
Citation: Wang, J.; Li, Y.; Han, Z. A

Novel Fault Detection Method Based

on One-Dimension Convolutional

Adversarial Autoencoder (1DAAE).

Processes 2023, 11, 384. https://

doi.org/10.3390/pr11020384

Academic Editor: Fausto Gallucci

Received: 25 December 2022

Revised: 19 January 2023

Accepted: 24 January 2023

Published: 27 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

A Novel Fault Detection Method Based on One-Dimension
Convolutional Adversarial Autoencoder (1DAAE)
Jian Wang * , Yakun Li and Zhiyan Han

School of Control Science and Engineering, Bohai University, Jinzhou 121013, China
* Correspondence: ganard@163.com

Abstract: Fault detection is an important and demanding problem in industry. Recently, many
researchers have addressed the use of deep learning architectures for fault detection applications such
as an autoencoder. Traditional methods based on an autoencoder usually complete fault detection
by comparing reconstruction errors, and ignore a lot of useful information about the distribution of
latent variables. To deal with this problem, this paper proposes a novel unsupervised fault detection
method named one-dimension convolutional adversarial autoencoder (1DAAE), which introduces
two new ideas: one-dimension convolution layers for the encoder to obtain better features and the
adversarial thought to impose the latent variable z to cluster into a prior distribution. The proposed
method not only has powerful feature representation ability than the traditional autoencoder, but
has also enhanced the discrimination ability by imposing a prior distribution of the latent variables
to cluster. Then, two anomaly scores for 1DAAE were proposed to detect fault samples, one based
on reconstruction errors, and the other based on latent variable distribution. Finally, it was shown
by the experiments that the proposed method outperformed the autoencoder-based, adversarial
autoencoder-based, one-dimension convolutional autoencoder-based and generative adversarial
network-based algorithms on the Tennessee Eastman process. Through the experiments, we found
that the both one-dimension convolution layers and the latent vector distribution are helpful for
fault detection.

Keywords: fault detection; autoencoder; convolutional layer; Tennessee Eastman process;
unsupervised learning

1. Introduction

Fault detection is an important and challenging problem in many engineering ap-
plications and continues to be an active area of research in the control community such
as chemical engineering [1–4], nuclear engineering [5], aerospace engineering [6,7], and
automotive systems [8].

Traditional methods for fault detection are mainly based on mechanistic models, which
require significant effort and in-depth knowledge to develop. For complex processes, it is
not a trivial task to build fundamental models.

For the development of a distributed control system, large volumes of process data
that contain valuable information can be well collected and stored effectively. Methods
based on data-driven have received more and more attention. In general, the data-driven
fault detection methods can be broadly categorized into supervised, semi-supervised, and
unsupervised learning methods. The model of supervised and semi-supervised learning
needs labeled information to learn a relationship between the input data and the desired
output labels. Unsupervised learning does not require fault training data and clusters
or classifies data through discovering the powerful features on only the normal data. In
practical situations, the fault data cannot easily be collected. Thus, this paper focused on
unsupervised learning in fault detection.

Processes 2023, 11, 384. https://doi.org/10.3390/pr11020384 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11020384
https://doi.org/10.3390/pr11020384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-4140-7355
https://orcid.org/0000-0002-7724-6792
https://doi.org/10.3390/pr11020384
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11020384?type=check_update&version=2

Processes 2023, 11, 384 2 of 18

The most popular unsupervised learning approaches are principal component analysis
(PCA) [9,10] and partial least squares (PLS) [11]. These techniques can project the measure-
ment data from the original high-dimensional space into low-dimensional linear subspace
with the covariance or cross-correlation information retained. Then, the fault detection
and diagnosis can be performed within the latent variable subspace using Hotelling’s T2
(Hotelling’s T-squared distribution) and squared prediction error indices. The conventional
PCA or PLS monitoring methods are targeted in linear systems, and thus cannot handle
nonlinearity in the processes. To deal with nonlinear processes, kernel function-based PCA
and PLS approaches have been developed and applied to chemical process monitoring [12].
Basically, kernel PCA or PLS converts the input space into high-dimensional feature space
through nonlinear kernel mapping and then the fault detection statistics can be derived
from the kernel feature space. In PCA- or PLS-based monitoring methods, the objective
is to decorrelate latent variables, therefore, only second-order statistics are taken into ac-
count. However, industrial processes are often non-Gaussian, thus, higher-order statistics
should not be ignored. More recently, an independent component analysis (ICA)-based
monitoring approach has been proposed to tackle non-Gaussian processes [13,14]. The sta-
tistically independent latent variables are extracted to track the abnormal operation events
in complex processes with significant non-Gaussianity. Though favorable performance
may be achieved, the approaches usually require much prior knowledge to hand-design
and lack universality.

Recently, deep learning (DL) has been receiving ever-growing attention because of
the ability to automatically extract features with multiple levels of abstraction from large
amounts of data [15]. In fields such as computer vision, speech recognition, and natural
language processing, researchers have been able to build models with much better perfor-
mances than the traditional models, which require hand-design [16–18]. With the advent
of DL, autoencoders (AE) are also used to perform dimension reduction by stacking up
layers to form deep autoencoders. By reducing the number of units in the hidden layer, it is
expected that the hidden units will extract features that well represent the data. Moreover,
by stacking autoencoders, we can apply dimension reduction in a hierarchical manner,
obtaining more abstract features in higher hidden layers, leading to a better reconstruction
of the data. Many researchers have also addressed the use of autoencoders for faults and
anomaly detection applications. In a recent paper, the problem of fault detection has been
addressed by building a high level representation of features using a sparse autoencoder
(sparse AE) [19]. Additionally, acoustic novelty detection applications have been intro-
duced using AE [20,21]. The AE is trained on the dataset of normal acoustic signals and
the novelty is detected if a difference metric between the input and the output of the AE
exceeds a threshold. Another interesting work using DL, proposed an adaptive imple-
mentation of one-dimension convolutional neural networks (1DCNN) for real-time motor
fault detection [22]. Additionally, a DL-based fault diagnosis model has recently been
proposed by the extraction of spatial and temporal features using deep belief networks
(DBN) [23–26].

Among the above fault detection methods, we found that there was a similar frame-
work. Assuming that we had lower dimensional latent variables z, the data x could be
represented under the condition of z, following the formula P(x) = P(x|z)P(z) , where
P(z) represents the probability of z, P(x|z) represents the model x under parameter z and
P(x) represents the probability of x. First, these methods try to find the lower dimensional
latent variables z, which could represent x perfectly. Then, x is brought back to the original
data space using z, which is called the reconstruction of the original data. By reconstructing
the data with low dimension representations, we expect to obtain the true nature of the
data, without uninteresting features and noise. The reconstruction error of a data point,
which is the error between the original data point and its low dimensional reconstruction,
is used to detect faults. The lower dimensional latent variables are the key to reconstructing
the original data. The traditional unsupervised algorithms mainly improve the model’s
fault detection ability by improving the model’s feature representation ability. Though

Processes 2023, 11, 384 3 of 18

the latent variables have the ability to represent the nature of the original data, there is no
guarantee as to where the fault and normal data are separated from each other.

In order to improve this problem, we hope that the latent variable space of AE also
satisfies where the fault and normal data could been separated explicitly. We assume
that the data x and its label y are independent under the condition of the given lower
dimensional latent variable z. We present the following generative model:

P(x, y|z)P(z) = P(x|z)P(y|z)P(z).

where it could be considered as learning a parameterized feature representation model
P (x|z) and a discriminant classifier model P (y | z) simultaneously.

Based on the above idea, a novel fault detection method named the one-dimension
convolutional adversarial autoencoder (1DAAE) was proposed in this paper. 1DAAE is a
multi-layer neural network belonging to a kind of autoencoder, which introduces two new
ideas: 1D convolution layers for the encoder to obtain better features and the adversarial
thought, which is to impose the latent variable z to cluster into a prior distribution.

The network architectures of 1DAAE include three parts: the encoder, the decoder, and
the discriminator for latent variables. As the traditional AE, 1DAAE learns a parameterized
feature representation model by the encoder and decoder, which gains richer valuable
features by adding one-dimension (1D) convolution layers. Theoretically, any complex
latent variable distribution can be mapped to a simple distribution by neural networks, so
the discriminator helps the 1DAAE impose the latent variable to follow a prior distribution.
Recently, some algorithms with the adversarial thought have been applied in fault detection
such as the adversarial autoencoder (AAE) [20] and the generative adversial network
(GAN) [27]. The main difference between 1DAAE and the others is that 1DAAE uses 1D
convolution layers compared with AAE, and 1DAAE uses an encoder and decoder network
structure compared with GAN.

