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Abstract: Mineral and metallurgical processing are crucial within the mineral value chain. These
processes involve several stages wherein comminution is arguably the most important due to its
high energy consumption, and its impact on subsequent extractive processes. Several geological
properties of the orebody impact the efficiency of mineral processing and extractive metallurgy;
scholars have therefore proposed to deal with the uncertain ore feed in terms of grades and rock
types, incorporating operational modes that represent different plant configurations that provide
coordinated system-wide responses. Even though these studies offer insights into how mine planning
impacts the ore fed into the plant, the simultaneous optimization of mine plan and metallurgical plant
design has been limited by the existing stochastic mine planning algorithms, which have only limited
support for detailing operational modes. The present work offers to fill this gap for open-pit mines
through a computationally efficient adaptation of a strategic mine planning algorithm. The adaptation
incorporates a linear programming representation of the operational modes which forms a Dantzig-
Wolfe decomposition, nested within a high-performing stochastic mine planning algorithm based on
a variable neighborhood descent metaheuristic. Sample calculations are presented, loosely based on
the Mount Isa deposit in Australia, in which a metallurgical plant upgrade is evaluated, showing
that the upgraded design significantly decreases the requirement on the mining equipment, without
significantly affecting the NPV.

Keywords: open-pit mine planning; metallurgical plant; geometallurgy; stochastic optimization;
metaheuristics; linear programming

1. Introduction

The design and redesign of a metallurgy plant is not a trivial decision for a mining
company since it significantly impacts its mineral value chain. It is known from general
system theory that separate-optimized subsystems do not guarantee an entire-optimized
system [1]; therefore, the analysis of any change in a plant must be addressed strategically
from a holistic point of view by supporting internal optimization and addressing the
interdependency between adjacent processes. This challenging decision must consider
several risks such as geology complexity (complex geometric shapes of deposits, deep-
seated deposits, geotechnical challenges, etc.), lower ore grades, ore quality variability
(textural complexities, mineralogical variability, etc.), and large production volumes [2].

Comminution is essential to mineral processing and metallurgical extraction because it
liberates the sought-after minerals needed for their subsequent selective recovery through
processes such as flotation and leaching [3,4]. However, comminution consumes a consider-
able amount of energy, in the order of 50–80% of the mine site [5,6], as so much of this energy
is dissipated as heat into the rock. Moreover, some decades ago, scholars realized that
comminution could consume up to 4% of global electrical energy [7]. The performance and
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throughput of the two components of comminution, crushing and grinding, are affected
by ore types that are spatially distributed throughout the deposit, in terms of hardness,
liberation size and ultimately the metal recovery [8]. Therefore, optimizing comminution
performance in consideration of these properties is crucial in balancing production goals,
with lower carbon footprints, and reduced energy consumption [9].

Prediction models based on ore hardness have been developed for several well-known
mines; for example, the Escondida porphyry copper mine in Chile has used these models—
generated based on annual testing programs or drill hole samples—to forecast the through-
put and ball mill product size (P80) for each ore block since 2000. These models have
delivered estimates of two main descriptions, the Bond Work Index (BWi) and the SAG
power index [10], being the first the most widely used [11]. This index is expressed in
kWh and is calculated using a standard procedure introduced by Bond [12]. It is highly
influenced by geological features, specifically by lithology and mineral composition, which
is the reason why Haffez [13] compared this index versus the mechanical properties of
ores hosted in rock with different formations (bauxite, kaolinite, granodiorite, magnetite,
granite, and quartz). He concluded that BWi is positively related to hardness (R2 = 0.75),
which strongly influences this correlation with mineralogical composition, specifically with
quartz content.

A key difference that distinguishes the mineral value chain from other value-adding
systems is the geological uncertainty, which is a significant factor in cost overruns [14].
The plant must deal with the chance of being fed with rock types that possess different
grades than expected, trying to maximize the profit by prioritizing them in some manner.
To deal with significant and sustained changes in the provided ore (with different hardness),
the concept of operational modes was presented by Navarra et al. [15]. These modes
are expressed in parameters that summarize alternate plant configurations to respond
efficiently to what combination of ores are being received. They are the result of adding
new processing equipment or technology investments. The mentioned study [15], along
with others subsequently published [16–18], provides essential insights related to how mine
planning (an adjacent previous process) impacts the ore supplied into the metallurgical
plant; however, they do not optimize both under the same framework, which causes a lack
of representation of the transitionary periods in the mine life, in which balances of rock types
are supported through the strategic alternation of these modes. Of course, strategic mine
planning has been studied frequently since the 1960s, providing essential contributions
to mine operations [19,20], formulated as a maximization of the net present value (NPV)
that determines which blocks should be extracted during each period within the life of
the mine [21]. In recent decades, much emphasis has been placed on managing geological
uncertainty (especially grade), through stochastic optimization, as will be described in the
following section [14,22].

