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Abstract: The increasing scale of industrial processes has significantly motivated the development
of data-driven fault detection and diagnosis techniques. The selection of representative fault-free
modeling data from operation history is an important prerequisite to establishing a long-term effective
process monitoring model. However, industrial data are characterized by a high dimension and
multimode, and are also contaminated with both outliers and frequent random disturbances, making
automatic modeling data selection a great challenge in industrial applications. In this work, an
information entropy-based automatic selection strategy for modeling data is proposed, based on
which a general real-time process monitoring framework is developed for a large-scale industrial
methanol to olefin unit with multiple operating conditions. Modeling data representing normal
operating conditions are automatically selected with only a few manually defined normal samples. A
long-term effective process monitoring model is then established based on a multi-layer autoencoder,
through which unexpected disturbances in real-time operation can be detected early and the root
cause can be preliminarily diagnosed by contribution plots. The adjustment of operating conditions
has also been considered through a model update strategy. Details of the proposed data selection
strategy and modeling process have been provided to facilitate the industrial application of process
monitoring systems by other researchers or companies.

Keywords: fault detection and diagnosis; information entropy; autoencoder; industrial process safety;
real-time industrial application of process monitoring method

1. Introduction

Demands on process safety continue to rise due to the ever-increasing scale and
complexity of the modern process industry. Aiming at this issue, the process monitoring
technique was designed as a powerful tool to ensure the long-term stable operation of
industrial systems through Fault detection and diagnosis (FDD). FDD aims to early detect
the abnormal behaviors of the process and transfer the fault information to operators to
minimize the impact of faults [1]. Over the past decades, process monitoring has been
well developed and divided into model-based methods, knowledge-based methods, and
data-driven methods [2–4]. As the real-time operation of plant-wide processes becomes
much more complex than that under ideal conditions, many random factors cannot be
considered in model-based methods and knowledge-based methods, which challenges
their application in industrial FDD systems. Given the widespread application of sensors
and data transmission techniques, data-driven process monitoring methods have attracted
increasing attention in the past two decades from both academia and industry [1,4–7].

Multivariate statistical analysis is one of the most commonly used techniques in data-
driven process monitoring, which is known as multivariate statistical process monitoring
(MSPM). MSPM methods aim to project original data into a low-dimensional feature space
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and a residue space. Then, statistics are employed as the dissimilarity measure in each
subspace to determine a control limit for normal variations. The most classical methods
include principal component analysis (PCA), partial least squares [8], canonical variate
analysis [9], and independent component analysis [10], which are applicable to monitor
multivariate linear processes. To handle nonlinear processes, numerous variants of these
MSPM methods, such as kernel PCA [11], have been developed by mapping original data
into a higher-dimensional linearly separable space. More kernel-based MSPM methods
proposed to handle nonlinear characteristics can be referred to in Apsemidis’s review [12].
In addition, industrial processes also have obvious process dynamics, which are ignored by
traditional methods. Ku proposed dynamic PCA to extract the autocorrelation of variables
with an augmented matrix [13], but the selection of time lag is an ad hoc solution. As
an alternative, the dynamic latent variable method is further proposed to handle process
dynamics, in which auto-regressive PCA and a vector autoregressive model are combined
to extract autocorrelation as well as static cross-correlation [14]. Dong and Qin extend it
with a dynamic inner PCA to capture the most dynamic variations in the data [15]. More
applications of dynamic latent variable models in process monitoring can be referred to
in Zheng’s review paper [16]. Although MSPM methods and their variants have made
great progress, multivariate statistical models may not be sufficient to extract complex data
characteristics for processes with high nonlinearity and process dynamics.

More recently, deep learning methods, as one of the most popular research interests,
have been gradually applied to process monitoring domains. Deep learning methods
employ multi-layer artificial neural networks (ANN) to extract features from data. The
introduction of nonlinear activation functions enables ANN to approximate complex non-
linear relationships. In this scope, the autoencoder, a special ANN whose output value is
equal to its input value, has been proven to be a more effective dimensionality reduction
and reconstruction method than PCA [17]. Later, the autoencoder was applied to anomaly
detection [18] and unsupervised fault detection [19]. To improve the performance of process
monitoring, numerous extensions to the autoencoder have been developed. A stacked
autoencoder was widely applied to process monitoring because of the good performance
of the deep neural network in feature extraction [20,21]. Yu and Zhao applied a denoising
autoencoder for robust process monitoring [22]. The variational autoencoder was proposed
by Kingma and Welling as a regularized autoencoder in which the distribution of latent
variables is restricted to a normal distribution to prevent overfitting [23]. Based on the vari-
ational autoencoder, Cheng et al. constructed a recursive neural network instead of ANN
to extract process dynamics [24]. Zhang and Qiu proposed a dynamic-inner autoencoder,
in which a vector autoregressive model is integrated into a convolutional autoencoder to
capture process dynamics [25].

