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Abstract: In this paper, a multi-objective collaborative optimization (MOCO) strategy is proposed for
making decisions on a distillation column group. Firstly, based on data preprocessing, the operating
modes of the tower group are determined by use of the fuzzy C-means clustering method. Secondly,
based on the proposed concept of a collaborative variable, the discrete state-space model of the main
towers are constructed by the subspace identification method. Then, a MOCO optimization model
is designed for the ethylene plant. Finally, NSGA-III is used to solve the optimization problem. An
analysis of a Pareto-optimal frontier and population is carried out. To illustrate the superiority of the
proposed strategy, the results are compared with historical data and the appealing operation area is
finally obtained.
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1. Introduction

In the real world, most optimization problems have multiple conflicting objectives.
Single objective optimization (SOO) which gives a single solution has difficulty weighing
multiple objectives. Unlike SOO, multi-objective optimization (MOO) gives a set of optimal
solutions, each of which corresponds to different values of the objective functions, which, in
turn, can form a Pareto frontier to provide rational guidance to decision-makers. Therefore,
MOO has many applications in renewable energy resources production optimization [1,2],
energy saving optimization [3,4], and emission reduction optimization [5–7]. In trade-off
MOO methods, priori methods, interactive methods, Pareto-dominated methods and new
dominance methods are available [8].

In recent years, there has been a wealth of MOO research on single towers and tower
groups. Zhou et al. [9] optimized the decision variables of a methanol-to-propylene plant
under different operating conditions based on a MOO framework and achieved a balance
between total heating, cooling costs and product purity. For Fischer–Tropsch synthesis,
Zhang et al. [10] transformed the design of a reactive distillation column into a MOO
problem and determined the column structure based on the Pareto-optimal frontier. In [11],
MOO was used to weigh the total annual cost and energy of a cyclohexane–isopropanol–
water extractive distillation process. In [12], by considering three conflicting objectives, the
total annual cost, the CO2 emissions and the molar purity of a biodiesel product, an algal
biodiesel reactive distillation unit was optimized. Gu et al. [13] optimized heat-integrated
pressure-swing distillation based on MOO to reduce the total annual cost and CO2 emis-
sions, while saving energy. For similar purposes, MOO was also used for heteroazeotropic
distillation processes [14], dividing wall columns [15,16]. It is worth noting that ethylene is
one of the most produced chemical products in the world—the ethylene industry is also
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the core of the petrochemical industry, but little research has been undertaken in this area.
Shen et al. [17] targeted the chilling train and demethanization system in ethylene manufac-
turing according to the Pareto-optimal frontier, and, by maximizing the exergy efficiency
and minimizing the operational cost, the optimal operation was selected. Multi-objective
adaptive surrogate model-assisted optimization was proposed by [18] et al. with energetic,
economic and environmental MOO performed for a practical ethylene separation process.
More research should be devoted to the ethylene industry.

MOO studies of single towers and tower groups are essentially based on Aspen [9,11–18].
To build an Aspen model of a tower or tower group, it is necessary to have in-depth knowledge
of the physical parameters and it is difficult to obtain satisfactory Aspen models in the absence
of sufficient parameters. The question arises of how to conduct a MOO study of a tower group
in the absence of the necessary physical parameters or without access to Aspen software. This is
a problem. In addition, the optimization of Aspen-based MOO studies is separated from the
simulation of the process; interaction between software is required. Before population iteration,
the data in Aspen needs to be updated to the optimization platform, either manually or with
the help of plug-ins, which is inconvenient and inefficient.

Under the above circumstances, it is important to study the MOO problem based on
historical data for the manipulated variables and control variables, but this also raises the
following questions: (1) How to handle contaminated data for modeling; (2) What kind of
model to build in order to optimize; (3) How to design a MOO problem for a distillation
column group.

In order to address these problems, a multi-objective collaborative optimization
(MOCO) strategy based on system identification is proposed for an ethylene tower group.
For the preprocessing of historical data, the Hampel method [19,20] is used to eliminate
missing values and outliers. Gaussian filtering [21] is used to smooth the noise present
in the data. Considering the direct or indirect connection between towers, a collaborative
variable is proposed and applied. Fuzzy C-means clustering [22–24], a soft clustering
method, is used to distinguish the operating modes of the ethylene plant. Selecting the
data near the main operating mode, collaborative-variable-based linear discrete state-space
models of the target towers are constructed using a subspace identification method [25].
A MOCO problem with the objectives of minimizing the impurity content in the ethylene
product, the impurity content in the propylene product, and the operating cost is designed
to optimize the top reflux flow rates and steam flow rates of bottom reboilers. NSGA-III [26]
is used to solve the optimization problem and the effectiveness of MOCO is analyzed.