The remaining sections are organized as follows. Section 2 introduces the fault de-
tection based on AE, then describes a novel fault detection algorithm based on 1DAAE.
Two abnormal scores are also proposed to enhance the fault detection performance. Sec-
tion 3 depicts the application of the 1DAAE model on the Tennessee Eastman benchmark
and presents the simulation results and their comparison. Finally, we conclude with our
conclusions and future work.

2. Materials and Methods
2.1. Autoencoder

AE is a neural network that is trained by unsupervised learning, which is trained to
learn reconstructions that are closed to its original input. AE is composed of two parts, an
encoder and a decoder. An encoder and decoder has a single hidden layer, as shown in
Equations (1) and (2), respectively. W and b are the weight and bias of the neural network,
respectively, and σ is the nonlinear transformation function.

z = σ(Wxhx + bxh), (1)

x̃ = σ(Whxz + bhx), (2)

Lre =‖ x− x̃ ‖, (3)

The encoder in Equation (1) maps an input vector x to a hidden representation z by
affine mapping following a nonlinearity. The decoder in Equation (2) maps the hidden
representation z back to the original input space as a reconstruction. The difference between
the original input vector x and the reconstruction

∼
x is called the reconstruction error, as

shown in Equation (3). AE learns to minimize this reconstruction error. The training
algorithm for AE is shown in Algorithm 1.

Processes 2023, 11, 384 4 of 18

Algorithm 1: Autoencoder training algorithm

INPUT: Dataset x1, · · · , xN
OUTPUT: encoder f , decoder g

ω f , ωg ← Initialize parameters for f , g
repeat
Lre =

1
N ∑N

i=1 ‖ xi − g(f (xi)) ‖2 Calculate sum of reconstruction error
ω f , ωg ← Update parameters using gradients of Lre
until convergence of parameters ω f , ωg

By using the hidden representation of AE as an input to another AE, we can stack
the AE to form a deep AE [16]. AEs with various other regularizations have also been
developed.

2.2. Autoencoder Based on Fault Detection Algorithm

AE-based fault detection is a deviation based fault detection method using unsuper-
vised learning. Usually, it uses the reconstruction error as the anomaly score. Samples with
high reconstruction error are considered as fault samples. Only normal samples are used to
train the AE. After training, the AE will reconstruct normal data very well, while the fault
samples will fail to do so because of the different feather with the normal samples. The
fault detection algorithm for AE is shown in Algorithm 2.

Algorithm 2: AE based on fault detection algorithm

INPUT: Normal dataset X, Test dataset x1, · · · , xi, · · · , xN , threshold α

OUTPUT: Reconstruction error ‖ xi − x̃i ‖
ω f , ωg ← Train an AE using the normal dataset X
for i = 1 to N

Lre(i) =‖ xi − g(f (xi)) ‖
If Lre(i) > α then
xi is a fault sample
else
xi is a normal sample
end if
end for

2.3. Proposed 1DAAE Model

The proposed 1DAAE model consists of one autoencoder (encoder and decoder) and
one discriminator. As shown in Figure 1, given an input data x, we first encode it as a latent
vector z = f (x) using encoder f , then the decoder is applied for reconstructing

∼
x = g(z). It

is important to note that the above steps are by the traditional AE, where we introduce two
new ideas: 1D convolution layers, which is shown in Figure 2, for the encoder to obtain
better features and the adversarial thought to impose the latent variable z to cluster into a
prior distribution.

2.3.1. Network Architecture

As shown in Figure 1, the proposed model is equipped with an encoder–decoder–
discriminator structure. The encoder is trained to map the input into an informative
latent space, the decoder is used to reconstruct the input data, and the discriminator is to
distinguish the data between the prior distribution and latent vector.

• Encoder Network. The encoder network comprises a sequence of blocks including
different layers: 1D convolution, batch-normalization, and the leaky ReLU activation
layer. With the use of the 1D convolutional layers followed by the batch normalization
and leaky ReLU activation, respectively, our encoder network is expected to extract
useful discriminant features as well as compress the input data to a latent vector z.
It should be noted that 2D convolution layers have achieved great success in image

Processes 2023, 11, 384 5 of 18

processing and have extracted a lot of valuable features. Based on the above, the
convolutional layers were used in our task to extract more valuable features, but
were 1D convolution layers according to our data dimensions. The principle of 1D
convolution layer is shown in Figure 2. Suppose the input data are dimension 7 and is
convolved by a filter of kernel size 3 (kernel is [1, 0, −1]), the corresponding output
becomes dimension 5. We can observe the details of the encoder convolution layer
in Table 1. The kernel size equipped in the convolutional layers of the encoder is
different, 3 ∗ 3, 5 ∗ 5, 7 ∗ 7, respectively. Given an input sample x ε X, the encoder
network encodes it as a latent vector z ε Z.

• Decoder Network. The decoder network usually cooperates with the encoder network
to reconstruct the input data from the latent vector z. The details of our decoder
network are presented in Table 2. First, a linear layer followed by batch normalization
was applied to up-scale the latent vector z. Then, a block comprised by the linear layer,
batch normalization, and leaky ReLU was utilized to up-scale the vector. Eventually,
final decoded processing was conducted through a linear layer.

• Discriminator. The input of the discriminator is composed of two parts as shown
in Table 3: one is the latent vector z generated by the encoder, the other is the data
sampled from prior distribution. Two blocks comprising the double linear layer and
Leaky ReLU activation and one linear following Sigmoid are utilized to discriminate
the data.

Processes 2023, 11, 384 5 of 20

Figure 1. Structure of 1DAAE model.

Figure 2. The principle of the 1D convolution layer.

2.3.1. Network Architecture
As shown in Figure 1, the proposed model is equipped with an encoder–decoder–

discriminator structure. The encoder is trained to map the input into an informative latent
space, the decoder is used to reconstruct the input data, and the discriminator is to distin-
guish the data between the prior distribution and latent vector.
• Encoder Network. The encoder network comprises a sequence of blocks including

different layers: 1D convolution, batch-normalization, and the leaky 𝑅𝑒𝐿𝑈 activa-
tion layer. With the use of the 1D convolutional layers followed by the batch normal-
ization and leaky 𝑅𝑒𝐿𝑈 activation, respectively, our encoder network is expected to
extract useful discriminant features as well as compress the input data to a latent
vector 𝑧. It should be noted that 2D convolution layers have achieved great success
in image processing and have extracted a lot of valuable features. Based on the above,
the convolutional layers were used in our task to extract more valuable features, but
were 1D convolution layers according to our data dimensions. The principle of 1D
convolution layer is shown in Figure 2. Suppose the input data are dimension 7 and
is convolved by a filter of kernel size 3 (kernel is [1,0,–1]), the corresponding output
becomes dimension 5. We can observe the details of the encoder convolution layer in
Table 1. The kernel size equipped in the convolutional layers of the encoder is differ-
ent, 3 ∗ 3, 5 ∗ 5, 7 ∗ 7, respectively. Given an input sample 𝑥 𝜖 𝑋, the encoder network
encodes it as a latent vector 𝑧 𝜖 𝑍.

Figure 1. Structure of 1DAAE model.

Processes 2023, 11, 384 5 of 20

Figure 1. Structure of 1DAAE model.

Figure 2. The principle of the 1D convolution layer.

2.3.1. Network Architecture
As shown in Figure 1, the proposed model is equipped with an encoder–decoder–

discriminator structure. The encoder is trained to map the input into an informative latent
space, the decoder is used to reconstruct the input data, and the discriminator is to distin-
guish the data between the prior distribution and latent vector.
• Encoder Network. The encoder network comprises a sequence of blocks including

different layers: 1D convolution, batch-normalization, and the leaky 𝑅𝑒𝐿𝑈 activa-
tion layer. With the use of the 1D convolutional layers followed by the batch normal-
ization and leaky 𝑅𝑒𝐿𝑈 activation, respectively, our encoder network is expected to
extract useful discriminant features as well as compress the input data to a latent
vector 𝑧. It should be noted that 2D convolution layers have achieved great success
in image processing and have extracted a lot of valuable features. Based on the above,
the convolutional layers were used in our task to extract more valuable features, but
were 1D convolution layers according to our data dimensions. The principle of 1D
convolution layer is shown in Figure 2. Suppose the input data are dimension 7 and
is convolved by a filter of kernel size 3 (kernel is [1,0,–1]), the corresponding output
becomes dimension 5. We can observe the details of the encoder convolution layer in
Table 1. The kernel size equipped in the convolutional layers of the encoder is differ-
ent, 3 ∗ 3, 5 ∗ 5, 7 ∗ 7, respectively. Given an input sample 𝑥 𝜖 𝑋, the encoder network
encodes it as a latent vector 𝑧 𝜖 𝑍.