The aforementioned methods have been widely applied for process monitoring pro-
poses, while most of them require a fully labeled training dataset [26], which is a huge
challenge for their real application in monitoring large-scale industrial processes [27]. A
plant-wide process generally contains several operation units and complex automatic con-
trol systems, resulting in numerous process variables and complex correlations among
them [28,29]. Moreover, there are multiple operating conditions according to the adjustment
of production loads [30,31], and certain variables also show nonstationary characteristics
due to various factors, such as equipment aging [32]. Given these complex data characteris-
tics, it is difficult to define the normal operating conditions and label fault-free samples
from massive historical data to establish a long-term effective process monitoring model.
Different from simulation processes such as the Tennessee Eastman process that the training
data have already been provided, there are many outliers in historical data of industrial pro-
cesses that have to be labeled and excluded before training the process monitoring model.
To label data manually is expensive due to the high labor and time costs [33]. Therefore,
automatic data labeling with limited labeled samples from normal operating conditions has
become an important research direction. This issue can be regarded as a positive-unlabeled
learning problem [34]. The positive-unlabeled learning has already been applied to handle
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fault detection and classification tasks with only a few normal samples labeled [26,35–37].
The most important task in positive-unlabeled learning is to determine the distribution
range of normal samples to label outliers in historical data [38]. Euclidean distance is a com-
monly used similarity measure for multivariate sequences based on the distance between
normal samples and fault samples [39,40]. Hu et al. applied KL-divergence to label fault
samples from a large amount of historical data according to the distribution information
of multivariate data [41]. However, the potential information contained in the data space
structure of the unlabeled samples has not been considered in data labeling by the above
methods [38]. Then, semi-supervised deep learning was further introduced to deal with
the process monitoring issue [42,43]. Qian et al. proposed a positive-unlabeled learning
based on a hybrid network, which contains a classifier, a feature extraction module, and a
clustering layer. An optimization strategy is designed for these three modules to achieve
promising fault detection performance using only a few labeled normal samples [26]. Zheng
and Zhao proposed a three-step high-fidelity positive-unlabeled approach based on deep
learning [35], in which a self-training stacked autoencoder is utilized for data labeling.
Although these methods have been applied to handle the fault detection task with limited
data labels, most of them were applied to benchmark simulation processes, and there
are still several issues that limit their application in plant-wide industrial processes [44].
Unlike simulation processes where most variables display a relatively stable variation,
the range of variable variations in industrial processes is much wider. There are frequent
random disturbances during practical operation, and only a few key variables, which have
a significant impact on product quality, are controlled within a small interval. Therefore,
when applying multivariate sequence similarity measures for data labeling, there could be
situations where the distance between normal samples is larger than that between normal
samples and faults, which will lead to a large control limit for normal variations. The fault
samples could be labeled as normal samples together with the normal disturbances in
historical data. The real faults will be buried in these normal disturbances and hard to be
detected by the process monitoring method in the online application. Moreover, there are
a large number of trainable parameters in semi-supervised deep learning models. For a
process with very few labeled normal samples, the number of initial training samples is not
enough to build an effective deep learning model. Further, the labeled samples obtained by
the semi-supervised model are not reliable, which leads to a poor generalization ability of
the final process monitoring model.

To address these issues, an automatic selection strategy for modeling data is proposed
and applied in the development of an industrial process monitoring framework. The
main contributions of this work include: (1) An information entropy-based automatic data
selection strategy is proposed to label normal samples and fault samples in historical data.
It only requires a very small part of normal samples to be labeled, and all other samples in
the historical data, whether normal samples or fault samples are unlabeled. The proposed
strategy labels samples through the dissimilarity measure between the distribution of
key variables in labeled normal samples and that in unlabeled samples using information
entropy within a sliding window. In this way, only abnormal behaviors that affect the key
variables will be labeled as fault samples, while the random disturbances that occur in other
variables will be labeled as normal samples as long as the pre-defined process operation
has not been impacted. Moreover, an accurate estimation of the distribution of variables in
each sliding window can be obtained by information entropy with proper window width.
Therefore, the proposed strategy does not require a significant number of training samples
as deep learning methods to achieve effective data labeling performance. (2) Based on the
labeled samples from the proposed data selection strategy, a multi-layer autoencoder and
the contribution plots are established for fault detection and diagnosis, in which a model
update strategy is proposed to handle the multimode issue. Generally, the multimode issue
is addressed under the assumption that all possible modes of the process are available in
historical data, while it is hard to be satisfied in industrial processes. Considering that
the switching of the mode mostly results from the adjustment of production loads, which
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can be easily identified by the contribution plots, a mode update strategy is utilized in the
proposed methods to monitor multimode processes by adjusting the model parameters
according to the fault diagnosis results. The proposed method can be applied to monitor
multimode processes with only one mode given in historical data. (3) The proposed method
is verified through an industrial application on a methanol-to-olefin facility, which contains
both reaction and regeneration units with more than 150 process variables. Given only 1440
labeled normal samples, the proposed automatic data selection strategy achieves correct
data labeling for a large unlabeled historical dataset. Then, the process monitoring model
is established and successfully tested through about three months (120,000 samples) of
real-time application. Details on common procedures of industrial process monitoring
systems, including data preprocessing, offline modeling, and real-time monitoring, have
also been provided to demonstrate the generalization and replicability of the proposed
method.