This study aims to present a simultaneous optimization of a system composed of
the mine planning and the metallurgy plant, which incorporates different types of ore
and geological uncertainty. Unlike previous approaches, the new formulation supports
modes of operations with the increased resolution of geometallurgical considerations; most
notably, the new approach avoids the previous metaheuristic tuning parameters and soft
constraint violations which do not have a true interpretation in the mining context, and
which have masked over the intended detailing of mineral and metallurgical operations.
This novel approach is applied to a case study loosely based on the Mount Isa operations
in Australia, which possess a Zn-Pb orebody.

2. Advances in Stochastic Open-Pit Mining Algorithms

An orebody may be conceived as a discretized set of geometallurgical units called
mine blocks. These models are developed considering various ore characteristics such
as mineralogy, liberation, texture, and mineral chemistry [18]. Due to the expensive
nature of obtaining drill core samples to analyze such factors, geostaticians have proposed
diverse methods to understand and improve confidence in the spatial distribution of these
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characteristics, especially in the volumes between measured sample points. This allows
for the improved delineation of distinct domains (i.e., groupings of blocks) based on the
expected metallurgical response as a function of the inherent geological characteristics;
these distinct domains are often called “geomatellugical units”. Kriging is a well-known
approach for spatial interpolation, and is commonly applied in strategic mine planning
that is based on deterministic optimization; indeed, kriging provides one single scenario,
often hypothesized as the “most likely scenario”, and resulting (deterministically) optimum
overly adheres to this one scenario, and is thus poorly adapted to the actual geological
variations that are manifest within the life of mine. Moreover, this one scenario that is
produced by a typical kriging approach is not actually likely and is criticized as being
overly smoothed; this is problematic for high-grade ore that is adjacent to waste rock
since this smoothening will cause the ore to be “smudged out” within the model, or
otherwise cause an erroneous volume of low-grade ore. The countervailing approach has
been, rather than using kriging to produce a single (overly smoothed) scenario subject to
deterministic optimization, has been to apply a form of Monte Carlo simulation known as
conditional simulation, which produces countably many equiprobable scenarios that are
then subject to stochastic optimization. The most common form of conditional simulation
is Sequential Gaussian Simulation [23], which can be seen as a logical extension of kriging.
Nonetheless, the resulting stochastically optimized mine plan is not overly adherent to
any of the equiprobable scenarios but rather is expected to perform well for the entire
distribution of possible scenarios. The objective is to maximize the expected net present
value over these scenarios. Thus, by simultaneously incorporating a range of equiprobable
scenarios (typically between 10 and 20), the stochastic approaches address critical aspects
of geological variability, which are inherent to large mining projects.

While the stochastic approaches are gaining prominence, many advances in open pit
mine plan algorithms have been presented within deterministic formulations, i.e., consid-
ering one single scenario, rather than a simultaneous consideration of multiple scenarios.
It is not intended to provide a comprehensive summary; however, among these studies
are methodologies that are highlighted to generate operational ramps [24], an aggregation-
disaggregation heuristic applied to the mine block sequencing problem [25], an efficient
computing of ultimate pit limits [26], and strategic open-pit mine planning based on a
mixed-integer approach with the Bienstock and Zuckerberg method [27]. Nevertheless,
without detracting from the merit of the mentioned studies, it has been proved that man-
aging risks of at least ten scenarios increases the accuracy of the results and the expected
net present value of projects by as much as 25% [14,22]. It is noteworthy that each of these
“deterministic” developments could be adapted into a multi-scenario stochastic which may,
in practice, be quite important in addressing the geological uncertainty, especially in grades
and rock types. Yet, specifically under the stochastic methods, different complexities have
been addressed to add realism to the calculations, among which it is found stockpiling [28],
balancing output from multiple pits [29], multiple processing streams [30], and market
uncertainty [31]. These studies have generally tackled the strategic and tactical levels [32].