Figure 2. The principle of the 1D convolution layer.

Processes 2023, 11, 384 6 of 18

Table 1. Details of the encoder convolution layer network.

Name Type Filters Size

Block1 Conv 4 3 × 3
Block2 BN 4 -
Block3 Conv 8 5 × 5
Block4 BN 8 -
Block5 Conv 16 7 × 7
Block6 BN 16 -

Table 2. Details of the decoder network.

Name Type Filters

Block1 Linear + Leaky ReLU 128
Block2 Linear + BN + Leaky ReLU 256
Block3 Linear 52

Table 3. Details of the discriminator network.

Name Type Filters

Block1 Linear + Leaky ReLU 128
Block2 Linear + Leaky ReLU 64
Block3 Linear 1
Block4 Sigmoid -

2.3.2. The Training Process

The training process can be viewed as a min–max game between the autoencoder and
the discriminator network. The AE consists of an encoder f and a decoder g. Let x be the
input feature vector, z = f (x) be the latent variable,

∼
x = g(z) be the output of the AE, and

dz be the output of the discriminator network (i.e., the probability that z is sampled from
the prior distribution).

• Reconstruction Loss. Given the training set D = {xi |i = 1, 2, · · · , M} containing M
samples, we first considered the distance between the input data x and its reconstruc-
tion

∼
x. The reconstruction error of each sample is minimized as follows:

Lre

(
ω f , ωg

)
=‖ xi − g(f (xi)) ‖2, (4)

where ω f are the encoder weights; ωg are the decoder weights; and the `2-norm is
used to measure the reconstruction errors.

• Incorporation Loss. According to the definition of binary cross-entropy loss, we
adjusted the weights of the discriminator by minimizing the probability that the latent
variable comes from the prior distribution.

L(ωd) = −
1
M ∑M

i=1[yilogŷi + (1− yi) log(1− ŷi)], (5)

where wd are the discriminator weights; yi represents the true probability; and ŷi
represents the estimated probability. By setting ŷi = 1, i = 1, 2, · · · , M and ŷi =
dz(g(f (xi))), the expression becomes:

L(wd) = −
1
M ∑M

i=1 log(dz(g(f (xi)))), (6)

• Discriminator Loss. Finally, the discriminator network is trained by minimizing the
binary cross-entropy. In more detail, in each iteration, the discriminator is trained on

Processes 2023, 11, 384 7 of 18

two mini-batches: the first, xi, is sampled from the prior distribution and the second,
z = f (x), is the latent variable. The expression of the loss is thus:

L
(
wg, wd

)
= − 1

2M ∑M
i=1[logdz(N(0, 1)) + log(1− dz(f (x)))], (7)

Note that each small batch can have a number of discriminator and AE iterations
greater than 1. The aim of this strategy is to avoid overtraining one of the two
networks. In order to stabilize the training process of the adversarial network, a batch
normalization algorithm was applied on each layer of the AE and discriminator. The
training algorithm for AE is shown in Algorithm 3.

Algorithm 3: 1DAAE training algorithm.

INPUT: Xtrain = {x1, · · · , xM} training set divided in M minibatches.
Ka: number of autoencoder training iterations per minibatch
Kd: number of discriminator training iterations per minibatch
N : number of epochs

OUTPUT: encoder f , decoder g, discriminator d
ω f , ωg, ωd ← Initialize parameters for f , g, d

for epoch = 1 to N do
for i = 1 to M do

xi ← i-th minibatch
for k = 1 to Ka do

Update the autoencoder by minimizing the reconstruction error:
Lre =‖ xi − g(f(xi)) ‖2

end for
Update the autoencoder by minimizing the expression:

L(wd) = − 1
M ∑M

i=1 log(dz(g(f(xi))))
for k = 1 to Kd do

Update the discriminator by minimizing the binary cross-entropy:

L
(
wg, wd

)
= − 1

2M

M
∑

i=1
[logdz(N(0, 1)) + log(1− dz(g(x)))]

end for
end for

end for

2.4. DAAE Based on Fault Detection Algorithm
2.4.1. Two Anomaly Scores Based on the Reconstruction Error and Latent Variables
Distribution for 1DAAE

Similar to AEs, the 1DAAE model is trained to learn the description of the normal
data. Then, the anomaly scores of each test sample are obtained from the trained 1DAAE
model. Samples with high anomaly scores are detected as fault samples.

Due to the unique advantage of the 1DAAE model, we could construct two anomaly
scores to enhance the detection performance. The 1DAAE model is composed of encoder f
and decoder g, which could be used to formulate the anomaly scores to detect fault samples.

For a trained 1DAAE model, the generated samples
∼
x = g(z) were similar to the

normal samples in the training dataset for any latent variable z = f (x) in the prior latent
space (i.e., sample x can be reconstructed perfectly by 1DAAE). However, when x is a
fault sample,

∼
x = g(z) will have a large reconstruction error with x for any z in the prior

latent space.
Therefore, we found two anomaly scores to detect the fault samples cooperatively.

One was based on the reconstruction error, and the other was based on the latent variable
distribution. For a sample x, the reconstruction error is formulated as in [17]:

fr = ‖x− g(f (x))‖ (8)

Processes 2023, 11, 384 8 of 18

where we call the anomaly score an R-score.
The trained discriminator can also formulate an anomaly score. Theoretically, when

the 1DAAE reaches the global optimum, the discriminator cannot distinguish between
the latent variable subspace and prior distribution in the training dataset. In practice, the
discriminator can hardly reach the global optimum. The discriminator is trained with both
the latent variable and prior distribution, so it can learn how to distinguish between them.
The discriminator based on anomaly score is formulated as

fd = −dz (f (x)) (9)

where dz (f (x)) represents the output of the discriminator for latent variable z = f (x), and
the minus is used to make the fault samples have higher anomaly scores than the normal
ones. The anomaly score in Equation (9) is called the D-score.

2.4.2. Algorithm of 1DAAE-Based Fault Detection

Based on the above 1DAAE model and two anomaly scores, a novel algorithm of
fault detection was proposed. The procedure of the novel fault detection method con-
tains two stages, as shown in Figure 3. In the training stage, the 1DAAE-based fault
detection algorithm trains a 1DAAE model on the training dataset Xtrain first by follow-
ing Sections 3.1 and 3.2. When the training was finished, parameters in the encoder f ,
decoder g, and the discriminator dz formulated fault scores fdr and fd, respectively, fol-
lowing Equations (8) and (9). Anomaly scores of the training samples were computed
and thresholds determined with a certain confidence level. In this paper, the threshold of
R-score Tr was determined by 95% of the training samples having scores lower than the
threshold as in [17]:

Tr = 95 quantile of { fr (x)|x ∈ X_train} (10)

The decision function on the test dataset is defined as hr(x′|Xtrain) = sgn(fr(x′)− Tr),
where x′ ∈ Xrealtime is the real-time sample. When the R-score of a sample is higher than
the threshold Tr, the sample is judged as a fault sample; otherwise, it is considered as a
normal sample.

Processes 2023, 11, 384 9 of 20

Figure 3. Flowchart of the 1DAAE-based fault detection algorithm.

