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Abstract: Forty-eight crude oils with variations in specific gravity (0.782 ≤ SG ≤ 1.002), sulphur content
(0.03 ≤ S ≤ 5.6 wt.%), saturate content (23.5 ≤ Sat. ≤ 92.9 wt.%), asphaltene content (0.1 ≤ As ≤ 22.2 wt.%),
and vacuum residue content (1.4 ≤ VR ≤ 60.7 wt.%) were characterized with HTSD, TBP, and SARA
analyses. A modified SARA analysis of petroleum that allows for the attainment of a mass balance
≥97 wt.% for light crude oils was proposed, a procedure for the simulation of petroleum TBP curves
from HTSD data using nonlinear regression and Riazi’s distribution model was developed, and a new
correlation to predict petroleum saturate content from specific gravity and pour point with an average
absolute deviation of 2.5 wt.%, maximum absolute deviation of 6.6 wt.%, and bias of 0.01 wt.% was
developed. Intercriteria analysis was employed to evaluate the presence of statistically meaningful
relations between the different petroleum properties and to evaluate the extent of similarity between the
studied petroleum crudes. It was found that the extent of similarity between the crude oils based on HTSD
analysis data could be discerned from data on the Kw characterization factor of narrow crude oil fractions.
The results from this study showed that contrary to the generally accepted concept of the constant Kw
characterization factor, the Kw factors of narrow fractions differ from that of crude oil. Moreover, the
distributions of Kw factors of the different crudes were different.

Keywords: petroleum; crude oil; characterization; HTSD; TBP; SARA; correlation; regression;
intercriteria analysis

1. Introduction

The characterization of petroleum is undoubtedly the most crucial element in petroleum
engineering and processing. It provides information required by petroleum engineers to
assess the behavior of petroleum during exploration operations and by oil-refining engi-
neers to evaluate the performance of refining units while processing particular crude oils or
crude oil blends [1–4]. True boiling point (TBP) distillation analysis and the measurement
of specific gravity of narrow crude oil cuts are considered necessary for the petroleum
engineering calculations of petroleum engineering and processing [5,6]. Unfortunately,
TBP distillation analysis is tedious, time-consuming and costly, so other less expensive and
faster methods to convert data into TBP information are desired. Some methods have been
developed to convert American Society for Testing and Materials (ASTM) methods into
TBP methods used for oil fractions [7,8]. Simulated distillation was found to be equivalent
to the TBP of oil fractions boiled up to 360 ◦C [9]. Villalanti and Raia [10] showed an
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excellent agreement between high-temperature simulated distillation (HTSD) and ASTM
D2892 [11] (TBP) and D 5236 [12] for reference oil boiled at 10% of 231 ◦C and at 90% of
495 ◦C. We also showed in our recent study [13] that HTSD (ASTM D7169) is equivalent to
TBP for gas oil fractions boiled between 231 and 655 ◦C. Durand et al. [14] also reported a
very good agreement between conventional simulated distillation, with the TBP for gas oils
having aromatic content of between 2 and 75%. The agreement between HTSD and TBP for
deasphalted oils with saturate contents of 8.5% and 45%, a vacuum distillate with a saturate
content of 31.2%, and atmospheric residue with a saturate content of 59% was also very
good [14]. Different studies in the literature have dealt with the simulated distillation and
TBP analysis of petroleum fluids [15–22]. To the best of our knowledge, however, no reports
have compared the HTSD and TBP of a wide variety of crude oils in the five main crude oil
groups: extra light, light, medium, heavy, and extra heavy. In our previous research [23],
we concluded that additional investigations for the development of a reliable method that
allows for the conversion of simulated distillation data into TBP data for all crude oil types
are still required. The current research compares HTSD and TBP distillation data for a wide
range of crude oils in to the main five groups originating from all over the world.

Another important petroleum characterization method that is used in a number of state
equations, forming the basis of thermodynamic models predicting sediment formation in
the process of petroleum extraction and refining the saturates/aromatics/resins/asphaltenes
(SARA) analyses [24–36]. However, the mass balance closure of the SARA analysis of crude
oils with a specific gravity of less than 0.92, as reported in our previous paper [23], is
an issue. Due to the higher content of highly volatile components, lighter crude oils are
lost during the process of solvent recovery following column SAR (saturates, aromatics,
and resins) separation. To avoid this loss, 48 crude oils in to the five main groups were
distilled in a TBP apparatus to separate the naphtha fraction from the crude oil. Then,
the naphtha fraction was analyzed with gas chromatography to determine the PIANO
(paraffins, iso-paraffins, aromatics, naphthenes, and olefins) composition. The reduced
crudes were analyzed for saturates, aromatics, resins and asphaltenes. Then, the results
from both analyses were combined to obtain the whole crude oil SARA composition. In
this way, we achieved a mass balance closure no lower than 97 wt.% and a saturate content
of 92.2 wt.%. The higher saturate content reported in our earlier research [23] based on
literature data was 88.9 wt.%. In this study, we investigated the possibility of predicting the
saturate content in petroleum crudes from other easier, faster, and less expensive methods
than SARA analysis.

The aims of this work were to research a procedure to simulate the TBP curves of all
kinds of crude oils from HTSD data, to develop a method to predict the saturate content
of all kinds of petroleum, and to evaluate the possibility of obtaining the specific gravity
curves of the crude oils from HTSD and the bulk petroleum specific gravity.

2. Materials and Methods

Petroleum crudes from all over the world (Albania, Australia, Azerbaijan, Brunei,
Egypt, Equatorial Guinea, Greece, Indonesia, Iraq, Italy, Kazakhstan, Kuwait, Libya, Mexico,
Nigeria, the Netherlands, Russia, Saudi Arabia, Tunisia, Turkmenistan, the UK, the USA,
and Venezuela) in the five main groups—extra light (API > 40), light (30 < API < 40),
medium (20 < API < 30), heavy (10 < API < 20) and extra heavy crude oils (API ≈ 10)—were
investigated in this research. They were analyzed in terms of their bulk properties: specific
gravity in accordance with ASTM D4052 [37], sulphur content following ASTM D4294 [38]
requirements, pour point according to ASTM D97 [39], and kinematic viscosity according
to ASTM D445 [40].

The crude oils were analyzed for their true boiling point (TBP) distribution with the
Euro Dist System from ROFA Deutschland GmbH, designed to perform according to ASTM
D2892 [11] requirements at pressure drop from 760 to 2 mmHg. Its fractionation column is
equipped with packing equivalent to 15 theoretical plates, and a condenser provides the
standard mandatory reflux ratio of 5:1. The atmospheric residue from the TBP column was



Processes 2023, 11, 420 3 of 23

fractionated under vacuum from 1 to 0.2 mmHg in Potstill Euro Dist System from ROFA
Deutschland GmbH according to ASTM D5236 [12] requirements.