The remainder of this paper is organized as follows: Section 2 describes the ethylene
plant under study. Section 3 describes a data-preprocessing scheme, determines the operat-
ing modes, and constructs state-space models of the target towers. The MOCO problem is
described in Section 4. Section 5 provides a MOCO case study and discussion based on
historical data. The conclusions are presented in Section 6.

2. Description of Ethylene Plant

The ethylene plant studied in this paper has a target annual production of 1 million
tons of ethylene and 500,000 tons of propylene. Without considering the product systems
of ethylene and propylene, the tower group for the distillation process consists of a de-
ethanizer (T1), a C2 hydrogenation reactor (R1), a green oil tower (T2), an ethylene distillation
column (T3), a low pressure depropanizer (T4), a high pressure depropanizer (T5), a C3
hydrogenation reactor (R2), a propylene distillation column A (T6), a propylene distillation
column B (T7), a debutanizer (T8) and several dryers (DR) and heat exchangers (EX).

The tower group is shown in Figure 1. The main control variables of T1 are the
bottom C2 concentration (ethylene and ethane) and the top C3 concentration, which are
measured by online analyzers on the bottom and top lines, respectively. The feed to T1 is
the demethanizer bottom product in the upstream tower group. Its top product goes to R1,
where acetylene is selectively hydrogenated to produce ethylene and ethane. The bottom
product of R1 enters T3 after passing through T2 and a dryer. The main controlled variable



Processes 2023, 11, 436 3 of 14

of T3 is the impurity content in the top ethylene product; the ethylene extracted from the
tower side line is pumped out partially to the cryogenic tank area. The T4 bottom product
is fed to T8 and the top product is used as another feed to T5. The T5 top product is fed
to R2 after a dryer and an arsenic-protected bed, and is eventually provided as a feed to
T7. R2 selectively hydrogenates the methylacetylene (MA) and propadiene (PD) from the
T5 top product to produce propylene and propane. The propylene distillation column is
a two-tower system, with the top product of T6 fed to T7 and the bottom product used
for recirculation. The main controlled variable of T7 is the content of impurities in the top
product, the bottom product is fed to T6 and the product extracted from the tower side line
is used for polymerization.
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Figure 1. Diagrammatic sketch of an ethylene plant.

3. Model Construction

Data preprocessing is required before modeling with historical data, otherwise, it is
difficult to obtain accurate models. On the premise of ensuring the stable operation of the
tower group, the operators need to complete the target according to the plan. Since the
actual operators change shifts by turns, the operation of the tower group will fluctuate,
so it is necessary to identify the operating modes of the tower group. In addition, there is
coupling between towers, which makes it difficult to build a complex model of a tower
group. Establishing a linear model of each tower near a certain operating point is a
good choice.

3.1. Data Preprocessing

The Hampel method [19,20] was used to process the missing values and outliers in one
year’s data for the manipulated and controlled variables for T1, T3, T5, T6, T7. Given the data
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{x1, x2, . . . , xn}, and a sliding window of length k, the i-th median and standard-deviation
estimate are shown in (1), (2), respectively.

mi = median(xi−k, xi−k+1, xi−k+2, . . . , xi, . . . , xi+k−2, xi+k−1, xi+k) (1)

σi = κ median (|xi−k −mi|, . . . , |xi+k −mi|) (2)

where κ = 1√
2erfc−11/2

≈ 1.4826. Near the sequence endpoints, the function truncating the
window is used to compute (1), (2).

If a sample xi satisfies (3) at a given threshold nσ, then the sample is considered as an
outlier and mi is used to replace it.

|xi −mi| > nσσi (3)

Since the controlled variables are all impurity contents measured by online analyzers,
there is a certain amount of noise in the data. Therefore, the data of the controlled variables
are smoothed using the Gaussian-weighted moving average [21] shown in (4).

x̂i =
i+ p−1

2

∑
i− p−1

2

wjxj (4)

where x̂i is the filtered value, p is the window size, and wj is the weighting factor of the
Gaussian distribution.

3.2. Determination of Operating Modes

Since the towers show certain linear characteristics near the stable operating point,
it is necessary to determine the operating modes of the tower group in order to facilitate
the construction of the linear model of each tower. Considering that the target products
of the ethylene plant are ethylene and propylene, the preprocessed data for the impurity
content of the T3 top product (D1), the impurity content on the 73rd tray of T6 (D2), and
the impurity content of the T7 top product (D3) are selected and analyzed by a fuzzy
C-means clustering method [22–24]. Using the membership function (MF), the degree of
belongingness of a sample to a cluster can be quantified.

Figure 2 shows the performance of clustering when the number of clusters is set to
two. The reason for setting the number of clusters to two is that, during the one-year
production process, the operation of a tower group may be affected by people or equipment
and deviate from the main operating mode, that is, the ideal operating conditions of the
tower group.