3. Results
3.1. Datasets

The Tennessee Eastman process (TEP), developed by Down and Vogel [28], is a
benchmark simulation problem in chemical engineering. In this experiment, the 1DAAE-
based fault detection method was applied to the TEP. The plant shown in Figure 4 consists
of five major unit operations: a reactor, a product condenser, a vapor-liquid separator, a
recycle compressor, and a product stripper. The process has 12 manipulated variables, 22
continuous process measurements, and 19 compositions sampled less frequently, as
shown in Tables 4 and 5. In this study, a total of 33 variables were used for the process
monitoring. All composition measurements are included. There were 21 kinds of pro-
grammed known faults, as summarized in Table 6. A sampling interval of 3 min was used
to collect the simulated data for the training and testing sets. The TEP data can be down-
loaded from the website address [28]. A total of 960 samples were collected for each fault
mode, in which we first let the system run in normal operation and from the 161st sample
point, we introduced fault samples. In testing, we first used the normal samples to estab-
lish the statistical model including the AE, AAE, 1DAE, GAN, and 1DAAE model, and
then we detected 21 kinds of fault data at the same time.

Figure 3. Flowchart of the 1DAAE-based fault detection algorithm.

Processes 2023, 11, 384 9 of 18

3. Results
3.1. Datasets

The Tennessee Eastman process (TEP), developed by Down and Vogel [28], is a bench-
mark simulation problem in chemical engineering. In this experiment, the 1DAAE-based
fault detection method was applied to the TEP. The plant shown in Figure 4 consists of
five major unit operations: a reactor, a product condenser, a vapor-liquid separator, a
recycle compressor, and a product stripper. The process has 12 manipulated variables,
22 continuous process measurements, and 19 compositions sampled less frequently, as
shown in Tables 4 and 5. In this study, a total of 33 variables were used for the process mon-
itoring. All composition measurements are included. There were 21 kinds of programmed
known faults, as summarized in Table 6. A sampling interval of 3 min was used to collect
the simulated data for the training and testing sets. The TEP data can be downloaded from
the website address [28]. A total of 960 samples were collected for each fault mode, in
which we first let the system run in normal operation and from the 161st sample point,
we introduced fault samples. In testing, we first used the normal samples to establish the
statistical model including the AE, AAE, 1DAE, GAN, and 1DAAE model, and then we
detected 21 kinds of fault data at the same time.

Processes 2023, 11, 384 10 of 20

Figure 4. Flow sheet of the Tennessee Eastman process.

Table 4. Manipulated variables in the Tennessee Eastman process.

Variable No. Manipulated Variables
1 D Feed flow valve
2 E Feed flow valve
3 A Feed flow valve
4 A + C Feed flow valve
5 Recycle valve
6 Purge valve
7 Separator valve
8 Stripper valve
9 Steam valve

10 Reactor coolant flow
11 Condenser coolant flow
12 Agitator speed

Table 5. Measurement variables in the Tennessee Eastman process.

Variable No. Manipulated Variables
1 D Feed rate
2 E Feed rate
3 A Feed rate
4 A + C Feed rate
5 Recycle flow rate
6 Reactor feed rate
7 Reactor pressure
8 Reactor level
9 Reactor level

10 Purge rate
11 Separator temperature
12 Agitator speed
13 Separator pressure
14 Separator underflow

Figure 4. Flow sheet of the Tennessee Eastman process.

Table 4. Manipulated variables in the Tennessee Eastman process.

Variable No. Manipulated Variables

1 D Feed flow valve
2 E Feed flow valve
3 A Feed flow valve
4 A + C Feed flow valve
5 Recycle valve
6 Purge valve
7 Separator valve
8 Stripper valve
9 Steam valve
10 Reactor coolant flow
11 Condenser coolant flow
12 Agitator speed

Processes 2023, 11, 384 10 of 18

Table 5. Measurement variables in the Tennessee Eastman process.

Variable No. Manipulated Variables

1 D Feed rate
2 E Feed rate
3 A Feed rate
4 A + C Feed rate
5 Recycle flow rate
6 Reactor feed rate
7 Reactor pressure
8 Reactor level
9 Reactor level

10 Purge rate
11 Separator temperature
12 Agitator speed
13 Separator pressure
14 Separator underflow
15 Stripper level
16 Stripper pressure
17 Stripper underflow
18 Stripper temperature
19 Stem flow rate
20 Compressor work
21 Reactor coolant temperature
22 Condenser coolant temperature
23 Feed % A
24 Feed % B
25 Feed % C
26 Feed % D
27 Feed % E
28 Feed % F
29 Purge % A
30 Purge % B
31 Purge % C
32 Purge % D
33 Purge % E
34 Purge % F
35 Purge % G
36 Purge % H
37 Product % D
38 Product % E
39 Product % F
40 Product % G
41 Product % H

Table 6. Process faults for the Tennessee Eastman process.

No. Description Type

1 A/C feed ratio, B composition constant (stream 4) Step
2 B composition, A/C ratio constant (stream 4) Step
3 D feed temperature (stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (stream 1) Step
7 C header pressure loss—reduced availability (stream 4) Step
8 A, B, C feed composition (stream 4) Random variation
9 D feed temperature (stream 2) Random variation
10 C feed temperature (stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking

16–20 Unknown -
21 The valve for stream 4 was fixed at the steady-state position Constant position

Processes 2023, 11, 384 11 of 18

3.2. Experimental Results

In this section, we validated the proposed 1DAAE for fault detection. Our experiments
were conducted on 21 fault datasets and compared with three fault detection methods
(i.e., AE, AAE, 1DAE, and GAN). Our approach was implemented in PyTorch (1.2.0 with
python 3.7) by optimizing the networks using the SGD optimizer with an initial learning
rate lr = 0.001, weight decay 0.0005, and momentum 0.9. We trained our model with a batch
size of 100 on the normal dataset. Additionally, all our experiments were executed on a PC
with an Intel(R) Core (TM) i7–7700 3/4 GHz processor, 8GB RAM.

To show the effectiveness of our method, some parameter settings were designed. The
TEP dataset was taken as the example for the parameter analysis. We studied three aspects
that influenced the performance of 1DAAE in the anomaly detection task (i.e., the number
of epochs, latent vector size, and anomaly score).

The main drawback of the 1DAAE is the instability during training. The balance
between the AE and the discriminator is important. The training process of 1DAAE is
an EM (expectation-maximum) process, that is, first we train the AE and then train the
discriminator, and then reciprocate. The influence of the number of epochs of 1DAAE is to
balance the AE and discriminator, so the loss trend of the AE and discriminator is stable,
and the 1DAAE training process is stable.

The number of epochs in 1DAAE. We present the trend of the loss of AE with respect
to (w.r.t.) varying values of the number of epochs. The number of epochs is from 1 to 500,
and the trend of the loss of AE is shown in Figure 5, where the blue poly-line represents the
trend of the loss of AE and the yellow straight line represents the ordinate of 0.03. The loss
of AE is calculated according to Equation (3), which represents the error of the autoencoder,
and we want it to be as small as possible. It can be seen in Figure 5 that when the number
of epochs exceeded 300, the loss of AE approached 0.03.

Processes 2023, 11, 384 12 of 20

3.2. Experimental Results
In this section, we validated the proposed 1DAAE for fault detection. Our experi-

ments were conducted on 21 fault datasets and compared with three fault detection meth-
ods (i.e., AE, AAE, 1DAE, and GAN). Our approach was implemented in PyTorch (1.2.0
with python 3.7) by optimizing the networks using the SGD optimizer with an initial
learning rate lr = 0.001, weight decay 0.0005, and momentum 0.9. We trained our model
with a batch size of 100 on the normal dataset. Additionally, all our experiments were
executed on a PC with an Intel(R) Core (TM) i7–7700 3/4 GHz processor, 8GB RAM.

To show the effectiveness of our method, some parameter settings were designed.
The TEP dataset was taken as the example for the parameter analysis. We studied three
aspects that influenced the performance of 1DAAE in the anomaly detection task (i.e., the
number of epochs, latent vector size, and anomaly score).

The main drawback of the 1DAAE is the instability during training. The balance be-
tween the AE and the discriminator is important. The training process of 1DAAE is an EM
(expectation-maximum) process, that is, first we train the AE and then train the discrimi-
nator, and then reciprocate. The influence of the number of epochs of 1DAAE is to balance
the AE and discriminator, so the loss trend of the AE and discriminator is stable, and the
1DAAE training process is stable.

The number of epochs in 1DAAE. We present the trend of the loss of AE with respect
to (w.r.t.) varying values of the number of epochs. The number of epochs is from 1 to 500,
and the trend of the loss of AE is shown in Figure 5, where the blue poly-line represents
the trend of the loss of AE and the yellow straight line represents the ordinate of 0.03. The
loss of AE is calculated according to Equation (3), which represents the error of the auto-
encoder, and we want it to be as small as possible. It can be seen in Figure 5 that when the
number of epochs exceeded 300, the loss of AE approached 0.03.