In addition to the TBP analysis of the investigated crude oils, their distillation character-
istics were also analyzed with gas chromatographic high-temperature simulated distillation
(HTSD) according to ASTM D7169 requirements. The HTSD analyses were carried out
with the Agilent Technologies GC System 7890B, which was equipped with a FID (flame
ionization detector). Liquid nitrogen was used as a coolant. The carrier gas was helium
of 99.9999% purity (14 mL/min), and the inlet pressure was 1.2 psi (8.27 kPa) with a total
flow equal to 87 mL/min. Hydrogen was used as a fuel gas (40 mL/min) and nitrogen
was used as a makeup gas (15 mL/min), both with high purity (99.999%). The installed
column was 5 m long and 530 µm in diameter, and the film thickness was 0.15 µm. The
oven operated under a program from −20 ◦C to 430 ◦C at a ramp rate of 15 ◦C/min and a
4 min hold time at the maximum temperature. The injector was programmed to operate
from 50 ◦C to 450 ◦C at a rate of 15 ◦C/min, and the injected sample volume was 4 µL.
Before the simulated distillation analyses, the studied oil samples were preliminarily stirred
and accurately weighted to obtain 2 weight percent of the studied oils dissolved in carbon
disulphide (0.03 g of each sample dissolved in 1.5 mL of CS2 (99.9%)). All prepared samples
were stored at a temperature around 4 ◦C prior to analyses. The simulated distillation char-
acteristics were automatically calculated with SIMDIS software, and the distillation curve
boiling point in ◦C versus evaporate in wt. % was obtained. The minor intervention of the
operator took place during the chromatogram processing. The HTSD GC was calibrated
with a blend of normal paraffins with a carbon number between C5 and C120. The software
(GC OpenLab CDS with Simdis program for ASTM D7169) used in this application of
HTSD allowed for the estimation of the final boiling point of the residual oils higher than
750 ◦C.

The SARA (saturates, aromatics, resins, asphaltenes) analysis of the reduced crude
oils (the crude oil fraction boiling above 220 ◦C) was performed following the procedure
described in our earlier research [41]. Considering that the content of asphaltenes in crude
oil is not an additive value, as reported in our recent study [23], it was determined for
the whole not fractionated crude oil following the procedure described in our earlier
research [42].

The PIANO (paraffins, iso-paraffins, aromatics, naphthenes olefins) analysis of the
crude oil fraction boiled below 220 ◦C (naphtha fraction) was carried out with a gas chro-
matograph equipped with a flame ionization detector. To identify the compounds in the
naphtha fraction, gas chromatography/mass spectrometry was utilized. The gas chro-
matograph with flame ionization detector was a model 5890 series II Hewlett Packard
(Agilent Technologies, Inc., Santa Clara, CA, USA). An HP PONA capillary column
(50 m length × 0.20 mm id × 0.5 µm film thickness) was used with a split injector. The
instrument parameters were as follows: The initial oven column temperature was 35 ◦C,
and then it increased at increments of 2 ◦C/min to 200 ◦C and held for 30 min at 200 ◦C;
helium was used as a carrier gas at a flow rate of 0.5 mL/min; the injector and detector
temperatures were 200 ◦C and 250 ◦C, respectively; and the volume that was injected and
analyzed was 0.1 µL. Data acquisition parameters, instrument operation information, and
chromatographic data were collected and recorded by means of Clarity 2.6. Gas chromatog-
raphy/mass spectrometry analysis was performed with a 7890A GC System equipped with
an HP PONA capillary column (50 length m × 0.2 mm id × 0.5 µm film thickness) and a
5975C Inert XL EI/CI mass selective detector (Agilent Technologies, Inc., Santa Clara, CA,
USA). The oven column temperature conditions were identical to those used with the gas
chromatograph with flame ionization detector. High-purity helium was used as the carrier
gas at a flow rate of 0.8 mL/min. The injection port was held at 200 ◦C, and the injection
volume was 0.1 µL of the sample. The mass selective detector was operated in the electron
impact ionization mode (70 eV) with continuous scan acquisition from 15 to 250 m/z at
a cycling rate of approximately 1.5 scan/s. The parameters were as follows: the electron
multiplier was set to 1224 V, the source temperature was set to 230 ◦C, and the transfer line
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temperature was set to 150 ◦C. System control and data acquisition were achieved with HP
G1033A D.05.01 MSD ChemStation revision E.02.00.493. The compounds were identified
with the NIST MS Search version 2.0 library of mass spectra.

The Kw characterization factor of the studied crude oils and their narrow fractions
was estimated with Equation (1).

Kw =
3
√

1.8[T50% + 273.15]
SG

(1)

where T50% = boiling point of 50% of evaporate according to the TBP (ASTM D292/D5236),
◦C, and SG = specific gravity at 15 ◦C.

The computer algebra system Maple and NLPSolve with the Modified Newton It-
erative Method was used to develop nonlinear regression equations to transform the
HTSD data into TBP data for the studied crude oils. Riazi’s distribution model, shown
as Equation (2), was used to build the TBP curve from the HTSD data transformed into
TBP data.

Ti − T0

T0
=

A
B

[
Ln
(

1
1 − xi

)] 1
B

(2)

where Ti = boiling point of i-weight fraction of distillation curve, K; T0 = initial boiling
point, K; and xi = weight fraction of i-component.

Intercriteria analysis (ICrA) evaluation was employed to determine the degree of
similarity between the studied crude oils based on distillation characteristics, Kw char-
acterization factor variation through the whole crude oil distillation range, and sulphur
variation through the whole crude oil distillation range. It was also used to determine
the statistically meaningful relations between the different crude oil characteristics. The
intercriteria analysis (ICrA) was developed in the Institute for Biophysics and Biomedical
Engineering, Bulgarian Academy of Sciences (BAS) as a tool to support decision making in
multi-object multicriteria problems [43–45]. It has been successfully applied in the fields
of medicine, biology, economics, and physics, among others, and it can be considered a
component of the artificial intelligence toolkit [43]. It was also successfully applied in
several studies in the field of petroleum chemistry and technology [46–48]. A detailed
explanation of the essence of ICrA applied in the field of petroleum processing can be
found in [49]. µ = 0.75 ÷ 1.00 and υ = 0 ÷ 0.25 denote a statistically meaningful significant
positive relation, where the strong positive consonance exhibits values of µ = 0.95 ÷ 1.00
and υ = 0 ÷ 0.05 and the weak positive consonance exhibits values of µ = 0.75 ÷ 0.85
and υ = 0.2515 ÷ 0.1525. The values of negative consonance with µ = 0.00 ÷ 0.25 and
υ = 0.75 ÷ 1.00 indicate a statistically meaningful negative relation, where the strong
negative consonance exhibits values of µ = 0.00 ÷ 0.05 and υ = 0.95 ÷ 1.00, and the weak
negative consonance exhibits values of µ = 0.15 ÷ 0.25 and υ = 0.75 ÷ 0.85. All other cases
are considered dissonance.

