
0.18758 + 0.85

0.19750 + 0.5
0.28354

)
x2

2+

+
(

0.5
0.002739 + 0.85

0.005539 + 1
0.005739 + 0.85

0.005939 + 0.5
0.006857

)
x2

3 +
(

0.5
0.16028 + 0.85

0.160685 + 1
0.160988 + 0.85

0.161010 + 0.5
0.16358

)
x1x2−

−
(

0.5
1.00000 + 0.85

1.30000 + 1
1.50000 + 0.85

1.70000 + 0.5
1.90000

)
x1x3 +

(
0.5

0.044307 + 0.85
0.045117 + 1

0.04537 + 0.85
0.04567 + 0.5

0.045970

)
x1x5+

+
(

0.5
1.122220 + 0.85

1.21220 + 1
1.22222 + 0.85

1.23225 + 0.5
1.32220

)
x2x3 −

(
0.5

0.1000850 + 0.85
0.121940 + 1

0.131944 + 0.85
0.141937 + 0.5

0.151970

)
x3x4−

−
(

0.5
0.018710 + 0.85

0.021720 + 1
0.029722 + 0.85

0.035720 + 0.5
0.04850

)
x3x5.
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Appendix B. Model Estimating the Volatility of Coke Depending on the Input,
Operating Parameters

ỹ2 =
(

0.5
592600 + 0.85

593300 + 1
593800 + 0.85

594300 + 0.5
595000

)
−
(

0.5
23.7045 + 0.85

23.9450 + 1
24.1345 + 0.85

24.3350 + 0.5
24.5455

)
x1−

−
(

0.5
20.0170 + 0.85

20.3265 + 1
20.5278 + 0.85

20.7580 + 0.5
21.0590

)
x2 +

(
0.5

1.00850 + 0.85
1.11900 + 1

1.23950 + 0.85
1.3490 + 0.5

1.45950

)
x3+

+
(

0.5
3.26100 + 0.85

3.47200 + 1
3.68330 + 0.85

3.89500 + 0.5
3.10650

)
x4 +

(
0.5

0.00350 + 0.85
0.0140 + 1

0.02450 + 0.85
0.03500 + 0.5

0.04550

)
x5+

+
(

0.5
0.00070 + 0.85

0.00150 + 1
0.03330 + 0.85

0.06330 + 0.5
0.0943

)
x2

1 +
(

0.5
0.01350 + 0.85

0.01900 + 1
0.02430 + 0.85

0.02930 + 0.5
0.03850

)
x2

2−

+
(

0.5
0.01500 + 0.85

0.01100 + 1
0.01010 + 0.85

0.01350 + 0.5
0.01550

)
x2

3 +
(

0.5
0.32050 + 0.85

0.421500 + 1
0.52180 + 0.85

0.62250 + 0.5
0.7230

)
x2

4+

+
(

0.5
0.28050 + 0.85

0.3810 + 1
0.48150 + 0.85

0.58200 + 0.5
0.68250

)
x1x2 +

(
0.5

0.02050 + 0.85
0.03100 + 1

0.04150 + 0.85
0.05200 + 0.5

0.06250

)
x1x3−

−
(

0.5
5.06400 + 0.85

5.08100 + 1
5.09260 + 0.85

5.10350 + 0.5
5.10850

)
x1x4 −

(
0.5

0.17300 + 0.85
0.18030 + 1

0.19440 + 0.85
0.19950 + 0.5

0.20700

)
x2x3+

+
(

0.5
0.0635 + 0.85

0.0715 + 1
0.0755 + 0.85

0.0800 + 0.5
0.08850

)
x2x4

Appendix C. Model Estimating the Ash Content of Coke Depending on the Input,
Operating Parameters

ỹ3 =
(

0.5
269.54137 + 0.85

270.86715 + 1
271.94169 + 0.85

272.9427 + 0.5
273.94567

)
−
(

0.5
1.099005 + 0.85

1.09933 + 1
1.099537 + 0.85

1.09973 + 0.5
1.099985

)
x1−

−
(

0.5
0.64015 + 0.85

0.64032 + 1
0.640525 + 0.85

0.64072 + 0.5
0.64052

)
x2 −

(
0.5

2.662925 + 0.85
2.67300 + 1

2.683102 + 0.85
2.693225 + 0.5

2.703330

)
x3−

−
(

0.5
0.044750 + 0.85

0.054700 + 1
0.06478 + 0.85

0.0746 + 0.5
0.0847

)
x4 +

(
0.5

0.001090 + 0.85
0.001100 + 1

0.001111 + 0.85
0.00130 + 0.5

0.001150

)
x5+

+
(

0.5
0.009500 + 0.85

0.001000 + 1
0.001019 + 0.85

0.001035 + 0.5
0.001058

)
x2

1 +
(

0.5
0.007325 + 0.85

0.007530 + 1
0.007639 + 0.85

0.007750 + 0.5
0.007967

)
x2

2+

+
(

0.5
0.000125 + 0.85

0.00150 + 1
0.000174 + 0.85

0.000195 + 0.5
0.000230

)
x2

3 +
(

0.5
0.025250 + 0.85

0.025420 + 1
0.025679 + 0.85

0.025860 + 0.5
0.026075

)
x2

4−

+
(

0.5
0.062435 + 0.85

0.06275 + 1
0.062963 + 0.85

0.063005 + 0.5
0.063201

)
x1x2 −

(
0.5

0.00043 + 0.85
0.00050 + 1

0.000556 + 0.85
0.000610 + 0.5

0.000685

)
x2x3+

+
(

0.5
0.277620 + 0.85

0.27770 + 1
0.277778 + 0.85

0.277805 + 0.5
0.277895

)
x2x4 +

(
0.5

0.029015 + 0.85
0.02910 + 1

0.029167 + 0.85
0.02924 + 0.5

0.029310

)
x3x4−

−
(

0.5
0.0010980 + 0.85

0.001010 + 1
0.001111 + 0.85

0.001215 + 0.5
0.001320

)
x3x5.
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