We also present the trend of the loss of discriminator w.r.t. varying values of the
number of epochs. The number of epochs goes from 1 to 500, the loss of discriminator is
shown in Figure 6, where the blue poly-line represents the trend of the loss of discrimina-
tor and the yellow straight line represents the ordinate of 0.5. The loss of discriminator is
calculated according to Equation (4), which represents how well the latent variable z fits
with the prior distribution. If the latent variable z fits with the prior distribution well, the
discriminator has no ability to tell whether the sample is sampled from the prior distribu-
tion or from the latent variables. Therefore, we want the loss of the discriminator to be
equal to 0.5 approximately, which is the line shown in Figure 6. Considering Figures 5 and
6, we chose the number of epochs as 400, and at this time, the loss of AE is 0.027 and the
loss of the discriminator is 0.498.

Figure 5. The trend of the loss of AE w.r.t. varying values of the number of epochs.

We also present the trend of the loss of discriminator w.r.t. varying values of the
number of epochs. The number of epochs goes from 1 to 500, the loss of discriminator is
shown in Figure 6, where the blue poly-line represents the trend of the loss of discriminator
and the yellow straight line represents the ordinate of 0.5. The loss of discriminator is
calculated according to Equation (4), which represents how well the latent variable z fits
with the prior distribution. If the latent variable z fits with the prior distribution well,
the discriminator has no ability to tell whether the sample is sampled from the prior
distribution or from the latent variables. Therefore, we want the loss of the discriminator to
be equal to 0.5 approximately, which is the line shown in Figure 6. Considering Figures 5

Processes 2023, 11, 384 12 of 18

and 6, we chose the number of epochs as 400, and at this time, the loss of AE is 0.027 and
the loss of the discriminator is 0.498.

Processes 2023, 11, 384 13 of 20

Figure 5. The trend of the loss of AE w.r.t. varying values of the number of epochs.

Figure 6. The trend of the loss of discriminator w.r.t. varying values of the number of epochs.

Latent vector size in 1DAAE. We present the trend of the mean accuracy w.r.t. vary-
ing values of latent vector size, which is in a range of {5, 10, 15, 30, 40, 50}. The mean fault
detection results are shown in Figure 7, where the lower figure of the blue bar represents
the late vector size, and the upper figure represents the mean fault detection result ob-
tained by using the lower late vector size. We can see that the results showed an approxi-
mate normal distribution and the best mean fault detection result was 0.86 when we chose
15 as the latent vector size.

Figure 7. The mean fault detection results w.r.t. varying values of the latent vector size.

Two anomaly scores in 1DAAE. Anomaly scores are the crucial component that di-
rectly influences the performance of fault detection methods. Two types of anomaly scores
are proposed in Section 2: the R-score and D-score. The R-score is calculated according to
Equation (8), which is based on the reconstruction error. We hope that the R-score of the
normal sample is lower than the threshold Tr, while the R-score of the fault sample is
higher than the threshold Tr. The Tr is calculated according to Equation (10) in Section 2.
The D-score is calculated according to Equation (9), which is based on latent vector distri-
bution. We hope that the latent vector of the normal sample will fit with the prior distri-

Figure 6. The trend of the loss of discriminator w.r.t. varying values of the number of epochs.

Latent vector size in 1DAAE. We present the trend of the mean accuracy w.r.t. varying
values of latent vector size, which is in a range of {5, 10, 15, 30, 40, 50}. The mean fault
detection results are shown in Figure 7, where the lower figure of the blue bar represents
the late vector size, and the upper figure represents the mean fault detection result obtained
by using the lower late vector size. We can see that the results showed an approximate
normal distribution and the best mean fault detection result was 0.86 when we chose 15 as
the latent vector size.

Processes 2023, 11, 384 13 of 20

Figure 5. The trend of the loss of AE w.r.t. varying values of the number of epochs.

Figure 6. The trend of the loss of discriminator w.r.t. varying values of the number of epochs.

Latent vector size in 1DAAE. We present the trend of the mean accuracy w.r.t. vary-
ing values of latent vector size, which is in a range of {5, 10, 15, 30, 40, 50}. The mean fault
detection results are shown in Figure 7, where the lower figure of the blue bar represents
the late vector size, and the upper figure represents the mean fault detection result ob-
tained by using the lower late vector size. We can see that the results showed an approxi-
mate normal distribution and the best mean fault detection result was 0.86 when we chose
15 as the latent vector size.

Figure 7. The mean fault detection results w.r.t. varying values of the latent vector size.

Two anomaly scores in 1DAAE. Anomaly scores are the crucial component that di-
rectly influences the performance of fault detection methods. Two types of anomaly scores
are proposed in Section 2: the R-score and D-score. The R-score is calculated according to
Equation (8), which is based on the reconstruction error. We hope that the R-score of the
normal sample is lower than the threshold Tr, while the R-score of the fault sample is
higher than the threshold Tr. The Tr is calculated according to Equation (10) in Section 2.
The D-score is calculated according to Equation (9), which is based on latent vector distri-
bution. We hope that the latent vector of the normal sample will fit with the prior distri-

Figure 7. The mean fault detection results w.r.t. varying values of the latent vector size.

Two anomaly scores in 1DAAE. Anomaly scores are the crucial component that directly
influences the performance of fault detection methods. Two types of anomaly scores are
proposed in Section 2: the R-score and D-score. The R-score is calculated according to
Equation (8), which is based on the reconstruction error. We hope that the R-score of the
normal sample is lower than the threshold Tr, while the R-score of the fault sample is higher
than the threshold Tr. The Tr is calculated according to Equation (10) in Section 2. The
D-score is calculated according to Equation (9), which is based on latent vector distribution.
We hope that the latent vector of the normal sample will fit with the prior distribution,

Processes 2023, 11, 384 13 of 18

while the latent vector of the fault sample should stay away from the prior distribution. To
show the results of the R-score and D-score, we chose 2 as the latent vector size. The R-score
of the 1DAAE for fault 1 is shown in Figure 8, where the blue poly-line represents the
R-scores of samples and the yellow straight line represents the Tr. We can see that samples
from 1 to 160 are normal samples whose R-scores are lower than Tr and the samples from
161 to 960 are fault samples whose R-scores are higher than Tr. It is a good result for the
R-score of the 1DAAE. The R-scores of the AE, AAE, and 1DAE for fault 1 are shown
in Figures 9–11, where the blue poly-lines represent the R-scores of the samples and the
yellow straight lines represent the Tr. We can see that their R-score trends were almost
similar. This may be because, first, fault 1 is relatively simple to detect and second, these
algorithms have similar encoder and decoder network structures to calculate the R-scores.
The difference lies in the value of R-scores for these algorithms. Among them, the R-scores
of AE and AAE were less than those of the 1DAE and 1DAAE, which may be due to the
fact that the 1D convolution layer extracts more distinctive features between the normal
and fault samples.

Processes 2023, 11, 384 14 of 20

bution, while the latent vector of the fault sample should stay away from the prior distri-
bution. To show the results of the R-score and D-score, we chose 2 as the latent vector size.
The R-score of the 1DAAE for fault 1 is shown in Figure 8, where the blue poly-line rep-
resents the R-scores of samples and the yellow straight line represents the Tr. We can see
that samples from 1 to 160 are normal samples whose R-scores are lower than Tr and the
samples from 161 to 960 are fault samples whose R-scores are higher than Tr. It is a good
result for the R-score of the 1DAAE. The R-scores of the AE, AAE, and 1DAE for fault 1
are shown in Figures 9–11, where the blue poly-lines represent the R-scores of the samples
and the yellow straight lines represent the Tr. We can see that their R-score trends were
almost similar. This may be because, first, fault 1 is relatively simple to detect and second,
these algorithms have similar encoder and decoder network structures to calculate the R-
scores. The difference lies in the value of R-scores for these algorithms. Among them, the
R-scores of AE and AAE were less than those of the 1DAE and 1DAAE, which may be due
to the fact that the 1D convolution layer extracts more distinctive features between the
normal and fault samples.

Figure 8. The R-score of the 1DAAE for fault 1.

Figure 9. The R-score of the AE for fault 1.

Figure 8. The R-score of the 1DAAE for fault 1.