0.2
30

0.25

0.3

D
3 

(m
ol

/m
ol

)

0.35

20 400

D2 (mol/mol)

0.4

300

D1 (ppm)

0.45

10 200
100

0 0

0.2

0.4

0.6

0.8

1.0

M
F

 v
al

ue

(a)

0.2
30

0.25

0.3

D
3 

(m
ol

/m
ol

)

0.35

20 400

D2 (mol/mol)

0.4

300

D1 (ppm)

0.45

10 200
100

0 0

0.2

0.4

0.6

0.8

1.0

M
F

 v
al

ue

(b)

Figure 2. Performance of fuzzy C-means clustering: (a) Operating mode 1; (b) Operating mode 2
(main operating mode).
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Figure 3. Samples with MF value above 0.8 under two operating modes.

Two clusters correspond to two operating modes; the data with an MF value greater
than 0.8 are presented in Figure 3. The number of samples with an MF value above 0.8
under operating mode 1 is 490. In comparison, the number of data under operating mode
2 is larger, which is 2634. Therefore, we regard operating mode 2 as the main operating
mode; the 2634 data are used to construct the subsequent tower models.

3.3. Subspace Identification

The linear discrete state-space model of each tower is constructed using the method of
subspace identification [25]. Consider the following state-space model[

x̄(t + 1)
y(t)

]
=

[
A B
C D

][
x̄(t)
u(t)

]
+

[
η(t)
ν(t)

]
(5)

where x̄ ∈ Rn is the estimated state, u ∈ Rm is the input, y ∈ Rp is the output. η and

ν are residuals. The system parameter of the regression model is Θ :=
[

A B
C D

]
∈

R(n+p)×(n+m), and its least squares estimation form is shown in (6).

Θ =

(
N−1

∑
t=0

[
x̄(t + 1)

y(t)

][
x̄T(t) uT(t)

])(N−1

∑
t=0

[
x̄(t)
u(t)

][
x̄T(t) uT(t)

])−1

(6)

Equation (7) presents the covariance matrices of the residuals.[
Q S
ST R

]
=

1
N

N−1

∑
t=0

[
η(t)
ν(t)

][
ηT(t) νT(t)

]
(7)

The stable Kalman gain K can be obtained by solving an algebraic Riccati equation.

ATXA− ETXE−
(

ATXB + S
)(

BTXB + R
)−1(

BTXA + ST
)
+ Q = 0 (8)
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Finally, an innovation model (9) is obtained.[
x̂(t + 1)

y(t)

]
=

[
A B
C D

][
x̂(t)
u(t)

]
+

[
K
Ip

]
ê(t) (9)

where x̂ is the estimate of the state vector, and ê is the estimate of the output prediction error.

3.4. Collaborative-Variable-Based State-Space Model

The towers considered for optimization are T1, T3, T5, T7. T6 is the upper tower of the
propylene final product. The content of its propylene product is associated with T7, so only
T7 is considered in the two-tower system propylene distillation column.

There often exists a direct (connection through pipelines) or indirect (connection
without pipelines) connection between towers and this situation needs to be taken into
account when building a single tower model. Therefore, we propose the concept of a
collaborative variable—a variable that reflects the direct or indirect connection between two
towers, which is a controlled variable of one tower and a “manipulated variable” of another
tower. For example, the bottom product of T1 is directly used as a feed to T5, the bottom C2
content of T1 can be considered as a direct collaborative variable to T5, the top product of T1
is hydrogenated and dried as a feed to T3, and the top C3 content of T1 can be considered
as an indirect collaborative variable to T3.

Variables in the state-space models are given in Table 1. For T1, the manipulated
variables are the top reflux flow rate u1

T1
and the bottom reboiler steam flow rate u2

T1
.

The controlled variables are the bottom C2 content y1
T1

and the top C3 content y2
T1

. For T3,
the manipulated variables are the top reflux flow rate u1

T3
and the bottom reboiler steam

flow rate u2
T3

. The controlled variable is the impurity content yT3 of the lateral line extraction
product. For T5, the manipulated variables are the top reflux flow rate u1

T5
and the bottom

reboiler steam flow rate u2
T5

. The controlled variable is the impurity content yT5 of the top
product. For T7, the manipulated variables are the top reflux flow rate u1

T7
and the bottom

reboiler steam flow rate u2
T7

. The controlled variable is the impurity content yT7 of the top
product. Considering the connections between towers, the bottom C2 content of T1 can
be considered as a direct collaborative variable c1

T1
to T5, the top C3 content of T1 can be

considered as an indirect collaborative variable c2
T1

to T3, and the impurity content yT5 can
be considered as an indirect collaborative variable cT5 to T7.