Due to the shear size of the problem, e.g., with many thousands or millions of blocks,
it is challenging from a computational-capacity perspective to construct optimal solutions
to realistic study cases through exact methods such as the Simplex Method. Therefore,
several studies have relied on metaheuristics even though they did not guarantee an
optimum. Some examples of these optimization algorithms are Simulated Annealing [33],
Tabu Search [34], or Particle Swarm Optimization [35]. The acceptance of heuristics as an
alternative to exact is partly due to the relative sizing of this optimization uncertainty, in
comparison to the inherent geological uncertainty. Nevertheless, the main drawback of
these heuristics is their reliance on tuning parameters that control the optimization process,
which can significantly impact the method’s effectiveness. For example, in comparing
two designs at a mine, one may evaluate an option with unintentionally favorable tuning
values and then assess the second design with unintentionally unfavorable ones. Moreover,
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adjusting these parameters adds extra time to finding an acceptable solution because it
implies the repetition of the experiments.

One solution that avoids these tuning parameters is the Bienstock-Zuckerberg (BZ)
algorithm, a specialized linear programming technique that relies on matrix decompo-
sitions. Relevant studies have implemented it in the mine planning context; however,
these contributions have resided within a deterministic approach [27,36] and have not yet
been extended to consider plant operations. Another exception is the Variable Neighbor-
hood Descent (VND) metaheuristic, initially proposed by Lamghari et al. [21,37], which
is formulated to avoid ambiguous parameters and work under stochastic contexts. More-
over, it has been found to be remarkably well-suited for parallel computing. Due to these
characteristics, the VND algorithm has been part of a series of publications seeking to
optimize the stochastic strategic mine plan along with metallurgy plants [16–18]. These
studies define and use the concept of operational modes; however, they do not depict
the tactical alternation of modes in response to the geological scenario, thus limiting the
geometallurgical detailing. The present work advances this matter by imbedding a linear
programming formulation within the VND heuristic, which is to be evaluated as a response
to each scenario; as with other open-pit stochastic algorithms, it produces one single mine
plan that confronts an enumerated set of 10–20 scenarios; however, the assessment of the
plan under each scenario constitutes a separate linear program.

3. Formulation
3.1. First Stage Optimization—The Overarching Strategic Plan

The VND algorithm originally developed by Lamghari et al. [21], and then later
adapted by Navara et al. [16–18] to support operational modes, is now further extended
to detail these operational modes in response to short-term (tactical) geometallurgical
considerations. These stochastic formulations [16–18,21,23,33,34,37] each conform to what
is generally known as Two Stage optimization. The first stage may be called the “strategic”
or “long-term” stage, which determines the blocks to be excavated and fed into the plant in
each period, thus forming the long-term mine plan; this strategic formulation produces
one single mine plan that confronts the set of equiprobable scenarios, without yet knowing
which precise scenario will actually manifest. The second stage of optimization represents
the shorter-term processing decisions of how the ore will be processed after the knowledge
of the geological scenarios; this second stage constitutes a separate optimization for each of
the scenarios and is developed in Section 3.2.

Let B is the set of blocks within the scope of the optimization, and nS and nT to be the
number of geological scenarios and time periods, respectively. From this, the mine plan is
expressed as x = {Bt}nT

t=1 in which Bt ⊂ B is the set of blocks to be mine in time period t.
As with the original work of Lamghari et al. [21], strategic stockpiles are not considered, so
a block b∈ Bt that is mined in period t can only be processed in t. However, this decision of
if the block should be processed depends on the geological scenario; in some scenarios,
the block will be ore and will thus be processed, whereas in other scenarios, the block
may be waste rock and therefore rejected. Beyond this question of if , the new formulation
now considers how the content of the block will be processed, which again depends
on the geological scenario; thus, in some scenarios, the block may be most amenable to
operating mode A, but in other scenarios, it may be more amenable to mode B, and still
in other scenarios it may be waste rock. For simplicity, the current set of calculations will
consider only two modes, which already support significant geometallurgical complexity,
as demonstrated in Section 4; the formulation is directly extendible to more modes.