The following parts of this paper are organized as follows: the preliminaries of the
proposed method are introduced in Section 2. The proposed automatic selection strategy
for modeling data and the procedures of the proposed industrial process monitoring
framework are introduced in Section 3. An industrial application of the proposed method on
a methanol to olefin unit of a real chemical plant is presented in Section 4. The conclusions
are drawn in Section 5.

2. Preliminaries

In this section, algorithms and theoretical basis applied in this work are introduced as
preliminaries.

2.1. Information Entropy

Information entropy is applied in this work as a dissimilarity measure to label nor-
mal samples and fault samples in the historical dataset. Given a time series of variable
x(x1, x2, . . . , xl , . . . , xn), information entropy can be calculated as follows [45],

H(x) = −
n

∑
i=1

p(xi) log(p(xi)) (1)

where p(xi) is probability density function. p(xi) can be estimated by a few methods, and
kernel density estimation is employed in this work. As shown in Equation (2), a probability
density function can be estimated by a kernel function K(·) for each available sample in
the variable x, and the final probability density function p(x) is obtained by averaging all
these probability density functions,

P(x) =
1
n

n

∑
i=1

K(x− xi) =
1√

2πnd

n

∑
i=1

K(− (x− xi)
2

2d2 ) (2)

where K(·) is the kernel function, and d is the window width, which is usually determined
using Silverman’s rule [46].

2.2. Autoencoder

An autoencoder is a special ANN structure, which contains an encoder and a decoder.
As shown in Figure 1, the encoder is used to map the input data into hidden layers with
activation functions, by which the feature of the input data can be extracted. Then, the
decoder is used to reconstruct the input data with the hidden features extracted by the
encoder. The autoencoder aims to minimize the error between the output values and the
input values.
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Figure 1. The structure of the autoencoder used in this work.

When an autoencoder has been trained with normal data, the reconstruction error of
new test data will be kept within a certain range, and the sample whose reconstruction
error exceeds that range will be considered a fault sample, by which the fault detection
is implemented. Because of the fitting ability of ANN, the autoencoder has a good per-
formance in handling process nonlinearity. There could be multiple ANN layers in the
encoder and the decoder, and the fitting ability could be improved with the increase in
the number of layers and neurons. It is worth noting that good performance can only be
achieved when sufficient training samples are given; otherwise, it will lead to overfitting,
and the model cannot be generalized to new test data.

2.3. Industrial Process Monitoring Procedure

In simulation processes, the development of feature extraction algorithms is usually
the research focus that determines the process monitoring performance. In contrast, the data
preprocessing and the selection of modeling data are rarely considered because the training
dataset and test dataset were divided by the developer. However, this is unavailable
in almost all industrial processes, which requires them to be considered in establishing
an effective process monitoring model. As monitoring practical industrial processes is
difficult due to far more complex operation data, a common industrial process monitoring
procedure is briefly introduced as follows.

Firstly, data deficiency and outliers may happen due to failures occurring in the
meter or during data transmission. Therefore, historical data should be preprocessed to
supplement or eliminate this deficiency and outliers. Then, process variables and fault-free
samples should be selected for modeling. Variables related to product quality and safety,
not all variables, should be selected for modeling because thousands of measurements
in industrial processes will cause dimensional disaster and increase the computational
loads. The variables could be easily selected by process knowledge and correlation analysis,
while the selection of samples for modeling is a huge challenge. There is a huge amount of
historical data stored in industrial processes, which are all unlabeled. To manually select
fault-free data requires not only sufficient expert knowledge but expensive time and labor
costs. It is a meaningful research interest to obtain a large amount of historical data labeled
based on limited labeled normal data. Aiming at this issue, an information entropy-based
data selection strategy for data labeling is proposed in this work and compared with
other related methods. After the above steps are completed, an optimal feature extraction
algorithm can be easily selected to establish an effective process monitoring model for real-
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time FDD. Detailed procedures and the industrial application of the proposed industrial
process monitoring framework will be presented in the remainder of this paper.

3. Automatic Selection Strategy for Modeling Data and Process Monitoring Method

The proposed process monitoring framework can be divided into offline modeling
and online monitoring, which can be shown in the flowchart in Figure 2. Details of each
part are introduced in this section.
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3.1. Information Entropy-Based Data Labeling Strategy with Few Labeled Normal Samples

As mentioned before, sufficient normal training data are an important prerequisite for
establishing a process monitoring model. In practice, all the historical data collected from
industrial processes are unlabeled. There is inevitably a small number of fault samples in the
historical data, which have to be labeled and excluded from the training data. Labeling data
manually is almost impossible because of the high labor and time costs. Generally, a few
normal samples are first labeled manually, and then a data selection strategy is employed
to automatically label normal samples and fault samples from the rest of the historical data.
To address this issue, an information entropy-based data selection strategy is proposed and
compared to distance-based methods and semi-supervised deep learning methods.

The proposed method aims to automatically label samples according to the dissimilar-
ity measure between the distribution of normal samples and fault samples of key variables
using information entropy. The key variables refer to variables that have a great impact on
product quality and safety. These variables are usually controlled within a small variation
interval, which is hardly influenced by the random disturbances of the process. There-
fore, normal process disturbances and real faults can be effectively distinguished by the
proposed method.