Processes 2023, 11, 384 14 of 20

bution, while the latent vector of the fault sample should stay away from the prior distri-
bution. To show the results of the R-score and D-score, we chose 2 as the latent vector size.
The R-score of the 1DAAE for fault 1 is shown in Figure 8, where the blue poly-line rep-
resents the R-scores of samples and the yellow straight line represents the Tr. We can see
that samples from 1 to 160 are normal samples whose R-scores are lower than Tr and the
samples from 161 to 960 are fault samples whose R-scores are higher than Tr. It is a good
result for the R-score of the 1DAAE. The R-scores of the AE, AAE, and 1DAE for fault 1
are shown in Figures 9–11, where the blue poly-lines represent the R-scores of the samples
and the yellow straight lines represent the Tr. We can see that their R-score trends were
almost similar. This may be because, first, fault 1 is relatively simple to detect and second,
these algorithms have similar encoder and decoder network structures to calculate the R-
scores. The difference lies in the value of R-scores for these algorithms. Among them, the
R-scores of AE and AAE were less than those of the 1DAE and 1DAAE, which may be due
to the fact that the 1D convolution layer extracts more distinctive features between the
normal and fault samples.

Figure 8. The R-score of the 1DAAE for fault 1.

Figure 9. The R-score of the AE for fault 1. Figure 9. The R-score of the AE for fault 1.

Processes 2023, 11, 384 14 of 18
Processes 2023, 11, 384 15 of 20

Figure 10. The R-score of the AAE for fault 1.

Figure 11. The R-score of the 1DAE for fault 1.

The latent vector z of 1DAAE for fault 1 is shown in Figure 12. We can see that the points *
represent normal samples that fit with the prior distribution. The point x represents fault samples
that stay away from the prior distribution. It also showed a good result for the D-score. The latent
vector z of AAE for fault 1 is shown in Figure 13. We can see that the D-score is helpful for distin-
guishing between the normal and fault samples. It should be noted that only AAE and 1DAAE
could calculate D-scores in this paper and the training of GAN was carried out according to [27].

Figure 10. The R-score of the AAE for fault 1.

Processes 2023, 11, 384 15 of 20

Figure 10. The R-score of the AAE for fault 1.

Figure 11. The R-score of the 1DAE for fault 1.

The latent vector z of 1DAAE for fault 1 is shown in Figure 12. We can see that the points *
represent normal samples that fit with the prior distribution. The point x represents fault samples
that stay away from the prior distribution. It also showed a good result for the D-score. The latent
vector z of AAE for fault 1 is shown in Figure 13. We can see that the D-score is helpful for distin-
guishing between the normal and fault samples. It should be noted that only AAE and 1DAAE
could calculate D-scores in this paper and the training of GAN was carried out according to [27].

Figure 11. The R-score of the 1DAE for fault 1.

The latent vector z of 1DAAE for fault 1 is shown in Figure 12. We can see that the
points * represent normal samples that fit with the prior distribution. The point x represents
fault samples that stay away from the prior distribution. It also showed a good result for
the D-score. The latent vector z of AAE for fault 1 is shown in Figure 13. We can see that
the D-score is helpful for distinguishing between the normal and fault samples. It should
be noted that only AAE and 1DAAE could calculate D-scores in this paper and the training
of GAN was carried out according to [27].

After determining the optimal parameters, 1DAAE was modeled according to the
network architecture mentioned in Section 2 and was trained according to Algorithm 3,
the 1DAAE training algorithm. In comparison algorithms, the network architecture of the
AE consisted of an encoder and decoder. The network architecture of the encoder and
decoder was similar to 1DAAE, but removed a 1D convolution layer; the training process
of the AE was according to Algorithm 1, the autoencoder training algorithm. The network

Processes 2023, 11, 384 15 of 18

architecture of 1DAE consisted of an encoder and decoder. The network architecture of
the encoder and decoder was similar to 1DAAE, and the training process of 1DAE was
according to Algorithm 1, the autoencoder training algorithm. The network architecture of
the AAE consists of the encoder, decoder, and discriminator. The network architecture of
the encoder and decoder was similar to 1DAAE, but removed the 1D convolution layer; the
training process of AAE according to Algorithm 3, the 1DAAE training algorithm. Because
the models and training process were similar, the parameter settings were almost the same
for the AE, 1DAE, AAE, and 1DAAE. The network architecture and training of GAN were
carried out according to [27].

Processes 2023, 11, 384 16 of 20

Figure 12. The latent vector z of the 1DAAE for fault 1.

Figure 13. The latent vector z of the AAE for fault 1.

After determining the optimal parameters, 1DAAE was modeled according to the
network architecture mentioned in Section 2 and was trained according to Algorithm 3,
the 1DAAE training algorithm. In comparison algorithms, the network architecture of the
AE consisted of an encoder and decoder. The network architecture of the encoder and
decoder was similar to 1DAAE, but removed a 1D convolution layer; the training process
of the AE was according to Algorithm 1, the autoencoder training algorithm. The network
architecture of 1DAE consisted of an encoder and decoder. The network architecture of
the encoder and decoder was similar to 1DAAE, and the training process of 1DAE was
according to Algorithm 1, the autoencoder training algorithm. The network architecture
of the AAE consists of the encoder, decoder, and discriminator. The network architecture
of the encoder and decoder was similar to 1DAAE, but removed the 1D convolution layer;
the training process of AAE according to Algorithm 3, the 1DAAE training algorithm.
Because the models and training process were similar, the parameter settings were almost
the same for the AE, 1DAE, AAE, and 1DAAE. The network architecture and training of
GAN were carried out according to [27].

Figure 12. The latent vector z of the 1DAAE for fault 1.

Processes 2023, 11, 384 16 of 20

Figure 12. The latent vector z of the 1DAAE for fault 1.

Figure 13. The latent vector z of the AAE for fault 1.

After determining the optimal parameters, 1DAAE was modeled according to the
network architecture mentioned in Section 2 and was trained according to Algorithm 3,
the 1DAAE training algorithm. In comparison algorithms, the network architecture of the
AE consisted of an encoder and decoder. The network architecture of the encoder and
decoder was similar to 1DAAE, but removed a 1D convolution layer; the training process
of the AE was according to Algorithm 1, the autoencoder training algorithm. The network
architecture of 1DAE consisted of an encoder and decoder. The network architecture of
the encoder and decoder was similar to 1DAAE, and the training process of 1DAE was
according to Algorithm 1, the autoencoder training algorithm. The network architecture
of the AAE consists of the encoder, decoder, and discriminator. The network architecture
of the encoder and decoder was similar to 1DAAE, but removed the 1D convolution layer;
the training process of AAE according to Algorithm 3, the 1DAAE training algorithm.
Because the models and training process were similar, the parameter settings were almost
the same for the AE, 1DAE, AAE, and 1DAAE. The network architecture and training of
GAN were carried out according to [27].

Figure 13. The latent vector z of the AAE for fault 1.

Processes 2023, 11, 384 16 of 18

In fault detection, we detected 21 known faults in TEP based on the AE, AAE, 1DAE,
GAN, and the proposed 1DAAE method. The results are shown in Figure 14. For each fault,
five histograms represent the accuracy of the above five methods. The dark goldenrod
histograms represent the accuracy of AE; the sea-green histograms represent the accuracy of
AAE; the blue histograms represent the accuracy of the 1DAE; the red histograms represent
the accuracy of 1DAAE; and the gray histograms represent the accuracy of GAN. We can
see that all four methods offered high accuracy for fault numbers (1–2), (4–8), (12–14), and
(17–18), where the difference between the highest and lowest accuracy was between 0.03.
These faults can be linearly distinguished. We found that the AE achieved the highest
accuracy among them, which is possibly because the linear method has the ability to
handle them better. The other methods still offered good results, and there was only a
small difference between them. For fault numbers (3), (9), (10), (15-16), and (19), 1DAAE
provided the best fault detection performance over all the other methods; for fault numbers
(11), (20), and (21), 1DAAE provided the second best accuracy. These faults were nonlinear
and difficult to distinguish. Especially for fault numbers (3), (9), and (15), we could see
that the AE provided low accuracy, and thus could not detect the faults successfully. For
fault numbers (11), (20), and (21), GAN provided the best fault detection performance,
however, for fault numbers (3), (9), (15), and (19), GAN provided the worst fault detection
performance. We can see from Figure 15 that GAN obtained the lowest average accuracy,
so the performance of GAN was not stable enough. The performance of AAE was better
than AE, possibly because the D-score is advantageous to the improvement in the fault
detection performance. We also found that the performance of 1DAAE was better than
1DAE, which confirms our hypothesis. The performances of 1DAAE and 1DAE were better
than AE and AAE, which illustrates that the one-dimension convolutional layers used in
our methods have the ability to extract more valuable features for fault detection, and the
one-dimension convolutional layers were more advantageous for fault detection than the
D-score. Finally, the mean accuracy based on the AE, AAE, 1DAE, GAN, and 1DAAE is
shown in Figure 11. We found that 1DAAE offered the best performance with the help of
the one-dimension convolutional layers and D-score.