3. Results
3.1. HTSD and TBP of Crude Oils

The high-temperature simulated distillation data of extra light, light medium, heavy,
and extra heavy 30 crude oils (boiling point at 1%) are presented in Table S1.

The same crude oil HTSD data in the TBP analysis format (evaporates at 70, 110, 130,
150, 170, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 390, 430, 470, 490, and 540 ◦C)
are presented in Table S2.

The true boiling point distillation (TBP) data of the extra light, light medium, heavy,
and extra heavy 29 crude oils are summarized in Table S3.

TBP data of 21 crude oils extracted from [47] are presented in Table S4.
HTSD data of 21 crude oils extracted from [47] are presented in Table S5.
Figure 1 shows the TBP and HTSD distillation curves of the extra light, light, medium,

and heavy crude oils. These data clearly show that both distillation curves do not coincide
and that equations to convert HTSD into TBP are needed.
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Figure 1. TBP and HTSD curves of extra light (d,e), light (f), medium (b,c), and heavy (a) crude oils.

Crude oil specific gravity and HTSD data for the 110–180 ◦C; 180–240 ◦C; 240–360 ◦C;
IBP—360 ◦C; IBP—540 ◦C; and T50% fractions were employed to develop conversion equations.
With nonlinear regression and the computer algebra system Maple (and Global Optimization
Toolbox), the following conversion equations were developed:
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TBP110−180 = 3592.34 × 8SG − 1.071599 × HTSD110−180 − 4541.274 + 256.8781×SG2+

14.0653SG × HTSD110−180 − 0.313177 × HTSD2
110−180 − 13.06334 × SG2 × HTSD110−180+

0.310779 × SG × HTSD2
110−180 − 860.6919 × SG3 + 0.000738 × HTSD3

110−180 +
1557.6812

SG − 5.286048
HTSD110−180

(3)

where TBP110−180 = TBP yield of crude oil fraction 110–180 ◦C, wt.%; HTSD110−180 = HTSD
yield of crude oil fraction 110–180 ◦C, wt.%; and SG = specific gravity of crude oil at 15 ◦C.

TBP180−240 = −22042.5019 × SG − 307.7052 × HTSD180−240 + 10231.8034 + 18132.809451 × SG2+

558.8987SG × HTSD180−240 + 6.5239 × HTSD2
180−240 − 261.4616 × SG2 × HTSD180−240−

5.32183 × SG × HTSD2
180−240 − 5209.1464 × SG3 − 0.061063 × HTSD3

180−240 − 1362.90998
SG − 75.10173

HTSD180−240

(4)

where TBP180−240 = TBP yield of crude oil fraction 180–240 ◦C, wt.%, and HTSD180−240 = HTSD
yield of crude oil fraction 180–240 ◦C, wt.%.

TBP240−360 = −124049.5808 × SG + 118.857 × HTSD240−360 + 84179.95766 + 80735.579×SG2

−261.2551 × SG × HTSD240−360 + 0.02985×HTSD2
240−360

+166.7441 × SG2 × HTSD240−360 − 0.503125 × SG × HTSD2
240−360 − 19873.07896×SG3

+0.0037714 × HTSD3
240−360 − 21395.469

SG + 2207.4797
HTSD240−360

(5)

where TBP240−360 = TBP yield of crude oil fraction 240–360 ◦C, wt.%, and HTSD240−360 = HTSD
yield of crude oil fraction 240–360 ◦C, wt.%.

TBPIBP¯360 = −1486302.4 × SG + 706.3558 × HTSDIBP¯360 − 816751.6624 − 1177897.12×SG2

−1308.126SG × HTSDIBP¯360 + 2.3461 × HTSD2
IBP¯360 + 674.042 × SG2 × HTSDIBP¯360

+1.41365SG × HTSD2
IBP¯360 + 343817.1466×SG3 + 0.0059531×HTSD3

IBP¯360

+ 162215.444
SG + 26821.6259

HTSDIBP¯360

(6)

where TBPIBP—360 = TBP yield of crude oil fraction IBP—360 ◦C, wt.% (IBP = initial boiling
point), and HTSDIBP—360 = HTSD yield of crude oil fraction IBP—360 ◦C, wt.%.

TBPIBP¯540 = −2232.1983 × SG − 655.3758 × HTSDIBP¯540 − 31682.394 + 18264.286×SG2+

1125.409 × SG × HTSDIBP¯540 + 1.9922×HTSD2
IBP¯540 + 495.3427 × SG2 × HTSDIBP¯540−

1.66488 × SG × HTSD2
IBP¯540 − 4936.8613 × SG3 − 0.001997 × HTSD3

IBP¯540 +
21798.8637

SG − 23085.8313
HTSDIBP¯540

(7)

where TBPIBP—540 = TBP yield of crude oil fraction IBP—540 ◦C, wt.%, and
HTSDIBP—540 = HTSD yield of crude oil fraction IBP—540 ◦C, wt.%.

TBP50% = −936589.633 × SG + 116.4095 × HTSD50% + 533529.969 + 738502.444×SG2−
195.3968 × SG × HTSD50% + 0.0007634 × HTSD2

50% + 205.4164 × SG2 × HTSD − 0.227388 × SG×
HTSD2

50% − 238553.77×SG3 + 0.00014461 × HTSD3
50% − 124986.531

SG + 1.993594
HTSD50%

(8)

where TBP50% = TBP boiling point at 50 wt.% evaporate, ◦C, and HTSDIBP—540 = HTSD
TBP boiling point at 50 wt.% evaporate, ◦C.