The objective is to maximize the expected NPV, as expressed by

max[ f (x)] = −
nT

∑
t=1

∑
b∈Bt

cbt +
1

nS

nS

∑
s=1

nT

∑
t=1

fst(Bt) (1)
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in which the first double summation considers the discounted cost of mining block b in pe-
riod t, denoted cbt; these mining costs are incurred independently of the geological scenario.
The rightmost double sum constitutes the expected discounted revenue attained from pro-
cessing the blocks, which is indeed dependent on the geological scenarios. The double sum
is preceded by (1/nS) since it is fact a scenario-wise average of a life-of-mine summation.
In this, fst(x) is the discounted value attained under scenario s, in period t, given mine
plan x. As will be developed in Section 3.2, and Appendix A, fst(x) is itself the result of an
optimization, i.e., the aforementioned second stage.

For a proposed mine plan x = {Bt}nT
t=1 to be feasible, it must satisfy the following

constraints, ⋃
b∈Bt

BPred
b ⊆

t⋃
t′=1

Bt′, ∀t ∈ {1, . . . , nT} (2)

∑
b∈Bt

mb ≤ Mt, ∀t ∈ {1, . . . , nT} (3)

in which BPred
b is the set of direct predecessors of block b, i.e., the set of blocks BPred

b must
be mined in order to give access to b through a not overly steep slope. Within Equation (3),
mb denotes the mass of block b, and Mt is the maximum mass of rock that can be mined
during period t, i.e., the mining capacity.

The technical details of the VND algorithm are described in previous work [16–18],
and shall not be revisited recounted here, except to note that blocks are transferred between
periods, either through trading a single block with another block from another period
(swapping action) or through the shifting cone-shaped groupings of blocks, be it to expedite
the grouping (shift-before action) or to postpone the grouping (shift-after action). For a
solution x = {Bt}nT

t=1, each of these transferring actions define a different set of neighboring
solutions, hence the phrase “variable neighbourhood”. The algorithm iteratively searches
for neighbors having higher expected NPV, which can be considered as an “ascent”, but the
VND metaheuristics were originally conceived for minimization, hence the term “descent”.
Throughout each iteration, the algorithm never allows a block to be mined in more than
one period. Hence, a feasible solution x = {Bt}nT

t=1 must satisfy,

Bt ∩ Bt′ = ∅, ∀t, t′ ∈ {1, . . . , nT} (4)

which is often called the reserve constraint. Thus, the first stage of optimization can be
understood as a constrained optimization to maximize the expected NPV (Equation (1)),
while satisfying block precedence, mining capacity and reserve constraint, as specified
by Equations (2)–(4), respectively. There is, however, a subtlety in Equation (1) since fst
constitutes nS conditional short-term optimizations that are embedded within the strategic
optimization.

3.2. Second Stage Optimization—The Short-Term Processing Decisions

The short-term decisions are to partition the mass mb of each mined block b∈ Bt
among the various processing modes that are available, or potentially to reject some or all
of the mass as waste rock. As per the formulation of Equation (1), the scope of the short-
term optimization assumes a static set of blocks is fixed to one single scenario s and one
single period t. Furthermore, while the block sets Bt are being modified by the first-stage
(strategic) optimization, these sets are static in the scope of the short-term optimization.
The operational question is then posed: “given that these blocks Bt which we now know to
be described by geological scenario s, must be processed within the current period t, how
will they best be processed given the limited plant capacity?”
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Given a set of operational modes O, the short-term decision variables are mbso which
denotes the mass of block b that, under scenario s, will be subject to processing mode o, for
each o∈O. These short-term decision variables are subject to the linear objective function,

fst(Bt) = max ∑
b∈Bt

∑
o∈O

(
vbso
mb

)
mbso (5)

in which vbso is the discounted recoverable value of block b when undergoing processing
mode o. This value incorporates considers the grade and rock type, as in previous formula-
tions [16–18]. However, it now considers the broader context of the mode, including the
quantity and type of other rock types with which it is combined. Essentially, each mode
is designed for a combination of rock types and is able to extract more or less value from
each of the feed components. Thus, the constraints consider an available set of modes O,
in relation to the rock types P that may constitute ore; Bps ⊂ B denotes the set of blocks
that under scenario s are of rock type p.