Table 1. Variables in models.

Tower Manipulated Variables Collaborative Variable(s) Controlled Variable(s)

T1 [u1
T1

, u2
T1
]T c1

T1
, c2

T1
y1

T1
, y2

T1

T3 [u1
T3

, u2
T3
]T yT3

T5 [u1
T5

, u2
T5
]T cT5 yT5

T7 [u1
T7

, u2
T7
]T yT7

u: t/h; c, yT1 , yT3 , yT5 : ppm; yT7 : %/%

The n4sid function in MATLAB was used to construct the multi-input and single-
output (MISO) model of the above towers, and the model with optimal normalized root
mean squared error (NRMSE) was selected from the 2nd–10th-order model, respectively.
The formulation of NRMSE is shown in (10).

NRMSE =

(
1− ‖ymeasured − ymodel ‖
‖ymeasured − ymeasured ‖

)
× 100% (10)

The details of each MISO state-space model identified are shown in Table 2. It can be
seen that the identified model has high accuracy and the adopted fuzzy C-means clustering
method distinguishes the operating modes well.



Processes 2023, 11, 436 7 of 14

Table 2. Parameters of models.

Output Input Initial State e NRMSE

y1
T1

[u1
T1

, u2
T1
]T [−0.1287; 0.0088;−0.0987; 0.1041] 4.57× 10−4 99.6%

y2
T1

[u1
T1

, u2
T1
]T [−0.1749; 0.0151;−0.3372] 3.36× 10−2 97.8%

yT3 [u1
T3

, u2
T3

, c1
T1
]T [1.4254;−0.0611; 0.7460;−12.1675] 3.24× 10−2 97.6%

yT5 [u1
T5

, u2
T5

, c2
T1
]T [2.7991; 0.1510;−0.4182] 5.24× 10−5 98.4%

yT7 [u1
T7

, u2
T7

, cT5 ]
T [−2.7744; 4.1782; 56.4836; 835.3279] 6.70× 10−9 98.2%

e: Variance of white noise.

4. Construction of MOCO Problem

In order to facilitate giving the form of the optimization problem, considering one-step
prediction, the expression of (9) is adjusted to (11).

x(Ts) = Ax(0) + Bu(0) + Ke(0)

y(Ts) = Cx(Ts) + Du(Ts) + e(Ts)
(11)

where Ts denotes the discretization time, which in our case is 0.5 h. x(0) denotes the initial
state, x(Ts) denotes the next state, and y(Ts) denotes the predicted output of the next step.

The operating cost of the tower group considered is obtained by weighting the top
reflux flow rate as well as the bottom reboiler steam flow rate of each tower. Since the data
obtained is the content of impurities in the product, minimizing the top impurity content
of T3 and T7 is equivalent to maximizing the ethylene and propylene content. The form
of the optimization objective is shown in (12), which is a three objective optimization
problem, i.e., minimizing the content of impurities in the propylene product f1, the content
of impurities in the ethylene product f2 and the total operating cost f3.

min
uj

Ti
,i∈I,j∈J

( f1, f2, f3) (12)

where uj
Ti

denotes the jth manipulated variable of the ith tower, and I, J are the correspond-
ing index sets in the form shown in (13). The form of each sub-objective in (12) is shown
in (14).

i ∈ I = {1, 3, 5, 7}, j ∈ J = {1, 2} (13)

f1 = yT7(Ts) = CT7 xT7(Ts) + DT7 [u
1
T7

, u2
T7

, cT5 ]
T + eT7(Ts)

f2 = yT3(Ts) = CT3 xT3(Ts) + DT3 [u
1
T3

, u2
T3

, c2
T1
]T + eT3(Ts)

f3 = ∑
i,j

Rj
Ti

uj
Ti

(14)

R in (14) is the weight, c is the collaborative variable, and all collaborative variables are
shown as

cT5 = yT5(Ts) = CT5 xT5(Ts) + DT5 [u
1
T5

, u2
T5

, c1
T1
]T + eT5(Ts)

c1
T1

= y1
T1
(Ts) = C1

T1
x1

T1
(Ts) + D1

T1
[u1

T1
, u2

T1
]T + e1

T1
(Ts)

c2
T1

= y2
T1
(Ts) = C2

T1
x2

T1
(Ts) + D2

T1
[u1

T1
, u2

T1
]T + e2

T1
(Ts)

(15)

The constraints are divided into manipulated variable constraints (16) and content
constraints (17).

uj
Ti
⊗ [−1 1]T ≤ Fj

Ti
(16)

y1
T1
⊗ [−1 1]T ≤ G1

T1

y2
T1
⊗ [−1 1]T ≤ G2

T1

(17)
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where ⊗ is the Kronecker product, and F and G are parameter vectors. The cnstraints in
(17) are the bottom C2 and top C3 content constraint of T1.