Figures 2 and 3 juxtapose the TBP with HTSD yields for the 110–180 ◦C, 180–240 ◦C,
240–360 ◦C, IBP—360 ◦C, and IBP—540 ◦C, T50% fractions of TBP versus HTSD.
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Figure 2. Juxtaposition of the TBP with HTSD yields of the 110–180 ◦C (a), 180–240 ◦C (b), and
240–360 ◦C (c) fractions; the estimated TBP yields according to Equation (3) (d), Equation (4) (e), and
Equation (5) (f).
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Figure 3. Juxtaposition of the TBP with the HTSD yields of the IBP—360 ◦C (a), IBP—540 ◦C (b), and
T50% (TBP versus HTSD) (c) fractions; the estimated TBP yields according to Equation (6) (d) and
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These data clearly show that the equations developed in this work provided a better
match to the TBP data than the HTSD data themselves. Using Equations (3)–(8) and em-
ploying Riazi’s distribution model (Equation (2)), a full TBP curve could be established,
as shown in Figure 4. The values of the A and B parameters from Equation (2) estimated
with the distillation data of the studied crude oils are presented in Table S6. The stud-
ied crude oils enabled the satisfactory prediction of TBP data from HTSD and specific
gravity data (deviation in predicted yields of lower than 1.4 wt.%, as required by ASTM
D2892 [11]), except for two crude oils: Oryx (deviation = 3.5 wt.%) and South Green Canyon
(deviation = 3.0 wt.%), whose simulated and actual TBP data are shown in Figure 5. The
reason for the bigger deviations in TBP yield predictions for these crude oils lies in the poor
forecast of the IBP—360 ◦C fraction yield that resulted in the inadequate prognosis of the
lighter part of TBP curve. This is understandable for HTSD, which underpredicts the lighter
ends of TBP because of the co-elution of C4–C8 crude oil hydrocarbons with the CS2 solvent,
as stated in the ASTM D7169 standard [50]. Although the employment of Equations (3)–(8)
and Riazi’s distribution model (Equation (2)) enabled the satisfactory prediction of TBP
data from HTSD and specific gravity data for some crude oils, the deviations in predictions
of the lighter part of the TBP curve were larger than the reproducibility of the ASTM D2892
method. Thus, as reported in [51], a combination of ASTM D7169 and ASTM D7900 can
provide the accurate representation of full TBP curves for crude oils for minutes instead of
the three days required to complete ASTM D2892 and ASTM D5236 analyses. Moreover,
HTSD can more accurately represents the content of hydrocarbon fractions in heavy oils
than the ASTM D5236 and ASTM D1160 physical distillation methods [13,52–54].

3.2. Kw Characterization Factor, and Sulphur Distributions of Narrow Fractions in the Crude Oils

The TBP analysis of crude oil allowed us to measure the density (specific gravity) and
sulphur content of the narrow crude oil fractions. Based on the middle boiling point of the
narrow fractions (which in our study was assumed to be equal to T50%) and the specific
gravity, the Kw characterization factor of each fraction and of the whole crude oil could be
calculated using Equation (1). The Kw characterization factor of the narrow fractions of the
30 studied crude oils is shown in Table S7. It is evident from the data in Figure 6 that the
distribution of the narrow fraction Kw characterization factor had different shapes for each
crude oil and that the whole crude oil Kw factor could be derived from that of the narrow
fractions. This is opposite to the generally accepted concept of the constant Kw factor of
petroleum fluids [55–57]. According to this concept, the density of the narrow fractions can
be calculated with Equation (9).

SG =
3
√

1.8[T50% + 273.15]
Kw

(9)

The data in Table S7 and Figure 6, however, indicate that the Kw factor varied depending
on the boiling point range of the crude oil. For example, the Varandey crude oil exhibited a
Kw factor of 12.50 of the lightest narrow fraction (T50% = 47.5 ◦C), then dropped to 11.67 for
the narrow fraction with T50% = 85 ◦C, and started increasing to reach 12.49 for the narrow
fraction with T50% = 545 ◦C. On the other hand, the Kw factor of the whole Varandey crude
oil was 11.88. Considering Tempa Rossa crude oil, the Kw factor of the narrow fractions
continually decreased from 12.78 for the lightest narrow fraction (T50% = 47.5 ◦C) to 11.24 for
the heaviest narrow fraction with T50% = 545 ◦C. On the other hand, the whole Tempa Rossa
crude oil Kw factor was 11.62. Using intercriteria analysis evaluation allowed us to quantify
the extent of similarity in the pattern of Kw factor variation through the whole crude oil
boiling range. Table 1 shows the degree of similarity quantified with ICrA evaluation on the
basis of Kw factor variation through the whole boiling range of the crude oils. Normally in
ICrA, the final matrix is nxn, where n is the number of objects being compared, but here, due
to the large size of the matrix, only the part containing the most significant elements is shown.
The data in Table 1 indicate that there was no strong statistically meaningful consonance
(µ ≥ 0.95) between any of the studied crude oils, confirming the statement made by Abdel-
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AalMohammed and Alsahlawi [58] and Gary et al. [59] that no two crude oils are the same.
These data also indicate that the patterns of Kw factor variation through the whole boiling
range of the crude oils may be very different, as also indicated by the data shown in Figure 6.
Therefore, the concept of a constant Kw factor may lead to the reporting of wrong values for
the specific gravity curves of crude oils.
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Figure 4. TBP curves of extra light (d,e), light (f), medium (b,c), and heavy (a) crude oils simulated
with Equations (3)–(8) and Riazi’s distribution model (Equation (2)).
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Figure 5. TBP curves of Oryx (a) and South Green Canyon (b) crude oils simulated with
Equations (3)–(8) and Riazi’s distribution model (Equation (2)).
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Figure 6. Kw characterization factor of narrow fraction distributions and the whole crude oil Kw
characterization factor for the different crude oils studied in this work (a–d).
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Table 1. Degree of similarity between some of the investigated crude oils determined based on the
application of intercriteria analysis and Kw factor variation through the whole boiling range of the
crude oils.

µ Urals Arab M Arab H Vald’Agri Basrah L Basrah H Kirkuk Iranian H KEB El Bouri
Urals 1 0.5628 0.5714 0.4372 0.5411 0.4502 0.6017 0.7489 0.5541 0.8398

Arab M 0.5628 1 0.71 0.7619 0.7965 0.7013 0.8268 0.7056 0.7619 0.5671
Arab H 0.5714 0.71 1 0.8052 0.8485 0.8658 0.7879 0.6104 0.7359 0.5628

Vald’Agri 0.4372 0.7619 0.8052 1 0.8701 0.8312 0.7965 0.6061 0.697 0.4632
Basrah L 0.5411 0.7965 0.8485 0.8701 1 0.8095 0.8701 0.658 0.7749 0.5455
Basrah H 0.4502 0.7013 0.8658 0.8312 0.8095 1 0.7576 0.5498 0.7446 0.4719
Kirkuk 0.6017 0.8268 0.7879 0.7965 0.8701 0.7576 1 0.7273 0.7835 0.5844