The objective of Equation (5) is thus subject to the constraints

∑
o∈O

mbso ≤ mb, ∀b ∈ Bt (6)

∑
o∈O

∑
b∈Bt

mbso
ro
≤ dt, ∀ro > 0, t ∈ {1, . . . , nT} (7)

∑
b∈Bps∩Bt

mbso − wop ∑
b∈Bt

mbso = 0, ∀o ∈ O, ∀p ∈ P (8)

mbso ≥ 0, ∀b ∈ Bt, ∀o ∈ O (9)

in which ro is the tonnage processing rate mode o, dt is the available time of plant during
the period, and wop is the weight fraction of rock p that is included in the feed for operating
mode o. Equation (6), in conjunction with the non-negativity constraints (Equation (9))
specify the problem as a continuous partition of the mass mb, in which the (|O|+1)th

mode is to treat the mass as waste rock; this relates to a non-negative slack variable that
can be inserted into Equation (6) to convert it into equality. Equation (7) describes the
processing capacity, considering that each mode can have a different rate limitation, be
it from comminution, a part of the separation process, tailings treatment, etc.; to support
different net processing rates ro, the plant capacity is quantified in terms of time availability,
e.g., if period t consists of one year 8760 h, then dt may be 8000 h to signify that ~10% of the
time is devoted to maintenance.

Equation (8) is a linearization of equality,

wop =
∑b∈Bps∩Bt mbso

∑b∈Bt mbso
∀o ∈ O, ∀p ∈ P (10)

which characterizes the feed composition for each mode of operation. Future implementa-
tions may consider a range of compositions [wmin

op , wmax
op ] for each mode, as in

wmin
op ≤

∑b∈Bps∩Bt mbso

∑b∈Bt mbso
≤ wmax

op ∀o ∈ O, ∀p ∈ P (11)

which can also be linearized, but constitutes not one, but two constraints; moreover, they
would be inequalities rather than equalities. However, the current formulation that enforces
a strict composition for each mode has a particular appeal as a simple application of the
Dantzig-Wolfe (DW) decomposition, which is further described in Appendix A; Equation (8)
allows each block of constraints to be one single equation so that the DW subproblems are
trivial to resolve. Implementing ranges of compositions, or other complexities requires
special programming efforts, including careful management of data structures [18].
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A major challenge in embedding the linear program of Equations (5)–(9), is that
there are nS×nT running programs which must be updated at each iteration of the VND
algorithm. The approach is always to reoptimize the modified linear program as blocks
are entering and leaving Bt, rather than reinitializing at every iteration. In general, further
development of specialized data structures allows open-pit strategic mine planning to
accommodate more complexity while maintaining practical computations times [18]. This
is an ongoing area of research.

3.3. Summary of Sets and Parameters

To apply the formulation described by Equations (1)–(9), to construct a mine plan with
nT time periods, in consideration of nS geological scenarios, it is necessary to define the
following sets:

• B the set of all blocks within the scope of the simulation.
• BPred

b is the set of direct predecessors of block b.
• O is the set of available operational modes.
• P is the set of rock types.

Obtaining BPred
b from B typically requires a specification of the maximal permissi-

ble slope that would maintain geomechanical stability. In the following computations,
we consider a 45◦ maximum slope which for each non-surface block b, causes BPred

b to
be the overlying block as well as the surrounding eight blocks (hence |BPred

b | = 9 for all
non-surface blocks).

At the level of the first-stage optimization, each block is characterized according to:

• cbt is the expected discounted cost of mining block b in period t.
• mb is the mass of block b.

Typically, cbt considers the amount of rock within the block, as well as a discount rate,
and is computed as part of a preprocessing step. The second-stage optimization considers
the following parameters, listed in alphabetical order:

• dt is the availability of the plant during the same period t of the set of blocks Bt.
• ro is the tonnage processing rate under operational mode o ∈ O.
• vbso is the discounted value of block b by operational mode o ∈ O under scenario s.
• wop is the fraction of rock p ∈ P needed to process ore under operational mode o ∈ O.

The plant capacity is described by the combination of dt and ro as implemented in
Equation (7). Each operating mode o∈O is described by its processing rate ro and feed
composition.

Conditional simulation is applied to obtain nS geological scenarios, wherein the grades
and rock type of each block is determined for each of the scenarios, as well as any other
geological attributes that are used in computing vbso. The sets and parameters summarized
in this section allow the current formulation to support fairly demanding geometallurgical
detailing, as demonstrated by the following sample calculations.

4. Sample Calculations
4.1. Case Study

The previous section’s algorithm is to optimally evaluate a metallurgical plant fed
according to a mine plan that maximizes the expected life-of-mine NPV. In this case, the
plant design consists of flotation facilities to produce sulfide concentrate from a fictional Zn-
Pb deposit, loosely based on the clastic-dominated (CD) deposit observed in the Mount Isa
operation in Australia [38]. This deposit possesses a subtype of sediment that hosts Zn-Pb
mineralization which occurs as carbonate replacement within a sedimentary rock sequence,
which can be hosted in turn in shale, sandstone, siltstone, or mixed clastic rocks [39].