Combining the above equations, the MOCO problem takes the form shown in (18).

min
uj

Ti
,i∈I,j∈J

( f1, f2, f3)

s.t. Index sets defined by (13)

Sub-objectives defined by (14)

Collaborative variables defined by (15)

Manipulated variable constraints defined by (16)

Content constraints defined by (17)

(18)

5. Case Study and Discussions

This section describes a MOCO case study for an ethylene plant based on historical
data of a chemical plant. The data-sampling interval is 0.5 h, and the data for one year are
collected, with 17,523 samples in total. The Hampel and smoothdata function in MATLAB
are used for data preprocessing. k in Hampel is set to 20 and the standard deviations are
set to 2. A Gaussian method is applied in smoothdata and the window size p is set to 20. A
total of 7420 data points are left after data preprocessing, and 2634 data points are used for
system identification. The parameters and parameter vectors in the constraints are shown
in Table 3 and the coefficient matrices are given in Appendix A.

Table 3. Parameters in constraints.

Parameter Parameter

R1
T1

971.0 F2
T1

[−775, 1703]T

R2
T1

27.2 F1
T3

[−519, 591]T

R1
T3

1087.0 F2
T3

[−135, 151]T

R2
T3

27.2 F1
T5

[−7.9, 11.2]T

R1
T5

870.0 F2
T5

[−15.7, 19.1]T

R2
T5

27.2 F1
T7

[−738, 910]T

R1
T7

1004.3 F2
T7

[−1963, 2372]T

R2
T7

27.2 G1
T1

[−6.5, 34.2]T

F1
T1

[−93, 116]T G2
T1

[−30.8, 116.5]T

R: $/h; F: t/h; G: ppm.

Platemo, an evolutionary MOO platform developed by Tian et al. [27], is used to de-
sign and solve the MOCO problem. The algorithm chosen is NSGA-III [26], which
uses adaptive updating of multiple reference points to maintain the population diver-
sity. Compared to MOEA/D [28] and NSGA-II [29], it can give satisfactory results on more
2–15 objective problems.

The number of populations is 105 and 100 iterations are performed using NSGA-III.
The final populations all meet the constraint requirements; the obtained Pareto frontiers
are shown in Figure 4.

After 100 iterations, the final Pareto frontier approximation is presented as a plane
which is shown in Figure 4. In order to increase the purity of the propylene product, it is
necessary to increase the reflux flow rates and the reboiler steam flow rates of towers, which
leads to an increase in cost. Therefore, the impurity content in the propylene product is
negatively related to the total operating cost. However, the impurity content in the ethylene
product does not show the above phenomenon, which is unreasonable. A MOO of the
T1 and T3 is carried out to minimize the operating cost of both towers and the impurity
content in the ethylene product; the Pareto frontier after 100 iterations is shown in Figure 5.
Analysis of this figure shows that the impurity content in ethylene is negatively related
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to the cost. The possible reasons for the above anomaly are that the cost of T5 and T7
represents a greater proportion of the total operating cost and the purity of propylene
product has more room for improvement. Therefore, in our case, the impurity content in
the ethylene product has no significant relationship with the total operating cost of the
tower group. As for the relationship between propylene and ethylene content, since there is
no connection between T3 and the two propylene distillation columns, these two objectives
appear to be relatively independent.
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Figure 5. Pareto-optimal frontier for the two-objective optimization problem.

Corresponding to Figure 4, the optimal values of the decision variables after 100 it-
erations are shown in Figure 6. The subplots in each row of the figure correspond to the
relationship between the same decision variable and different objectives, and the sub-
plots in each column represent the relationships between the same objective and different
decision variables. Analyzing the above three figures from the perspective of decision
variables, it can be seen that the top reflux flow rate of T3 and the bottom reboiler steam
flow rate of T7 are close to the lower boundary. For the objective of total operating cost f3,
the weight of the T3 and T7 reflux flow rates are the largest and the magnitude of these two
variables is also large. Thus, the smaller reflux flow rates of T3 and T7 imply lower cost.
In our case, for the purpose of weighing the objectives and meeting the constraints of T1,
NSGA-III tends to form a small T3 reflux flow rate and to reduce the T7 reflux flow rate.
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Since the bottom reboiler steam flow rate magnitude of T7 is the largest of all the decision
variables in the solution set, this variable is also near the lower boundary. In the case of
the three objective trade-offs, the solutions for the reflux flow rate of T1 and T5, the reboiler
steam flow rates of T1 and T5 are mostly close to the lower boundary, with a small number
of solutions distributed in other regions. The solutions for the T3 bottom reboiler steam
flow rate, as well as the T7 reflux flow rate, are the most uniformly distributed of all the
manipulated variables.
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Figure 6. The solution set of the considered decision variables. (a–x) Optimal values of the considered
decision variables corresponding to the Pareto-optimal front.