Iranian H 0.7489 0.7056 0.6104 0.6061 0.658 0.5498 0.7273 1 0.6797 0.7619
KEB 0.5541 0.7619 0.7359 0.697 0.7749 0.7446 0.7835 0.6797 1 0.5671

El Bouri 0.8398 0.5671 0.5628 0.4632 0.5455 0.4719 0.5844 0.7619 0.5671 1
Kazakh 0.8961 0.5584 0.5758 0.4545 0.5498 0.4719 0.6061 0.7489 0.6104 0.7965

CPC 0.7835 0.5065 0.4242 0.3939 0.4978 0.355 0.5238 0.6883 0.5325 0.7532
LSCO 0.8701 0.5195 0.4719 0.3896 0.4978 0.3766 0.5455 0.6883 0.5152 0.7922
Rhem. 0.7576 0.4286 0.3896 0.3203 0.4286 0.3074 0.4719 0.6061 0.4805 0.7013
Prinos 0.5541 0.5974 0.5455 0.6277 0.6537 0.5974 0.6364 0.6364 0.5931 0.5411
Azeri L 0.7186 0.4113 0.329 0.29 0.3896 0.2597 0.4199 0.6277 0.4372 0.7056

SGC 0.697 0.5368 0.5411 0.4935 0.5931 0.4545 0.619 0.7273 0.5455 0.71
Oryx 0.4199 0.6883 0.7922 0.8398 0.7706 0.8658 0.7229 0.5152 0.684 0.4242

Okwuib 0.6537 0.6883 0.8268 0.658 0.7359 0.7186 0.7273 0.6667 0.7403 0.6494
RasGharib 0.8355 0.6147 0.632 0.5152 0.5974 0.5368 0.6537 0.7273 0.645 0.8139
Varandey 0.7403 0.4762 0.3939 0.3463 0.4242 0.2857 0.4632 0.6667 0.4762 0.7446

Arab L 0.5498 0.7446 0.8442 0.8182 0.8442 0.8139 0.8268 0.645 0.7619 0.5541
Tempa Rossa 0.3853 0.671 0.7835 0.8182 0.7143 0.8485 0.6667 0.4762 0.645 0.3896

Note: Green color denotes statistically meaningful positive relation; red color denotes statistically meaningful
negative relation. The intensity of the color designates the strength of the relation. The higher the color intensity,
the higher the strength of the relation. Yellow color denotes dissonance.

Just for comparison, Table 2 presents the degree of similarity between some of the
investigated crude oils determined based on the application of intercriteria analysis and
HTSD data, total sulphur content, and crude oil specific gravity. These data indicate the
presence of strong positive consonance (µ ≥ 0.95) between, for example, the Tempa Rossa,
Arab Heavy, Albanian, Arab Medium, Basrah Light, Oryx, and South Green Canyon crude
oils that implies that these crude oils are similar in terms of their distillation characteristics,
total sulphur content, and bulk specific gravity. The data in Tables 1 and 2 suggest that
the distillation characteristics of the crude oils cannot be used as an indicator of the Kw
factor variation through the whole crude oil boiling range. Thus, while the TBP simulated
with a gas chromatographic could be used to predict distillation, specific gravity curve
simulation cannot be accurate applied the concept of a constant Kw factor. Additional
investigations are needed to develop an appropriate procedure to simulate crude oil specific
gravity curves.

The sulphur content data of 23 narrow fractions of the 34 studied crude oils are
presented in Table S8. Figure 7 shows the distribution of sulphur among the boiling point
range of some of the studied crude oils. These data show that the sulphur content generally
increased with boiling point increases. However, the shape of the curve and the slope of
increase were different for each crude oil. For the dataset in Table S8, ICrA evaluation
was performed to assess the similarity of sulphur content variation through the whole
boiling range of the studied crude oils. Table 3 presents the degree of similarity between
some of the investigated crude oils determined based on the application of intercriteria
analysis and sulphur content variation through the whole crude oil boiling range. The
data in Table 3 indicate the presence of a higher degree of similarity between the studied
crude oils than that observed in Table 1, where the Kw factor distribution was evaluated
with ICrA. For example, the Iranian Heavy crude oil had a positive consonance µ = 0.9407
with Arab Medium crude oil. Although this value was higher than the highest positive
consonance of µ = 0.9177 (between Bonga and RasGharib) observed in the ICrA evaluation
of Kw factor distribution, it was much lower than the µ = 0.9863 (between Tempa Rossa
and Oryx) observed in the ICrA evaluation of boiling point distribution.



Processes 2023, 11, 420 14 of 23

Table 2. Degree of similarity between some of the investigated crude oils determined based on the ap-
plication of intercriteria analysis and HTSD data, total sulphur content, and crude oil specific gravity.

µ Tempa Rossa Forties Kuwait Light Arabian light Kumkol Arabian Heavy Alban Crude Ras Gharib
Tempa Rossa 1 0.8261 0.3852 0.916 0.6025 0.9683 0.9717 0.9076

Forties 0.8261 1 0.4168 0.7899 0.4725 0.8255 0.805 0.7588
Kuwait Light 0.3852 0.4168 1 0.4401 0.5745 0.3854 0.3908 0.3908
Arabian light 0.916 0.7899 0.4401 1 0.656 0.923 0.9115 0.8863

Kumkol 0.6025 0.4725 0.5745 0.656 0.9765 0.6221 0.6112 0.6711
Arabian heavy 0.9683 0.8255 0.3854 0.923 0.6221 1 0.9507 0.9092

Alban crude 0.9717 0.805 0.3908 0.9115 0.6112 0.9507 1 0.8992
Ras Gharib 0.9076 0.7588 0.3908 0.8863 0.6711 0.9092 0.8992 1

Boscan 0.0034 0.1006 0.012 0.0104 0.021 0.0157 0.0008 0.0381
Aseng 0.2297 0.1448 0.5605 0.3 0.5499 0.2443 0.2389 0.2793

El Sharara 0.4126 0.3485 0.7759 0.4849 0.6994 0.428 0.4202 0.4619
Helm C.O. 0.5165 0.4667 0.7916 0.5874 0.6661 0.5277 0.523 0.5759

Arab Medium 0.9683 0.8255 0.3966 0.9272 0.6087 0.9636 0.9549 0.9028
Azeri light 0.5011 0.4322 0.7952 0.5524 0.7375 0.4983 0.5028 0.5095

Basrah Light 0.9549 0.8277 0.3905 0.9137 0.6157 0.9588 0.9465 0.9017
Bozachi 0.4555 0.4583 0.8165 0.5325 0.6249 0.4745 0.4667 0.523