The CD Zn-Pb deposits arise in back arcs and continental rifts, passive margins, and
sag basins, which in some cases are tectonic settings that are transitional to one another.
Specifically speaking about the CD deposits in the North Australian craton, the Mount Isa
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province has continental rift-hosted deposits presented in a deep-water turbiditic basin
in the east developed during incision and granite emplacement to the west [40]. Most
Zn-Pb-Ag ores in the North Australian zinc belt are hosted by rocks of the Isa super-
basin (deposited between 1655 and 1635 Ma) and interpreted as continental sag-hosted
deposits [41].

The Proterozoic Urquhart Shale Formation presents three world-class base metal
deposits of Mount Isa, Hilton, and George Fisher, which collectively have a pre-mining
resource of >370 Mt. (10 wt% Zn, 5.6 wt % Pb, and 120 g/t Ag) [42]. In the Mount Isa
deposit, the orebodies were formed by hydrothermal replacement and dilation of the
Urquhart Shale. The stratiform Zn-Pb orebodies are located at least 100 m up-dip from the
Paroo fault, with the highest grades of Zn-Pb mineralization coinciding with the hinges and
short limbs of folds [43]. Mineralization and associated silica-dolomite alteration seem to
show combined effects of deformation that resulted in the easterly-dipping (40–50◦) Eastern
Creek Volcanic abutting a steeply (60–70◦) west-dipping Urquhart Shale (Figure 1) [44].

Figure 1. Geological sections showing the distribution of silica-dolomite, Zn-Pb mineralization.
Based on the geology of the Mount Isa deposit, silica alteration’s geometry is presented as well as its
relation to bedding and faults (is a schematic representation, after [44]).

Galena and sphalerite are the dominant Pb and Zn minerals. They occur as stratiform
bands that replace stratabound fine-grained pyrite-rich and/or dolomitized shale layers
or as infills around highly deformed carbonaceous shale [45]. The Urquhart Shale is
siliceous to dolomitic, variably pyritic, and carbonaceous. Several sedimentary facies
have been identified in the Urquhart Shale Formation, generally linked to sabkha or playa
environments [46].

The CD Zn-Pb pattern observed in Mount Isa was used as guidance to create a block
model with twenty scenarios to capture the geological uncertainty; for the purposes of the
computation, the scenarios are presumed to be equiprobable, each with different grades.
Two main ore types were created (1) a recrystallized dolomite shale sequence, dolomitic
breccias to near-massive crystalline dolomite, and (2) high silica in which crystalline
dolomite is minor to absent [44]. This model follows the geometry of the folded sequence,
dipping west (Figure 1). A schematic profile of the inputted geology is shown in Figure 2.
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Figure 2. Section of the orebody. Dolomitic Breccia and Shale (yellow)/High Silica Zones (purple).

The geological characteristics and Bond Work Index (BWi) values were assigned based
on the study by Nad and Saramak [4] conducted on similar rocks to those found in Mount
Isa. These scholars developed a comparative analysis of the strength distribution for
irregular particles of carbonates (averaging 9.86 kWh/t) and shale (averaging 15.83 kWh/t),
and sandstone ore (with 16.9 kWh/t). The outcomes of this study showed that the most
significant amount of energy is required for sandstone-grain grinding due to these particles
being predominantly quartz. In those blocks associated with dolomitic shale, the BWi value
assigned was 12.85 kWh/t (average of shale and carbonates), whereas, for the high silica,
the given value was 16.9 kWh/t.

The metal content of the twenty equiprobable scenarios that were generated for this
study are described in Table 1. The variation between the scenarios is indicative of the
uncertainty that resides spatially between the drill core sample. A higher density of drill
core samples, and/or a less variable orebody, would tend to make each of the scenarios
more closely related to a central tendency, which would be observed by smaller standard
deviations, or smaller interquartile differences (Q3−Q1). As a consequence, increasing the
sampling density will also tighten the interquartile difference in the resulting economic
risk profiles, e.g., in the cumulative NPV profiles that will be presented below. However,
there is a diminishing return on increasing the sample density, as the underlying variation
of the orebody cannot be eliminated and would represent an increasing portion of the total
variation. (The limited strategic payoff for successively increasing sampling density can
be the subject of a future case study that features intricate budgeting decisions, from a
geometallurgical perspective).