Analyzing Figure 6 from the perspective of the objective, an interesting phenomenon
is that, although no connection exists between T3 and T7, there is a complementary relation-
ship between the T3 bottom reboiler steam flow rate and the T7 reflux flow rate, i.e., under
the same objective, the solutions for one variable are irregularly related to the objective,
and the other shows a linear relationship with the objective. The possible reason for the
above phenomenon is that the NSGA-III algorithm selects the above two manipulated
variables directly related to the objective to maintain the diversity of the population. Based
on the small variation in the other decision variables, the algorithm selects the variable
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with the larger influence on the target of the two variables to increase the range of target
variation. Since both the constraints and the model are linear, the remaining one variable
shows a certain linear relationship with the objective.

To verify the effectiveness of the proposed method, we further explored the sample
data. Figure 7 shows the scatterplot corresponding to the sample data. It can be clearly seen
that the total operating costs corresponding to the sample data are all above 1.5× 106 $/h.
A sample data point with low cost and moderate impurity content is selected as the most
preferred point. Figure 8 gives a comparison of this preference point with the Pareto frontier
of the MOCO. The part in the dashed box is the appealing operation area because the total
operating cost under this area is below 1.5× 106 $/h and the content of impurities in both
ethylene and propylene products is lower than the preference point.

1.5

1.55

1.6

1.65

1.7

106

f 3
 (

$/
h)

0.34

1.75

1.8

0.35

f
1
 (mol/mol)

3703600.36

f
2
 (ppm)

3500.37 340330320

Figure 7. Distribution of objective values corresponding to data for modeling.
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Figure 8. The appealing operation area in the optimal frontier under the guidance of a prefer-
ence point.

The above analysis shows that the proposed MOCO strategy for the ethylene plant can
provide rational support for decision-makers to obtain higher product purity at lower cost.

6. Conculsions

A multi-objective collaborative optimization (MOCO) strategy is proposed for a distil-
lation column group. Based on the preprocessing of historical data, the data for the impurity
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content of the ethylene and propylene products and the propylene content on the 73rd tray,
are selected to determine the operating modes of the tower group by the fuzzy C-means
clustering method. Data with a membership function value greater than 0.8 under the main
operating mode are selected for subsequent modeling. The state-space models of towers
are constructed based on a subspace identification method and collaborative variables.
A MOCO case study is performed using MATLAB and Platemo,. The superiority of the
proposed method in decision-making is verified by the Pareto-optimal frontier, population
analysis and comparison with sample data.
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Appendix A

Coefficient matrices of models.

A1
T1

=


0.9977 -0.042 4.2× 10−3 −1.7× 10−3

0.0381 0.9720 −0.217 −0.023
3.4× 10−4 0.1954 0.8943 −0.383
−0.012 4.5× 10−3 0.3584 0.2068

 (A1)

A2
T1

=

 0.9982 −0.069 7.9× 10−3

0.0678 0.9676 −0.272
−7.7× 10−4 0.2259 0.7152

 (A2)

AT3 =


0.9923 −0.150 9.4× 10−3 −2.2× 10−3

0.1480 0.9510 −0.334 −9.6× 10−3

0.0204 0.2218 0.6909 −0.026
−0.247 0.2824 1.9029 −0.033

 (A3)

AT5 =

 1.0011 −0.020 −1.8× 10−3

0.0340 0.9868 0.2708
−0.018 −0.222 0.7400

 (A4)

AT7 =


0.9879 −0.129 0.0131 −2.6× 10−3

0.1312 0.9710 −0.241 −0.011
7.9× 10−3 0.1992 0.6855 −0.1001
−0.178 −0.165 −1.173 −0.4213

 (A5)

B1
T1

=


3.5× 10−6 1.1× 10−8

−1.5× 10−4 1.3× 10−7

1.4× 10−4 −5.6× 10−6

8.0× 10−4 −1.4× 10−5

 (A6)

B2
T1

=

 3.1× 10−5 1.4× 10−8

−6.7× 10−4 −5.1× 10−7

−9.0× 10−4 4.1× 10−6

 (A7)
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BT3 =


2.0× 10−6 −1.9× 10−5 −4.3× 10−4

1.3× 10−5 3.3× 10−4 −2.1× 10−3

2.7× 10−4 1.1× 10−4 −4.0× 10−3

−2.6× 10−3 −0.023 −0.126

 (A8)

BT5 =

 −6.0× 10−5 −2.4× 10−5 1.1× 10−5

9.3× 10−4 −1.1× 10−3 5.5× 10−4

−1.4× 10−3 −8.7× 10−5 −4.3× 10−4

 (A9)