Cheleken 0.2521 0.2686 0.7941 0.3218 0.5899 0.2644 0.2569 0.3112
CPC 0.1403 0.188 0.7246 0.2084 0.4936 0.1532 0.1437 0.2034

El Bouri 0.8591 0.7325 0.4675 0.8731 0.709 0.8675 0.851 0.851
Kazakh 0.2992 0.2123 0.6669 0.3725 0.6555 0.3157 0.3123 0.3745
Kirkuk 0.9669 0.8305 0.4 0.9258 0.6039 0.9594 0.949 0.8947

Kuwait Export
Blend 0.9695 0.8322 0.3815 0.9151 0.6031 0.963 0.9476 0.9039

Okwibome 0.1006 0.0933 0.6053 0.1616 0.419 0.1014 0.1112 0.1367
Oryx 0.9863 0.83 0.3784 0.9216 0.6059 0.9756 0.9664 0.9134
Urals 0.8605 0.7387 0.4672 0.8874 0.6762 0.8695 0.8588 0.8454

Rhemoura 0.9014 0.8062 0.4297 0.8863 0.5941 0.8936 0.898 0.8723
Sib. Light 0.5476 0.4585 0.7073 0.6185 0.8216 0.5627 0.5501 0.6123

South Green
Canyon 0.97 0.8185 0.3672 0.9109 0.6168 0.9737 0.9485 0.9283

Prinos 0.9597 0.8028 0.4064 0.9221 0.6246 0.9443 0.9574 0.9154
ValD’Agri 0.5966 0.5695 0.6919 0.6199 0.5053 0.5835 0.5983 0.5745

Note: Green color denotes statistically meaningful positive relation; red color denotes statistically meaningful
negative relation. The intensity of the color designates the strength of the relation. The higher the color intensity,
the higher the strength of the relation. Yellow color denotes dissonance.

Table 3. Degree of similarity between some of the investigated crude oils determined based on
the application of intercriteria analysis and sulphur content variation through the whole crude oil
boiling range.

µ Urals Arab M Arab H Vald’Agri Basrah L Basrah H Kirkuk Iranian H KEB El Bouri
Urals 1 0.6324 0.498 0.5573 0.5138 0.4585 0.5613 0.6047 0.5494 0.4269

Arab M 0.6324 1 0.8498 0.9091 0.834 0.7787 0.8893 0.9407 0.9091 0.7628
Arab H 0.498 0.8498 1 0.8854 0.834 0.8735 0.8735 0.8617 0.917 0.8656

Vald’Agri 0.5573 0.9091 0.8854 1 0.8696 0.8221 0.8933 0.9051 0.9289 0.7826
Basrah L 0.5138 0.834 0.834 0.8696 1 0.8972 0.9209 0.8458 0.8538 0.7549
Basrah H 0.4585 0.7787 0.8735 0.8221 0.8972 1 0.8577 0.7984 0.8379 0.7945
Kirkuk 0.5613 0.8893 0.8735 0.8933 0.9209 0.8577 1 0.917 0.9091 0.7708

Iranian H 0.6047 0.9407 0.8617 0.9051 0.8458 0.7984 0.917 1 0.9051 0.751
KEB 0.5494 0.9091 0.917 0.9289 0.8538 0.8379 0.9091 0.9051 1 0.8063

El Bouri 0.4269 0.7628 0.8656 0.7826 0.7549 0.7945 0.7708 0.751 0.8063 1
Kazakh 0.6838 0.7115 0.6245 0.6561 0.6206 0.5534 0.664 0.7036 0.6798 0.5455

CPC 0.8063 0.4545 0.3439 0.3953 0.3992 0.3597 0.4229 0.4506 0.3874 0.3281
LSCO 0.8142 0.7154 0.6206 0.664 0.6285 0.5494 0.6917 0.7115 0.664 0.5099
Rhem. 0.7549 0.7747 0.664 0.7154 0.6561 0.5929 0.7273 0.7708 0.7312 0.5613
Prinos 0.8261 0.5692 0.4625 0.5178 0.4783 0.4308 0.5494 0.585 0.5178 0.4032
Azeri L 0.6285 0.3004 0.1818 0.2332 0.1818 0.1265 0.2451 0.2964 0.249 0.2055

SGC 0.6957 0.8735 0.7945 0.8142 0.7549 0.7233 0.834 0.8696 0.8221 0.6838
Oryx 0.419 0.7628 0.8972 0.8142 0.8538 0.8933 0.8379 0.7787 0.8379 0.7866

Okwuib 0.5652 0.2292 0.1107 0.1621 0.1265 0.0791 0.166 0.2174 0.17 0.2055
RasGharib 0.3004 0.3202 0.4071 0.3557 0.3913 0.4625 0.3676 0.3241 0.3557 0.4941
Varandey 0.6838 0.5138 0.4032 0.4466 0.4664 0.4506 0.498 0.4862 0.4466 0.4506

Arab L 0.7075 0.8617 0.7352 0.8182 0.7352 0.6561 0.7905 0.8419 0.7866 0.6245
KBT 0.5652 0.8458 0.8063 0.8577 0.8854 0.7984 0.9249 0.8577 0.8498 0.7036

Tempa Rossa 0.0158 0.2213 0.3241 0.2727 0.3202 0.3676 0.2885 0.2332 0.2727 0.3281

Note: Green color denotes statistically meaningful positive relation; red color denotes statistically meaningful
negative relation. The intensity of the color designates the strength of the relation. The higher the color intensity,
the higher the strength of the relation. Yellow color denotes dissonance.
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Figure 7. Distribution of sulphur in the boiling point range of some of the studied crude oils (a,b).

This may imply that the crude oil boiling point distribution cannot be considered
reliable enough for use it as a tool to predict specific gravity and sulphur distribution
curves, which is in contrast with the conclusion of Swafford and McCarthy [60] that
specific gravity, total sulphur content, and simulated distillation can be used to simulate a
complete comprehensive assay of a crude oil. Indeed, some relations between the different
crude oil properties may be found, as reported in our earlier study [47], but the limit of
uncertainty for the prediction of density, for example, can be broad for some crude oils.
This statement is completely in line with the conclusions reached by Abdel-AalMohammed
and Alsahlawi [58] and Gary et al. [59] that no two crude oils are the same.

3.3. SARA Composition and Bulk Properties of Studied Crude Oils

The SARA analysis data and bulk properties of 48 extra light, light medium, heavy,
and extra heavy crude oils are summarized in Table S9. Table 4 summarizes the range of
variations in the SARA composition and crude oil bulk properties



Processes 2023, 11, 420 16 of 23

Table 4. Range of variations in the SARA composition and bulk properties of the studied crude oils.