Processes 2023, 11, 384 17 of 20

In fault detection, we detected 21 known faults in TEP based on the AE, AAE, 1DAE,
GAN, and the proposed 1DAAE method. The results are shown in Figure 14. For each
fault, five histograms represent the accuracy of the above five methods. The dark golden-
rod histograms represent the accuracy of AE; the sea-green histograms represent the ac-
curacy of AAE; the blue histograms represent the accuracy of the 1DAE; the red histo-
grams represent the accuracy of 1DAAE; and the gray histograms represent the accuracy
of GAN. We can see that all four methods offered high accuracy for fault numbers (1–2),
(4–8), (12–14), and (17–18), where the difference between the highest and lowest accuracy
was between 0.03. These faults can be linearly distinguished. We found that the AE
achieved the highest accuracy among them, which is possibly because the linear method
has the ability to handle them better. The other methods still offered good results, and
there was only a small difference between them. For fault numbers (3), (9), (10), (15-16),
and (19), 1DAAE provided the best fault detection performance over all the other methods;
for fault numbers (11), (20), and (21), 1DAAE provided the second best accuracy. These
faults were nonlinear and difficult to distinguish. Especially for fault numbers (3), (9), and
(15), we could see that the AE provided low accuracy, and thus could not detect the faults
successfully. For fault numbers (11), (20), and (21), GAN provided the best fault detection
performance, however, for fault numbers (3), (9), (15), and (19), GAN provided the worst
fault detection performance. We can see from Figure 15 that GAN obtained the lowest
average accuracy, so the performance of GAN was not stable enough. The performance of
AAE was better than AE, possibly because the D-score is advantageous to the improve-
ment in the fault detection performance. We also found that the performance of 1DAAE
was better than 1DAE, which confirms our hypothesis. The performances of 1DAAE and
1DAE were better than AE and AAE, which illustrates that the one-dimension convolu-
tional layers used in our methods have the ability to extract more valuable features for
fault detection, and the one-dimension convolutional layers were more advantageous for
fault detection than the D-score. Finally, the mean accuracy based on the AE, AAE, 1DAE,
GAN, and 1DAAE is shown in Figure 11. We found that 1DAAE offered the best perfor-
mance with the help of the one-dimension convolutional layers and D-score.

Figure 14. The fault detection results based on the AE, AAE, 1DAE, GAN, and 1DAAE. Figure 14. The fault detection results based on the AE, AAE, 1DAE, GAN, and 1DAAE.

Processes 2023, 11, 384 17 of 18Processes 2023, 11, 384 18 of 20

Figure 15. The mean accuracy based on the AE, AAE, 1DAE, GAN, and 1DAAE.

4. Conclusions
In this paper, we proposed a novel unsupervised fault detection method named

1DAAE, which introduced two new ideas: 1D convolution layers for the encoder to obtain
better features and the adversarial thought, which is to impose the latent variable z to
cluster into a prior distribution. Then, two anomaly scores, R-score and D-score, for
1DAAE were proposed to detect the fault samples, one based on reconstruction errors,
and the other based on the latent variable distribution. Extensive experiments conducted
on TEP prove the effectiveness of our methods. Through the experiments, we found that
the both the 1D convolution layers and the latent vector distribution are helpful for fault
detection, and 1D convolution layers are more helpful. Future work will consider more
feature extraction techniques applied to AE.

Author Contributions: Conceptualization, J.W. and Y.L.; Methodology, J.W.; Software, J.W. and
Y.L.; Validation, J.W. and Y.L.; Writing—review and editing, J.W., Z.H. and Y.L.; Visualization, J.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Nature Science Foundation (61503038,
61403042); the Scientific research project of Education Department of Liaoning Province
(LQ2020013, LJKMZ20221484); a grant from the Bohai University Teaching Reform Program (No.
YJG20210023); a grant from the Ministry of Education industry-University Cooperative Education
Program (202102599009, 202101332004, 202101337001,220504643183656); and the Application Basic
Research Plan of Liaoning Province (2022JH2/101300282).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhang, Q.C.; Yang, L.T.; Chen, Z.K. Deep Computation Model for Unsupervised Feature Learning on Big Data. IEEE Trans.

Serv. Comput. 2016, 9, 161–171. https://doi.org/10.1109/TSC.2015.2497705.
2. Lee, H.; Kim, Y.; Kim, C.O. A deep learning model for robust wafer fault monitoring with sensor measurement noise. IEEE

Trans. Semicond. Manuf. 2016, 30, 23–31. https://doi.org/10.1109/TSM.2016.2628865.
3. Ren, H.; Chai, Y.; Qu, J.; Ye, X.; Tang, Q. A novel adaptive fault detection methodology for complex system using deep belief

networks and multiple models: A case study on cryogenic propellant loading system. Neurocomputing 2018, 275, 2111–2125.
https://doi.org/10.1016/j.neucom.2017.10.063.

4. Zhang, H.; Li, X.; Zhong, H.; Yang, Y.; Wu. Q. J.; Ge. J.; Wang, Y. Automated machine vision system for liquid particle inspection
of pharmaceutical injection. IEEE Trans. Instrum. Meas. 2018, 67, 1278–1297. https://doi.org/10.1109/TIM.2018.2800258.

Figure 15. The mean accuracy based on the AE, AAE, 1DAE, GAN, and 1DAAE.

4. Conclusions

In this paper, we proposed a novel unsupervised fault detection method named
1DAAE, which introduced two new ideas: 1D convolution layers for the encoder to obtain
better features and the adversarial thought, which is to impose the latent variable z to
cluster into a prior distribution. Then, two anomaly scores, R-score and D-score, for 1DAAE
were proposed to detect the fault samples, one based on reconstruction errors, and the other
based on the latent variable distribution. Extensive experiments conducted on TEP prove
the effectiveness of our methods. Through the experiments, we found that the both the 1D
convolution layers and the latent vector distribution are helpful for fault detection, and
1D convolution layers are more helpful. Future work will consider more feature extraction
techniques applied to AE.

Author Contributions: Conceptualization, J.W. and Y.L.; Methodology, J.W.; Software, J.W. and Y.L.;
Validation, J.W. and Y.L.; Writing—review and editing, J.W., Z.H. and Y.L.; Visualization, J.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Nature Science Foundation (61503038, 61403042); the
Scientific research project of Education Department of Liaoning Province (LQ2020013, LJKMZ20221484);
a grant from the Bohai University Teaching Reform Program (No. YJG20210023); a grant from the Min-
istry of Education industry-University Cooperative Education Program (202102599009, 202101332004,
202101337001, 220504643183656); and the Application Basic Research Plan of Liaoning Province
(2022JH2/101300282).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Q.C.; Yang, L.T.; Chen, Z.K. Deep Computation Model for Unsupervised Feature Learning on Big Data. IEEE Trans. Serv.

Comput. 2016, 9, 161–171. [CrossRef]
2. Lee, H.; Kim, Y.; Kim, C.O. A deep learning model for robust wafer fault monitoring with sensor measurement noise. IEEE Trans.