BT7 =


3.7× 10−6 −6.5× 10−7 0.0194
−2.7× 10−5 6.3× 10−6 0.2329
5.4× 10−6 −2.3× 10−6 1.0189
−3.5× 10−4 5.8× 10−5 12.696

 (A10)

C1
T1

=
[
−239.9 5.0507 −0.902 0.1595

]
C2

T1
=
[
−396.2 13.521 −2.921

]
CT3 =

[
232.48 −17.16 3.7044 0.1595

]
CT5 =

[
35.386 −0.357 −0.071

]
CT7 =

[
−0.146 9.5× 10−3 −1.7× 10−3 9.5× 10−5 ]

(A11)

D1
T1

=
[
−5.8× 10−3 −5.5× 10−6 ]

D2
T1

=
[
−0.012 −2.5× 10−5 ]

DT3 =
[

5.0× 10−4 −6.3× 10−3 0.2502
]

DT5 =
[
−1.1× 10−3 1.5× 10−4 −8.9× 10−3 ]

DT7 =
[
−3.4× 10−7 1.1× 10−7 −6.7× 10−4 ]

(A12)

E1
T1

=
[
−5.6× 10−3 0.0937 −0.186 0.0519

]T

E2
T1

=
[
−2.2× 10−3 0.0166 −0.010

]T

ET3 =
[

4.8× 10−3 −0.025 0.0305 0.0135
]T

ET5 =
[

0.0245 −0.596 −0.407
]T

ET7 =
[
−6.958 53.443 −60.08 206.98

]T

(A13)

References
1. Mayer, M.; Szilágyi, A.; Gróf, G. Environmental and economic multi-objective optimization of a household level hybrid renewable

energy system by genetic algorithm. Appl. Energy 2020, 269, 115058.
2. Nuvvula, R.; Devaraj, E.; Madurai Elavarasan, R.; Iman Taheri, S.; Irfan, M.; Teegala, K. Multi-objective mutation-enabled

adaptive local attractor quantum behaved particle swarm optimisation based optimal sizing of hybrid renewable energy system
for smart cities in India. Sustain. Energy Technol. Assess. 2022, 49, 101689. [CrossRef]

3. Chen, T.; Cheng, C.; Chou, Y. Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot
streaming. Ann. Oper. Res. 2020, 290, 813–836. [CrossRef]

4. Wang, X.; Mao, X.; Khodaei, H. A multi-objective home energy management system based on internet of things and optimization
algorithms. J. Build. Eng. 2021, 33, 101603. [CrossRef]

5. Karimi, H.; Jadid, S. Optimal energy management for multi-microgrid considering demand response programs: A stochastic
multi-objective framework. Energy 2020, 195, 116992. [CrossRef]

6. Khanali, M.; Akram, A.; Behzadi, J.; Mostashari-Rad, F.; Saber, Z.; Chau, K.; Nabavi-Pelesaraei, A. Multi-objective optimization
of energy use and environmental emissions for walnut production using imperialist competitive algorithm. Appl. Energy 2020,
284, 116342. [CrossRef]

7. Sohani, A.; Dehnavi, A.; Sayyaadi, H.; Hoseinzadeh, S.; Goodarzi, E.; Garcia, D.; Groppi, D. The real-time dynamic multi-objective
optimization of a building integrated photovoltaic thermal (BIPV/T) system enhanced by phase change materials. J. Energy
Storage 2022, 46, 103777. [CrossRef]

http://doi.org/10.1016/j.seta.2021.101689
http://dx.doi.org/10.1007/s10479-018-2969-x
http://dx.doi.org/10.1016/j.jobe.2020.101603
http://dx.doi.org/10.1016/j.energy.2020.116992
http://dx.doi.org/10.1016/j.apenergy.2020.116342
http://dx.doi.org/10.1016/j.est.2021.103777


Processes 2023, 11, 436 14 of 14

8. Cui, Y.; Geng, Z.; Zhu, Q.; Han, Y. Review: Multi-objective optimization methods and application in energy saving. Energy 2017,
125, 681–704. [CrossRef]

9. Zhou, L.; Liao, Z.; Wang, L.; Zhang, L.; Ji, X.; Jiao, H.; Wang, J.; Yang, Y.; Dang, Y. Simulation-Based Multiobjective Optimization
of the Product Separation Process within an MTP Plant. Ind. Eng. Chem. Res. 2019, 58, 12166–12178. [CrossRef]

10. Zhang, Y.; He, N.; Masuku, C.; Biegler, L. A multi-objective reactive distillation optimization model for Fischer–Tropsch synthesis.
Comput. Chem. Eng. 2020, 135, 106754. [CrossRef]

11. Zhang, H.; Wang, S.; Tang, J.; Li, N.; Li, Y.; Cui, P.; Wang, Y.; Zheng, S.; Zhu, Z.; Ma, Y. Multi-objective optimization and control
strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on
mechanism analysis. Energy 2021, 229, 120774.