Given a key variable x(x1, x2, . . . , xl , . . . , xn), where the first l samples are manually
labeled normal samples and l is much less than n, the information entropy of normal
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samples H(x)[h(x1), . . . , h(xl−d)] is first calculated using a sliding window. Details on the
selection of window width d are presented in Section 4.2. Since (l − d) group information
entropy has been calculated, a control limit can be calculated as follows to determine the
normal variations in the distribution of the variable x,

hlimit = mean(h(x1), h(x2) . . . h(xl−d))− 3 · std(h(x1), h(x2) . . . h(xl−d)) (3)

where mean(·) and std(·) are the average value and standard deviation of the information
entropy under normal operating conditions, hlimit is the lower control limit. Only the lower
control limit is employed because the information entropy will reach its maximum when
data are evenly distributed. Therefore, the information entropy remains at a high value
for normal samples. When a fault occurs, the distribution of data in the window will
change, causing a decrease in its information entropy. Then, the proposed strategy is ready
to label samples in the rest of the historical data. The information entropy of unlabeled
samples H′(x)[h(xl−d), . . . , h(xn−d) is calculated and compared with the control limit. New
samples whose information entropy is higher than the control limit will be labeled as
normal samples; otherwise, they will be labeled as fault samples. After all historical data
are labeled, the fault-free samples in historical data are included in the training data to
establish the process monitoring model.

The main advantages of the proposed data selection strategy are reflected in two
aspects. Firstly, the proposed data selection strategy employs information entropy as
the dissimilarity measure between the distribution of key variables in labeled normal
samples and unlabeled samples to perform data labeling. The key variables are highly
related to product quality or process safety, so they are strictly controlled within a small
interval and hardly influenced by random disturbances of the process. Therefore, only
real faults that affect the normal process operation can be labeled as fault samples by
the proposed method, and the process monitoring model established with training data
labeled by the proposed method will show a low false alarm rate and high sensitivity to
faults. In contrast, the distance-based methods will be significantly affected by the random
disturbances of the process, resulting in situations where the Euclidean distance between
normal samples can also be large, even larger than the distance between normal samples
and fault samples. In this way, the control limit that represents the normal variations will
be large, so that certain fault samples will be labeled as normal samples together with
normal process disturbances. Furthermore, the real faults will be buried in these normal
process disturbances and cannot be detected by the process monitoring model, making it
hard to provide a reliable monitoring result for online applications. Secondly, the proposed
data selection strategy does not require a large number of initial labeled samples. The
information entropy is a statistical method that can be used to make an accurate estimation
of the distribution of data only with proper window width. Therefore, a reliable control
limit can be determined with only a few labeled normal samples. This is difficult to
implement with semi-supervised deep learning methods. If the initial labeled samples are
too limited, it is not able to establish an effective deep learning model since there are a large
number of parameters in the model that have to be trained through sufficient training data;
otherwise, the model will be overfitting, which will affect the data labeling results, causing
a poor generalization ability of the process monitoring model.

3.2. Process Monitoring Modeling

For an industrial process X(m, n) with m variables and n selected modeling data, a
two-layer autoencoder model, which is shown in Figure 1, is trained for feature extraction
and fault detection as follows,

Z = σ(W1X + b1) (4)

Y = σ(W2Z + b2) (5)

Z′ = σ(W3Y + b3) (6)
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X′ = σ
(
W4Z′ + b4

)
(7)

where Y, Z, Z′ are latent variables, X′ is the construction of X, Wi, bi are weights and bias
of the encoder and decoder. The model aims to minimize the reconstruction error between
X and X′. The mean squared error (MSE) is applied in this work, which can be calculated
as follows,

MSE
(
X, X′

)
=

1
n

n

∑
i=1

(
xi − x′i

)2 (8)

where xi is the sample in X, and the x′i is the reconstruction of the sample xi. As the
autoencoder model has been constructed, modeling data are utilized to train the model,
in which two percent of the data are randomly divided as the validation dataset. When
the reconstruction error of the training dataset no longer decreases significantly and the
error of the validation set reaches a minimum, the model training is completed for real-time
monitoring.

3.3. Fault Detection and Diagnosis

To realize real-time fault detection, a monitoring statistic should be constructed to
quantify the process operating status. The MSE statistic in Equation (8) is used in this
work. The MSE of data under normal operating conditions should be within a threshold,
and variable correlation will change significantly when a fault occurs, resulting in a large
reconstruction error. Given a series of MSE under normal conditions MSEnormal , the
threshold under a 99% confidence interval can be determined through kernel density
estimation,

ρ(MSEnormal) =
1
n

n

∑
i=1

K(MSEnormal −MSEi) (9)

∫ threshold

−∞
ρ(MSEnormal)dMSEnormal = 0.99 (10)

where K(·) is the kernel function, which is generally selected as the Gaussian kernel
function, ρ(MSEnormal) is the probability density function, and MSEi represents the MSE at
the ith sample. For real-time monitoring, the MSE statistic is calculated and compared with
the threshold. Statistics within the threshold indicate that the system is operated under
normal operating conditions, and the data will be stored in the database for the model
update. If the statistic exceeds the threshold, a fault is detected and the root cause needs
to be isolated immediately. In this work, contribution plots are applied by calculating the
contribution rates of each variable to the reconstruction error. The variable with the largest
contribution rate is preliminarily diagnosed as the root cause.