Sat,
wt.%

Aro,
wt.%

Resins,
wt.%

As,
wt.% SG Sulphur,

wt.%
VR Yield,

wt.%
Pour Point,

◦C
VIS at 40 ◦C,

mm2/s Slope Kw

min 23.5 7.1 0.0 0.1 0.782 0.03 1.4 −45.6 0.9 2.9 11.33
max 92.9 62.1 7.7 22.2 1.002 5.64 60.7 37.8 19430.0 5.2 12.67

Tables 5 and 6 present the results of ICrA evaluation used for the determination of
statistically meaningful relations between the SARA composition data and the bulk crude
oil properties.

Table 5. µ-value of the ICrA evaluation of relations between crude oil SARA composition data and
bulk properties.

µ Sat Aro Resins As SG Sulphur VR Yield PP VIS
Sat 1 0.1687 0.1404 0.1727 0.0677 0.1525 0.101 0.4667 0.1283
Aro 0.1687 1 0.7535 0.7566 0.7727 0.7707 0.7626 0.4515 0.7646

Resins 0.1404 0.7535 1 0.8202 0.797 0.8394 0.8212 0.4566 0.7889
As 0.1727 0.7566 0.8202 1 0.7828 0.8273 0.8081 0.4596 0.7475
SG 0.0677 0.7727 0.797 0.7828 1 0.7919 0.9 0.4879 0.8626

Sulphur 0.1525 0.7707 0.8394 0.8273 0.7919 1 0.8242 0.404 0.7778
VR yield 0.101 0.7626 0.8212 0.8081 0.9 0.8242 1 0.5081 0.9091

PP 0.4667 0.4515 0.4566 0.4596 0.4879 0.404 0.5081 1 0.5141
VIS 0.1283 0.7646 0.7889 0.7475 0.8626 0.7778 0.9091 0.5141 1

Note: Green color denotes statistically meaningful positive relation; red color denotes statistically meaningful
negative relation. The intensity of the color designates the strength of the relation. The higher the color intensity,
the higher the strength of the relation. Yellow color denotes dissonance.

Table 6. υ-value of the ICrA evaluation of relations between crude oil SARA composition data and
bulk properties.

υ Sat Aro Resins As SG Sulphur VR Yield PP VIS
Sat 0 0.8273 0.8394 0.8192 0.9202 0.8394 0.897 0.4737 0.8677
Aro 0.8273 0 0.2263 0.2354 0.2131 0.2212 0.2354 0.4889 0.2313

Resins 0.8394 0.2263 0 0.1556 0.1727 0.1364 0.1606 0.4717 0.1909
As 0.8192 0.2354 0.1556 0 0.199 0.1606 0.1859 0.4768 0.2444
SG 0.9202 0.2131 0.1727 0.199 0 0.1899 0.0879 0.4424 0.1232

Sulphur 0.8394 0.2212 0.1364 0.1606 0.1899 0 0.1697 0.5323 0.2141
VR yield 0.897 0.2354 0.1606 0.1859 0.0879 0.1697 0 0.4343 0.0889

PP 0.4737 0.4889 0.4717 0.4768 0.4424 0.5323 0.4343 0 0.4263
VIS 0.8677 0.2313 0.1909 0.2444 0.1232 0.2141 0.0889 0.4263 0

Note: Green color denotes statistically meaningful positive relation; red color denotes statistically meaningful
negative relation. The intensity of the color designates the strength of the relation. The higher the color intensity,
the higher the strength of the relation. Yellow color denotes dissonance.

The data in Tables 5 and 6 show similar relations as those observed for the vacuum
residues from our recent study [61], with the specific gravity being the crude oil charac-
teristic most related to saturate content. Based on the data of SARA composition for 308
crude oil samples measured in accordance with ASTM D2007, modified ASTM D4124,
HPLC, TLC-FID (Iatroscan), and liquid chromatography in our recent research [23], a
relation (Equation (10)) between crude oil saturate content and crude oil specific gravity
was developed.

Crude oil saturates (wt.%) = 100 − (
100

0.2748 + 5.198e−4.787SG − 239) (10)

Figure 8 shows the relation of crude oil density to the saturate content estimated with
Equation (10). The average absolute deviation of Equation (10) was found to be 3.3 wt.%.
The maximum absolute deviation was 13.3 wt.%. The bias was −0.7 wt.%.
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Figure 8. Relation of crude oil saturate content to specific gravity.

A more accurate prediction of crude saturate content was obtained by using nonlinear
regression and employing the data generated with Equation (10), which relates saturate
content to crude oil specific gravity and pour point. The new regression designated as
Equation (11) is shown below.

Crude oil saturates (wt.%) = 0.30283 × Sat(SG)− 0.25515 × PP+
31.45053 + 0.0052145 × Sat(SG)2 + 0.0028855 × Sat(SG)× PP−
0.0067996 × PP2 + 0.00006159 × Sat(SG)2 × PP + 0.000152899×

Sat(SG)× PP2 − 441.77259
Sat(SG)

(11)

where Sat(SG) = crude oil saturate content calculated with Equation (10) from SG, wt.%.
The average absolute deviation of Equation (11) was found to be 2.5 wt.%. The

maximum absolute deviation was 6.6 wt.%. The bias was −0.01 wt.%. Figure 9 shows
parity graphs of measured crude oil saturate content versus crude oil saturate content
estimated with Equation (10) (Figure 9a) and Equation (11) (Figure 9b). The data in Figure 9
show that the new Equation (11) provided a lower prediction dispersion.
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Figure 9. Parity graphs of measured crude oil saturate content versus crude oil saturate content
predicted with Equation (10) (a) and Equation (11) (b).

4. Discussion

The developed equations (Equations (3)–(8)) used to convert HTSD to TBP, as shown
in Figures 2 and 3, reasonably well-predicted the TBP yields and T50%. The data they
generated were very well-described by the Riazi’s distribution model that allowed us to
construct a full TBP curve from the HTSD data and specific gravity of each crude oil.