12. Mondal, B.; Rangaiah, G.; Jana, A. Optimizing algal biodiesel production from a novel reactive distillation based unit: Reducing
CO2 emission and cost. Chem. Eng. Process. Process. Intensif. 2022, 176, 108948. [CrossRef]

13. Gu, J.; Lu, S.; Shi, F.; Wang, X.; You, X. Economic and Environmental Evaluation of Heat-Integrated Pressure-Swing Distillation by
Multiobjective Optimization. Ind. Eng. Chem. Res. 2022, 61, 9004–9014.

14. Kruber, K.; Skiborowski, M. Topology-Based Initialization for the Optimization-Based Design of Heteroazeotropic Distillation
Processes. Processes 2022, 10, 1482.

15. Deshpande,G.; Shrikhande, S.; Patle, D.; Sawarkar, A. Simultaneous optimization of economic, environmental and safety criteria
for algal biodiesel process retrofitted using dividing wall column and multistage vapor recompression. Process Saf. Environ. Prot.
2022, 164, 1–14. [CrossRef]

16. Pandit,S.; Jana, A. Transforming conventional distillation sequence to dividing wall column: Minimizing cost, energy usage and
environmental impact through genetic algorithm. Sep. Purif. Technol. 2022, 297, 121437. [CrossRef]

17. Shen, F.; Wang, M.; Huang, L.; Qian, F. Exergy analysis and multi-objective optimisation for energy system: A case study of a
separation process in ethylene manufacturing. J. Ind. Eng. Chem. 2021, 93, 394–406.

18. Dai, M.; Yang, F.; Zhang, Z.; Liu, G.; Feng, X. Energetic, economic and environmental (3E) multi-objective optimization of the
back-end separation of ethylene plant based on adaptive surrogate model. J. Clean. Prod. 2021, 310, 127426. [CrossRef]

19. Liu, H.; Shah, S.; Jiang, W. On-line outlier detection and data cleaning. Comput. Chem. Eng. 2004, 28, 1635–1647. [CrossRef]
20. Suomela, J. Median Filtering is Equivalent to Sorting. arXiv 2014, arXiv:1406.1717.
21. Sharifi, S.; Hendry, M.; Macciotta, R.; Evans, T. Evaluation of filtering methods for use on high-frequency measurements of

landslide displacements. Nat. Hazards Earth Syst. Sci. 2022, 21, 411–430. [CrossRef]
22. Bezdek, J. Pattern Recognition with Fuzzy Objective Function Algorithms, 1st ed.; Springer: Boston, MA, USA, 1981; pp. 65–79.
23. Sharifi, S.; Mazumdar, A.; Pal, S. Fuzzy Clustering with Similarity Queries. Adv. N.A. Inf. Process. Syst. 2021, 34, 789–801.
24. Huleihel, W.; Miriyala, S.; Mitra, K. An Evolutionary Neuro-Fuzzy C-means Clustering Technique. Eng. Appl. Artif. Intell. 2020,

89, 103435.
25. Katayama, T. Subspace Methods for System Identification, 1st ed.; Springer: Berlin, Germany; London, UK, 2005; pp. 6–9.
26. Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting

Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Computat. 2014, 18, 577–601. [CrossRef]
27. Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization [Educational

Forum]. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [CrossRef]
28. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evol. Computat.

2007, 11, 712–731. [CrossRef]
29. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective

Optimization: NSGA-II. IEEE Trans. Evol. Computat. 2002, 6, 182–197. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.energy.2017.02.174
http://dx.doi.org/10.1021/acs.iecr.9b02033
http://dx.doi.org/10.1016/j.compchemeng.2020.106754
http://dx.doi.org/10.1016/j.cep.2022.108948
http://dx.doi.org/10.1016/j.psep.2022.05.059
http://dx.doi.org/10.1016/j.seppur.2022.121437
http://dx.doi.org/10.1016/j.jclepro.2021.127426
http://dx.doi.org/10.1016/j.compchemeng.2004.01.009
http://dx.doi.org/10.5194/nhess-22-411-2022
http://dx.doi.org/10.1109/TEVC.2013.2281535
http://dx.doi.org/10.1109/MCI.2017.2742868
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/4235.996017

	Introduction
	Description of Ethylene Plant
	Model Construction
	Data Preprocessing
	Determination of Operating Modes
	Subspace Identification
	Collaborative-Variable-Based State-Space Model

	Construction of MOCO Problem
	Case Study and Discussions
	Conculsions
	Appendix A
	References