3.4. Model Update Strategy

For plant-wide industrial processes, the catalyst activity and equipment structure will
change to a certain extent with the increase in operation time, and the operating condition
can also be adjusted according to the product price and government regulation. To make
the model more applicable to the current operating condition, a model update strategy is
also applied in the proposed process monitoring model.

In real-time process monitoring, data that are identified as normal operation by the
proposed method are continually saved in the database and supplemented to the modeling
data after a period of time for a model update. The model parameters will not change
significantly as long as the process is operated under normal conditions. Therefore, the
time cost for the model update is negligible and will not affect the application of online
monitoring. Moreover, the application of the model update strategy can deal with the
multimode issue simultaneously. The multimode issue mostly results from the adjustment
of production loads in industrial processes. This kind of mode switching will lead to a step
change in the feed flow, which can be easily identified by contribution plots. When the
mode switching is identified by the process monitoring model, the model update strategy
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will start to work, by which the normalization center of the model will be adjusted to the
new mode. In most multimode process monitoring methods, all possible modes must be
available in the training data. For real-time monitoring, new samples are first clustered
into one of the historical modes and then monitored with the corresponding model, which
requires an expensive computation cost. More importantly, it is impossible to satisfy the
assumption that all modes are included in the training data for an industrial process. By
contrast, the proposed process monitoring method employs a model update strategy to
make a connection between fault detection and fault diagnosis, by which the multimode
issue can be addressed by adjusting the normalization center of the model. The proposed
method can be applied to monitor multimode processes even with only one operating
mode available in the training data.

In summary, the procedure of the proposed industrial process monitoring framework
can be described as follows.

Offline modeling:

(1) Data are preprocessed to address data deficiency and outliers.
(2) Fault-free modeling data are automatically selected using the proposed strategy.
(3) Modeling data are normalized with their average value and standard deviation.
(4) Modeling data are divided into a training dataset and a validation dataset to train the

proposed process monitoring model.
(5) MSE statistics under normal operating conditions are calculated and the threshold

is determined.

Online monitoring:

(1) Real-time data are normalized with the average value and standard of modeling data.
(2) Normalized data are put into the process monitoring model for data reconstruction.
(3) Real-time MSE statistics are calculated using reconstruction errors.
(4) Real-time MSE statistics are compared with the threshold. Normal data are stored in

preparation for model updates, while the fault is diagnosed by contribution plots.

4. Industrial Application of Methanol to Olefin Unit

In this section, the offline modeling and online application of the proposed method on
an industrial methanol to olefin unit are introduced.

4.1. Description of the Process and Dataset

Actual process data collected from the distributed control system of a chemical plant
in China are applied for modeling and validation of the proposed model. The flowchart
of the core equipment in this methanol to olefin unit is shown in Figure 3, which contains
a reactor and regenerator. Data from a one-month period of operation are collected as
historical data. The sampling frequency of the data is one minute. A total of 169 process
variables in this unit are selected according to the process flow information. Among these
variables, the dense-phase temperature of the reactor is a key variable with an obvious
impact on product quality. The temperature is controlled within a small range to ensure
stable operation. As the temperature decreases, the conversion rate of dimethyl ether will
decrease, leading to a decrease in the selectivity of ethylene and propylene. On the other
hand, the increase in temperature will aggravate the side reaction rate and increase the
carbon deposition rate of the catalyst. Therefore, the dense-phase temperature of the reactor
is applied as the key variable of the proposed strategy to automatically select modeling
data. Through correlation analysis, 54 variables with a moderate or strong correlation with
the dense-phase temperature of the reactor are selected from 169 variables for modeling,
which is shown in Table 1.
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Table 1. Variable information of the methanol to olefin unit.

Variable No. Description

1 Stripping section temperature of reactor
2 Dense-phase temperature of reactor
3 Temperature of reaction gas
4 Standpipe temperature of the catalyst
5 Feed flow of methanol
6 Level of methanol in heat exchanger

. . . . . .
51 Catalyst inventory in stripping section
52 Density of lower stripping section
53 Density of upper stripping section
54 Pressure of catalyst delivery pipe