Semicond. Manuf. 2016, 30, 23–31. [CrossRef]
3. Ren, H.; Chai, Y.; Qu, J.; Ye, X.; Tang, Q. A novel adaptive fault detection methodology for complex system using deep belief

networks and multiple models: A case study on cryogenic propellant loading system. Neurocomputing 2018, 275, 2111–2125.
[CrossRef]

4. Zhang, H.; Li, X.; Zhong, H.; Yang, Y.; Wu, Q.J.; Ge, J.; Wang, Y. Automated machine vision system for liquid particle inspection of
pharmaceutical injection. IEEE Trans. Instrum. Meas. 2018, 67, 1278–1297. [CrossRef]

5. Mandal, S.; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P. Nuclear power plant thermocouple sensor-fault detection and
classification using deep learning and generalized likelihood ratio test. IEEE Trans. Nucl. Sci. 2017, 64, 1526–1534. [CrossRef]

http://doi.org/10.1109/TSC.2015.2497705
http://doi.org/10.1109/TSM.2016.2628865
http://doi.org/10.1016/j.neucom.2017.10.063
http://doi.org/10.1109/TIM.2018.2800258
http://doi.org/10.1109/TNS.2017.2697919

Processes 2023, 11, 384 18 of 18

6. Lee, K.; Cha, J.; Ko, S.; Park, S.Y.; Jung, E. Fault detection and diagnosis algorithms for an open-cycle liquid propellant rocket
engine using the Kalman filter and fault factor methods. Acta Astronaut. 2018, 150, 15–27. [CrossRef]

7. Kehan, G.; Zihao, X.; Ke, Y.; Xiwang, D.; Peng, Y.; Qmgdong, L.; Zhang, R. Inductive monitoring system based fault detection for
liquid-propellant rocket engines. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30
July 2015; pp. 6131–6135. [CrossRef]

8. Ashourloo, M.; Namburi, V.R.; Piqué, G.V.; Pigott, J.; Bergveld, H.J.; El Sherif, A.; Trescases, O. Fault detection in a hybrid Dickson
DC–DC converter for 48-V automotive applications. IEEE Trans. Power Electron. 2020, 36, 4254–4268. [CrossRef]

9. Rato, T.; Reis, M.; Schmitt, E.; Hubert, M.; De Ketelaere, B. A systematic comparison of PCA-based statistical process monitoring
methods for high-dimensional, time-dependent processes. AIChE J. 2016, 62, 1478–1493. [CrossRef]

10. Sheriff, M.Z.; Karim, M.N.; Nounou, M.N.; Nounou, M.N.; Nounou, H.; Mansouri, M. Monitoring of chemical processes using
improved multiscale KPCA. In Proceedings of the 2017 4th International Conference on Control, Decision and Information
Technologies (CoDIT), Barcelona, Spain, 5–7 April 2017; pp. 0049–0054. [CrossRef]

11. Pradittiamphon, S.; Wongsa, S. Fault detection and isolation of acid gas removal units in a gas separation process using PLS. In
Proceedings of the 2016 International Conference on Instrumentation, Control and Automation (ICA), Bandung, Indonesia, 29–31
August 2016; pp. 88–93. [CrossRef]

12. Wang, C.; Hu, J.; Wen, C. A nonlinear PLS modeling method based on extreme learning machine. In Proceedings of the 2015 34th
Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; pp. 3507–3511. [CrossRef]

13. Zeng, T.; Wang, C. ICA based remote sensing image classification algorithm and its use in land use/cover classification. In
Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp.
3575–3577. [CrossRef]

14. Sajan, K.S.; Kuma, V.; Tyagi, B. ICA based Artificial Neural Network model for voltage stability monitoring. In Proceedings of the
TENCON 2015–2015 IEEE Region 10 Conference, Macao, China, 1–4 November 2015; pp. 1–3. [CrossRef]

15. Goularas, D.; Kamis, S. Evaluation of deep learning techniques in sentiment analysis from twitter data. In Proceedings of the 2019
International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), Istanbul, Turkey, 26–28
August 2019; pp. 12–17. [CrossRef]

16. Wang, D.; Foran, D.J.; Qi, X.; Parashar, M. Hetrocv: Auto-tuning framework and runtime for image processing and computer
vision applications on heterogeneous platform. In Proceedings of the 2015 44th International Conference on Parallel Processing
Workshops, Beijing, China, 1–4 September 2015; pp. 119–128. [CrossRef]

17. Fan, C.; Yi, J.; Tao, J.; Tian, Z.; Liu, B.; Wen, Z. Gated recurrent fusion with joint training framework for robust end-to-end speech
recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 29, 198–209. [CrossRef]

18. Zong, Z.; Hong, C. On application of natural language processing in machine translation. In Proceedings of the 2018 3rd
International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Huhhot, China, 14–16 September 2018;
pp. 506–510. [CrossRef]

19. Chen, K.; Hu, J.; He, J. Detection and classification of transmission line faults based on unsupervised feature learning and
convolutional sparse autoencoder. IEEE Trans. Smart Grid 2016, 9, 1748–1758. [CrossRef]

20. Principi, E.; Vesperini, F.; Squartini, S.; Piazza, F. Acoustic novelty detection with adversarial autoencoders. In Proceedings of
the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017:; pp. 3324–3330.
[CrossRef]

21. Marchi, E.; Vesperini, F.; Eyben, F.; Squartini, S.; Schuller, B. A novel approach for automatic acoustic novelty detection using a
denoising autoencoder with bidirectional LSTM neural networks. In Proceedings of the 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April 2015; pp. 1996–2000. [CrossRef]

22. Ince, T.; Kiranyaz, S.; Eren, L.; Askar, M.; Gabbouj, M. Real-time motor fault detection by 1-D convolutional neural networks.
IEEE Trans. Ind. Electron. 2016, 63, 7067–7075. [CrossRef]

23. Tang, F.; Mao, B.; Fadlullah, Z.M.; Liu, J.; Kato, N. ST-DeLTA: A novel spatial-temporal value network aided deep learning based
intelligent network traffic control system. IEEE Trans. Sustain. Comput. 2019, 5, 568–580. [CrossRef]

24. Mughees, A.; Tao, L. Multiple deep-belief-network-based spectral-spatial classification of hyperspectral images. Tsinghua Sci.
Technol. 2018, 24, 183–194. [CrossRef]

25. Tosun, H.; Mitchell, B.; Sheppard, J. Assessing diffusion of spatial features in deep belief network. In Proceedings of the 2016
International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1625–1632. [CrossRef]

26. Nickfarjam, A.M.; Ebrahimpour-Komleh, H. Shape-based human action recognition using multi-input topology of deep belief
networks. In Proceedings of the 2017 9th International Conference on Information and Knowledge Technology (IKT), Tehran,
Iran, 18–19 October 2017; pp. 1–4. [CrossRef]

27. Plakias, S.; Yiannis, S. Exploiting the Generative Adversarial Framework for One-Class Multi-Dimensional Fault Detection.
Neurocomputing 2019, 332, 396–405. [CrossRef]

28. Tennessee Eastman Process Data. 2002. Available online: https://paperswithcode.com/dataset/tep (accessed on 12 January 2020).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.actaastro.2018.03.001
http://doi.org/10.1109/ChiCC.2015.7260600
http://doi.org/10.1109/TPEL.2020.3022764
http://doi.org/10.1002/aic.15062
http://doi.org/10.1109/CoDIT.2017.8102565
http://doi.org/10.1109/ICA.2016.7811481
http://doi.org/10.1109/ChiCC.2015.7260180
http://doi.org/10.1109/PIERS.2016.7735374
http://doi.org/10.1109/TENCON.2015.7372938
http://doi.org/10.1109/Deep-ML.2019.00011
http://doi.org/10.1109/ICPPW.2015.21
http://doi.org/10.1109/TASLP.2020.3039600
http://doi.org/10.1109/ICMCCE.2018.00112
http://doi.org/10.1109/TSG.2016.2598881
http://doi.org/10.1109/IJCNN.2017.7966273
http://doi.org/10.1109/ICASSP.2015.7178320
http://doi.org/10.1109/TIE.2016.2582729
http://doi.org/10.1109/TSUSC.2019.2929935
http://doi.org/10.26599/TST.2018.9010043
http://doi.org/10.1109/IJCNN.2016.7727392
http://doi.org/10.1109/IKT.2017.8258612
http://doi.org/10.1016/j.neucom.2018.12.041
https://paperswithcode.com/dataset/tep

	Introduction
	Materials and Methods
	Autoencoder
	Autoencoder Based on Fault Detection Algorithm
	Proposed 1DAAE Model
	Network Architecture
	The Training Process

	DAAE Based on Fault Detection Algorithm
	Two Anomaly Scores Based on the Reconstruction Error and Latent Variables Distribution for 1DAAE
	Algorithm of 1DAAE-Based Fault Detection

	Results
	Datasets
	Experimental Results

	Conclusions
	References