The direct juxtaposition of HTSD to TBP did not provide the satisfactory matching of
HTSD with TBP. Despite the relatively good prediction of TBP curves via the simultaneously
employment of Equations (3)–(8) with Equation (2) (Riazi’s distribution model), some
crudes did not allow for the very accurate prediction of the lighter part of the TBP curve,
as shown in Figure 5. This shortcoming could be overcome by simultaneously employing
ASTM D7169 and ASTM D7900, as reported in [51]. HTSD was shown to be superior to
physical vacuum distillation in our recent study [13], and it can be used to predict the
TBP for heavy oils. HTSD is carried out over 40 min, while TBP analysis requires three
days. However, the TBP analysis allows for the measurement of the specific gravity and
sulphur content of narrow crude oil fractions, which (as shown in the previous section) are
difficult to accurately predict from crude boiling point distributions. Therefore, the method
developed in this work to build crude oil TBP curves from HTSD and crude specific gravity
data can be used to control the quality of cargoes of known crude oils via a controlled
crude assay. However, for crude oils that are not known, the use of TBP analysis along with
specific gravity and sulphur content measurements of narrow fractions should be applied.
The specific gravity of narrow fractions is a very useful characteristic that correlates with
aromatic content, which is important for the evaluation of the cetane index of the middle
distillates, and the crackability of heavy oil fractions. Thus, its correct determination affects
the proper planning of yields in the conversion of oil-refining units. The sulphur content of
narrow fractions is also an important characteristic when evaluations of HDS and sulphur
recovery unit performance are performed. This can explain why TBP analysis is the best
choice to characterize a new crude oil.

Regarding crude oil SARA analysis, the prediction of saturates was described by
Yarranton [62] as a very important step in obtaining a full crude oil SARA composition.
By predicting the saturate and asphaltene content of a vacuum residue with the method
described in our recent research [63] and employing the relationship of vacuum residue
asphaltene to crude oil asphaltene content determined in our previous study [23] and the
relation between C5 and C7 asphaltenes established in [23], it is possible to simulate full
crude oil SARA composition. Equation (11) (newly developed in this work), Equation
(10), and the data of crude oil specific gravity and pour point can be used to obtain an



Processes 2023, 11, 420 19 of 23

average absolute deviation of 2.5 wt.%, maximum average deviation of 6.6 wt.%, and
bias of −0.01 wt.% for 48 crude oils, while the method proposed by Yarranton showed an
average absolute deviation of 2.7 wt.%, a maximum average deviation of 8.0 wt.%, and bias
of −0.5 wt.% for 25 crude oils [62]. Therefore, our new method can be considered superior
to the method of Yarranton [62]. The measurement of C5 and C7 asphaltenes enables the
determination of C5 resins via the subtraction of C7 asphaltenes from C5 asphaltenes, and
the aromatic content can be determined via the subtraction of saturate contents, C5 resins,
and C7 asphaltenes from 100 wt.%.

The data in Tables 5 and 6 indicate that viscosity was found to be significantly nega-
tively related to saturates and positively related to specific gravity and vacuum residue
content. These findings are in line with those observed in our recent studies on crude oil
viscosity modelling [64,65].

5. Conclusions

HTSD, specific gravity, and the Riazi’s distribution model can be used to simulate the
TBP of crude oils. For most studied crude oils, the TBP simulation from HTSD data, the
correlations developed in this work, and Riazi’s distribution model showed satisfactory
deviations within the uncertainty of TBP yield measurements according to the ASTM D2892
standard. For some crude oils, however, the lighter part of the TBP curve was predicted
with a lower accuracy than that reported by the ASTM D2892 standard. This finding
suggests that a combination of the ASTM D7169 and ASTM D7900 gas chromatographic
methods could correctly simulate a whole crude oil TBP curve.

The concept of a constant Kw characterization factor was disproved in this study.
The diverse crude oils exhibited distinct Kw factor distributions of narrow fractions that
were difficult to predict from boiling point distribution and crude oil bulk properties. The
same was found to be valid for the sulphur distribution of the narrow fractions of the
different crude oils. While the degree of similarity of crude oils evaluated with ICrA based
on the distillation characteristics could be high for some crude oils, those evaluated on
the basis of the Kw characterization factor and sulphur distributions were not so high.
The degree of similarity of the crude oils evaluated using ICrA based on the distillation
characteristics differed from that evaluated on the basis of the Kw characterization factor
and sulphur distributions. This suggests that the Kw characterization factor and sulphur
distributions cannot be accurately predicted from distillation distribution data and crude
oil bulk properties. Therefore, when accurate information about the density (Kw factor)
and sulphur distribution of crude oil is needed, a TBP analysis is required.

Furthermore, crude oil saturate content can be predicted with a satisfactory accuracy
with information about the density and pour point of crude oil.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr11020420/s1, Table S1: High-temperature simulated distillation
of extra light, light medium, heavy, and extra heavy crude oils (boiling point at 1%); Table S2: High-
temperature simulated distillation of extra light, light medium, heavy, and extra heavy crude oils
(evaporates at 70, 110, 130, 150, 170, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 390, 430,
470, 490, and 540 ◦C); Table S3: True boiling point distillation of extra light, light medium, heavy,
and extra heavy crude oils (evaporates at 70, 110, 130, 150, 170, 180, 200, 220, 240, 260, 280, 300, 320,
340, 360, 380, 390, 430, 470, 490, and 540 ◦C); Table S4: True boiling point distillation of extra light,
light medium, heavy, and extra heavy crude oils (evaporates at 70, 110, 130, 150, 170, 180, 200, 220,
240, 260, 280, 300, 320, 340, 360, 380, 390, 430, 470, 490, and 540 ◦C) extracted from [48]; Table S5:
High-temperature simulated distillation of extra light, light medium, heavy, and extra heavy crude
oils (evaporates at 70, 110, 130, 150, 170, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 390, 430,
470, 490, and 540 ◦C) extracted from [37]; Table S6: Values of the parameters A and B from Riazi’s
distribution model (Equation (2)) for the studied crude oils estimated using the distillation data;
Table S7: Kw characterization factor of narrow fractions of 30 studied crude oils; Table S8: Sulphur
content of TBP crude fractions of extra light, light, medium, and heavy crude oils; Table S9: SARA
analysis data and bulk properties of extra light, light medium, heavy, and extra heavy crude oils.
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Nomenclature

API American Petroleum Institute gravity
Aro Aromatics
As Asphaltenes
ASTM American Society for Testing and Materials
FID Flame ionization detector
GC Gas chromatography
HP Hewlett Packard
HPLC High-performance liquid chromatography
HTSD High-temperature simulated distillation
IBP Initial boiling point
ICrA Intercriteria analysis
Kw Watson characterization factor
PIANO Paraffins, iso-paraffins, aromatics, naphthenes, and olefins
PONA Paraffins, olefins, naphthenes, and aromatics
PP Pour point
SARA Saturates, aromatics, resins, asphaltenes
Sat. saturates
SG Specific gravity
Slope Slope in Walther equation [65] for double logarithm dependence on logarithm of temperature
T0 Boiling point at zero yield of distillate
TBP True boiling point
Ti Boiling point of i-weight fraction of distillation curve
TLC Thin-layer chromatography
VIS Kinematic viscosity
VR Vacuum residue
xi Weight fraction of i-component.
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