4.2. Data Preprocessing and Selection

Data preprocessing is first implemented to eliminate samples with data deficiency and
outliers. Then, the proposed information entropy-based data selection strategy is employed
to label normal samples and fault samples from the historical data. As mentioned before, a
small number of normal samples need to be manually labeled in advance. In this work,
only 1440 normal samples, which are exact data from a one-day period, are first labeled
according to process knowledge and expert experience. To label such a small number
of samples does not consume much time or labor costs. On the other hand, it can help
demonstrate the effectiveness of the proposed method in data selection with limited labeled
normal samples. Before the calculation, a key parameter, the window width, has to be
determined. Information entropy does not require a large number of samples to make an
accurate estimation of the distribution of data, but a proper window width is required. A
too-small window width cannot include sufficient data information for the kernel density
estimation calculation, the results will be highly affected by the random part of the data,
causing an unreliable information entropy result. As the window width increases, the
calculation accuracy will be improved as more data will have been considered. When
the data in the sliding windows are sufficient, the information entropy will not change
significantly with the increase in the window width, indicating a proper window width
has been obtained. To determine the proper window width in this industrial process,
an experiment is implemented using the labeled 1440 normal samples in Figure 4. The
information entropy of the dense-phase temperature of the reactor is calculated sequentially
when the window width is between 10 and 1440. As expected, when the window width
is small, the information entropy varies greatly with the window width. The calculation
is unreliable when the window width is too small until when the window width reaches
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180 min; the information entropy will not change significantly with the increase in the
window width. Therefore, 180 is selected as the window width in this study.
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It can be concluded from Figure 4 that it does not require too many samples to estimate
the distribution of data using information entropy. Moreover, excessive window width
is also unacceptable. On the one hand, the calculation accuracy can hardly be further
improved. On the other hand, excessive window width will result in the low sensitivity of
the method to identify fault samples in labeling historical data. In addition, the key variable
is strictly controlled in a small interval during normal operations. The data distribution
is similar under normal operations. Information entropy, as a statistical algorithm to
measure the distribution of data, can be applied to determine the control limit for the
normal variations in the distribution of the key variable with only a few labeled normal
samples. Unlike deep learning models, which require massive samples to train a large
number of model parameters, the proposed data selection strategy is more applicable to
practical applications.

As the window width has been determined, the distribution of the dense-phase
temperature of the reactor under normal conditions can be estimated by the information
entropy with a sliding window. With 1440 labeled normal samples and a window width
of 180, 1260 sets of information entropy can be calculated, which is shown in Figure 5.
The subgraph on the top is the initial labeled normal data of the dense-phase temperature
of the reactor. The corresponding information entropy is shown in the subgraph at the
bottom. It can be seen that the variable operated under normal conditions with small
fluctuations, and accordingly, the information entropy is close to each other in different
samples. The small dissimilarity between the distribution of normal samples results from
random factors during normal process operations and can be reflected in the calculation
value of information entropy. A three-sigma control limit for the normal variations is then
determined, which can be shown in Figure 5. As discussed before, the lower threshold is
used because the fault will lead to a decrease in the information entropy.
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normal samples; (b) information entropy of these normal samples.

After the window width and the threshold have been determined, normal samples and
fault samples in the unlabeled historical data can be automatically labeled by calculating
information entropy and comparing them with the control limit. There are 43,200 historical
samples to be labeled, and the samples whose information entropy is within the control
limit are retained as training data of the process monitoring model. In contrast, the samples
whose information entropy is outside the control limit are labeled as fault samples and
excluded. The results are compared with original data, Euclidean distance-based data
labeling method, and a semi-supervised deep learning-based method. As shown in Figure 6,
the data labeling performance of different methods is displayed through the distribution of
the labeled normal samples.
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Although the original data approximately conforms to the normal distribution, obvi-
ously there are a few fault samples in the historical dataset. This small proportion of fault
samples has to be excluded from the training data; otherwise, the fault in practical pro-
duction will not be effectively detected by the process monitoring model. The distribution
of normal data labeled by the Euclidean distance-based method is similar to the original
data. As discussed before, the Euclidean distance is highly affected by random process
disturbances, and cannot be applied as an effective dissimilarity measure. According to
statistics, 86 percent of the historical data are labeled as the training data, while it can be
observed in Figure 6 that fault samples are included in the training data, and therefore the
real faults cannot be detected by the process monitoring model in the online application.
The normal data labeled by the semi-supervised deep learning method conform to a normal
distribution, and fault samples have been effectively excluded from the historical data.
However, it is worth noting that only 59 percent of the historical data remain, which means
that a large number of normal samples may be labeled as fault samples. The reason lies
in the poor generalization ability of the deep learning model. As mentioned before, there
are a large number of parameters to be trained with sufficient labeled samples. Although
more labels can be automatically obtained through semi-supervised learning, the lack of
initial labeled samples still limits their application in complex industrial processes. The
samples labeled from historical data are all normal samples, but they are not enough to
represent all normal behaviors of the process, which will result in massive false alarm rates
in real-time monitoring. By comparison, the proposed method shows the best performance.
The distribution of the training data labeled by the proposed method is closest to a normal
distribution; 82 percent of the historical data have been labeled as normal samples, which
is 23 percent more than the semi-supervised deep learning-based method. The results illus-
trate that the proposed data selection strategy can effectively distinguish between normal
and faulty samples from massive unlabeled historical data with only a few labeled normal
samples. With the proposed method, a reliable historical dataset can be obtained, which can
significantly benefit the process monitoring performance. The process monitoring results
will be compared and discussed in the next section.

4.3. Process Monitoring Modeling and Result Analysis

As the training data labeled by the proposed data selection strategy and other methods
have been obtained, a two-layer autoencoder is constructed and trained to further compare
the online process monitoring performance of different methods. For a fair comparison, all
process monitoring methods are set to the same model structure, hyperparameters, and
model update strategies. In this work, the number of hidden layer units is selected as 128,
and the activation function is the tanh function. The training data labeled by each method
are input into the corresponding model in batches with a window length of 10, and two
percent of modeling data are randomly selected as the validation dataset. When the model
training has been completed, it is applied for online monitoring. Both normal samples and
faulty samples are recorded in real-time operation. The root cause of the faults is diagnosed
online and saved in a historical fault database, while normal data is saved together with
modeling data for the model update. The results of a three-month online application of the
proposed method are shown in Figure 7.
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As expected, the proportion of faults is quite small compared to normal operations,
and it can be preliminarily observed that most alarms correspond to abnormal deviations
in the dense-phase temperature of the reactor. For computational loads, the calculation
speed of this model is fast enough for online monitoring because the complexity of the
model is not very high. Each monitoring result can be given within one second, which is far
less than the sampling frequency. In addition, there are multiple operating modes during
these three-month process operations, which have also been effectively addressed by the
proposed process monitoring framework through the model update strategy. As shown in
Table 2, the calculation speed will be slower when the model is updated online, but also
within the acceptable range. Most importantly, most alarms on abnormal deviations can
be given by the proposed model in advance of what can be observed, which means that
operators can take corresponding measures in advance to avoid these faults according to
the results provided by the proposed model. The above conclusions will be specifically
proved and analyzed below through several fault cases.

Table 2. Calculation time of each model update.

Update No. Time

1 52.43
2 11.06
3 18.69
4 8.33
5 3.64
6 12.46

. . . . . .
80 8.12
81 3.00
82 21.23

Average 14.44

The process monitoring results were also calculated using training data labeled by the
Euclidean distance-based method and the semi-supervised deep learning-based method
for comparison. The results shown in Figure 8 are obtained from the model trained with
data labeled by the Euclidean distance-based method. It can be found that the alarms of
this method are much less than the proposed method. As discussed in the last section,
the training data labeled by the Euclidean distance include fault samples, which leads
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to a wider control limit for normal variations. As a result, the control limit of the MSE
statistic is determined as 0.145, which is much higher than that of the proposed method,
0.067. It indicates that the interval determined for the normal variations is much wider.
Therefore, there could be many fault samples with a minor magnitude that cannot be
detected. That is the reason why there are fewer alarms triggered by the model in Figure 8
than in the proposed method. The process monitoring results obtained from the model
trained with data labeled by the semi-supervised deep learning-based method are shown
in Figure 9. The limited initial labeled samples result in a poor generalization ability of the
deep learning model, so only a small part of normal samples can be labeled from historical
data, which cannot represent all the normal behaviors of the process. Therefore, the process
monitoring model established using insufficient historical data only works well in test
data that are close to the training data. As time goes on, massive false alarms will be
triggered in new test data, which can be shown in Figure 9. It is difficult to distinguish
real faults from false alarms according to the process monitoring results, making it not
applicable for practical application. Through comparison, the proposed process monitoring
framework shows better performance in the long-term monitoring of industrial processes,
which is consistent with the analysis of the data labeling results in the last section. Next,
the process monitoring performance will be further analyzed through several specific fault
cases detected by the proposed method.
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The process monitoring result of the first case is shown in Figure 10. The reconstruction
error continuously increased and exceeded the threshold at the 58,616th sample. It can be
observed from the original data that an abnormal deviation of about six degrees Celsius
occurs in the dense-phase temperature of the reactor. The point is that the abnormal
deviation cannot be observed from the original data of the dense-phase temperature of
the reactor until about forty minutes after the alarm was given by the proposed model.
According to the contribution plots in Figure 11, the steam flow rate in the upper stripping
section of the reactor is with the highest contribution rate, and is diagnosed as the root
cause. The results can be validated from the original data that there is a significant step
drop in the steam flow. Given the results from the screen, the operators have sufficient time
to inspect the steam valve and take appropriate measures to avoid this abnormal deviation
in temperature.
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The process monitoring results of other methods on this fault are also used for compar-
ison. The result of the model with data labeled by the semi-supervised deep learning-based
method does not need to be displayed, as the process monitoring results are almost all false
alarms, which are not reliable for practical application. The result of the model with data
labeled by the Euclidean distance-based method is displayed in Figure 12. It can be shown
that the fault is barely detected by the process monitoring model. The results support
the previous conclusion that although there are fewer alarms in the process monitoring
model using the Euclidean distance-based data labeling strategy, the sensitivity of the
model to real faults is reduced. A similar conclusion can be obtained in other cases, so the
following fault cases will focus on the analysis of process monitoring results provided by
the proposed method.
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For the second case shown in Figure 13, a fault is detected at the 50,367th sample.
According to the original data, an abnormal deviation lasting a thousand minutes occurs in
the dense-phase temperature of the reactor about five minutes after the alarm was given by
the proposed model. The faults cannot be detected by distributed control system because
the measured value does not reach the high or low alarm limit, but such long periods of
fluctuation can lead to changes in product quality and therefore need to be detected early.
The contribution plots in Figure 14 show that the variable with the highest contribution
rate is the dense-phase temperature of the reactor. Therefore, the fault may be caused by
changes in feed composition or equipment structure, which have not been measured in
historical data. Although the root cause is not directly determined, the proposed method
still provides the operators enough time to take action to avoid this fault.
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For the next case shown in Figure 15, a fault was detected by the proposed process
monitoring method at the 61,538th sample. Although only three degrees Celsius deviation
in the dense-phase temperature of the reactor is caused, the monitoring statistic still exceeds
the threshold. It can be concluded from the fault diagnosis result in Figure 16 that the
temperature of the reaction gas is the root cause of this fault. According to the original
data, a step deviation occurs in the temperature of reaction gas during this model alarm.
Although this deviation does not have an obvious impact on the dense-phase temperature
of the reactor, it still should be alerted to the operators.
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Finally, there are also many different operating modes during the three-month process
operations. The last case will display the process monitoring results of the proposed
method when the operating mode is adjusted. As shown in Figure 17, the monitoring
statistics of a few samples exceed the threshold at about the 108,540th sample, but the
reactor temperature has not been affected. The alarm is triggered and the fault diagnosis
model starts to work. As shown in Figure 18, only one variable shows an obvious significant
contribution to this fault, which is the feed flow rate. The results show that the alarms
are triggered because of the switch of operating modes, as the production load needs to
be adjusted. Although a few false alarms are triggered, the fault diagnosis results are
immediately provided to operators that the operating mode has been adjusted, and the
model will be quickly updated to the new mode, by which the alarms are removed. Overall,
the analysis of the above cases shows that the proposed method has a long-term effective
performance in large-scale industrial process monitoring.
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5. Conclusions

In this work, we propose a new automatic selection strategy for modeling data of in-
dustrial process monitoring based on information entropy. Compared to expert knowledge-
based, distance-based, and semi-supervised deep learning-based data selection strategies,
the proposed strategy requires lower labor costs, and is more applicable to industrial pro-
cesses with limited labeled normal samples. Based on this strategy, a data-driven process
monitoring framework is developed and a model update strategy is employed to make a
connection between fault detection and fault diagnosis for addressing the multimode issue.

The proposed process monitoring framework is applied to a large-scale industrial
methanol to olefin unit of a practical chemical plant in China. The results show that the
normal samples and fault samples can be correctly labeled by the proposed data selection
strategy with only 1440 manually labeled normal samples. A long-term effective process
monitoring model is then established based on all normal samples labeled from historical
data. The process monitoring performance of the model has been tested in an approximately
three-month online application. The results indicate that faults can be detected earlier by
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the proposed method than by operators through observation, and the root cause of the
faults can be preliminarily diagnosed as well. The real-time process monitoring results
can be delivered to operators in practical operation, by which they could take action to
minimize the impact of faults. Details of the proposed data selection strategy and modeling
process have also been provided to demonstrate the replicability, by which we hope to
provide a certain reference for other researchers or companies, thereby facilitating a wider
industrial application of process monitoring systems.

Although data-driven process monitoring has made great progress, there are several
considerations for its practical application. The training data must be large enough to
represent various normal behaviors of the process; otherwise, frequent false alarms will
be triggered. For example, there are slow changes over time in chemical processes, such
as equipment aging and catalyst deactivation. Generally, these changes can be regarded
as normal situations in process operation. They have to be considered in establishing the
process monitoring model to avoid false alarms. In addition, fault samples should not
be included in the training data; otherwise, the faults will be difficult to be detected by
the process monitoring model. Therefore, an effective data labeling strategy is required to
address the above issues. Another important consideration is the selection of the process
monitoring model and parameters. The model is established aiming to extract features
from the training data and determine a control limit for normal variations using a statistic.
The model should be selected according to the data characteristics of the target process. For
example, the industrial process investigated in this work is highly nonlinear with complex
variable relationships, which is hard to be captured by multivariate statistical methods.
At the same time, there are sufficient historical data available to establish a deep learning
model with great generalization ability. Therefore, a multi-layer autoencoder is employed
in this work. Moreover, several model parameters have to be determined no matter which
model is employed, such as the number of principal components in PCA and the structure
of deep learning models. The identification of optimal model parameters is an important
research issue to be discussed, which can be referred to in many existing studies.

Through the above considerations, the proposed process monitoring framework has
achieved a promising performance through a three-month test in an industrial process,
but there are still several limitations. The fault is localized at the variable with the highest
contribution rate in this work, while it is difficult to determine the root cause if the fault
has been propagated among process variables. Under this circumstance, there will be
more variables with a high contribution rate and the variable with the highest contribution
rate may not be the root cause of the fault. Another limitation is that the model update
strategy may not be sufficient for more complex scenarios. The proposed method addresses
the multimode issue through a model update strategy, as the variable correlation will
not obviously change in different operating modes. However, the previous model may
no longer be applicable after the replacement of the catalyst or shut-down maintenance
because the variable correlation has changed. The model has to be re-trained with new
data rather than just updating the model parameters. Therefore, future work will lie in the
improvement of the process monitoring framework according to the considerations and
limitations mentioned above.
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