Table 1. Descriptive statistics for metal content of the stochastically generated geological scenarios.

Zn (Tonnes) Pb (Tonnes)

Scenario Mean Std Dev Q1 Median Q3 Mean Std Dev Q1 Median Q3

1 1089.84 789.48 503.02 874.05 1471.70 408.90 334.29 165.05 307.99 554.64
2 1065.58 802.90 490.57 831.72 1431.85 399.23 341.90 160.44 291.20 537.72
3 1066.58 798.24 470.64 851.64 1471.70 399.77 338.29 153.11 299.09 554.64
4 1054.75 796.90 460.68 844.17 1429.36 394.79 339.05 149.45 296.12 536.66
5 1047.28 755.80 473.13 864.09 1424.38 390.75 318.87 154.02 304.03 534.55
6 1129.73 860.30 478.11 874.05 1538.93 427.08 367.37 155.85 307.99 583.34
7 1046.75 750.92 490.57 854.13 1409.44 390.38 316.45 160.44 300.07 528.23
8 1077.67 822.96 508.00 861.60 1451.77 404.56 353.03 166.89 303.04 546.17
9 1047.57 767.57 475.62 831.72 1434.34 391.33 323.64 154.94 291.20 538.78
10 1035.72 738.17 478.11 826.74 1404.46 385.57 310.60 155.85 289.23 526.12
11 1081.10 814.24 470.64 851.64 1476.68 406.10 345.77 153.11 299.09 556.76
12 1107.90 811.53 490.57 881.52 1504.07 416.81 344.77 160.44 310.96 568.44
13 1072.85 782.07 500.53 864.09 1429.36 401.63 331.94 164.13 304.03 536.66
14 1107.11 825.36 478.11 859.11 1523.99 417.12 349.74 155.85 302.05 576.95
15 1077.66 793.25 483.09 866.58 1479.17 403.93 337.19 157.69 305.02 557.82
16 1053.30 794.65 468.15 811.80 1426.87 394.28 336.59 152.19 283.34 535.61
17 1076.01 752.17 500.23 874.05 1511.54 402.39 316.13 164.13 307.99 571.63
18 1097.92 802.02 498.04 891.48 1484.15 412.50 340.20 163.20 314.93 559.94
19 1065.79 781.99 480.60 851.64 1461.74 399.06 330.46 156.77 299.09 550.41
20 1076.53 779.98 485.59 888.99 1491.62 403.24 330.09 158.60 313.94 563.13
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The computations consider that a nearby plant is being refurbished, possibly upgraded,
as part of a longer-term hub-and-spoke strategy that will initially develop the deposit
depicted in Figure 2, and eventually several other nearby sites. The plant was originally
designed for a 60–40 blend of Dolomitic Shale v/s High Silica ore. However, the deposit
is now forecast to provide an imbalance in the two ore types, such that every successive
period will require more and more mining in order to feed the plant with the required
Dolomitic Shale. A mining rate of roughly 6 Mt/year would be favorable, but apparently,
this can only be sustained in the first year. Therefore, a potential upgrade of the plant is
under consideration, focusing mainly on the comminution circuit to support an additional
operating mode (“Mode B”) that will support a 60–40 blend. The cost of the upgrade is
still uncertain, and will require detailed designing, outsourced to an engineering firm, and
may be as low as $30 M and high as $70 M. However, it is clear that the operating costs for
the new Mode B are higher than the existing mode (“Mode A”), since its feed will have a
BWi that is proportionately closer to that of sandstone. Table 2 presents the parameters for
the existing and upgraded plant designs, including a 16% higher processing cost. A mine
capacity of 10 Mt/year was left deliberately high to allow the algorithm to determine that
parameter freely and effectively to deactivate Equation (3). For simplicity, the removal of
overburden that would lay atop the orebody has not been considered since, although it
would be a significant cost in practice, it would be an equal consideration for both plant
design options, and therefore irrelevant to the net comparison. Additionally, the data was
simulated such that an average of 50% of the mined material is rejected as waste rock, i.e.,
through an ore sorter.

Table 2. Parameters of the case study are divided into existing and updated plant designs.

Parameters Existing Upgraded

Block weight (tonne) 20,000 20,000
Number of blocks 4446 4446

Block dimension (m) 25 × 25 × 12.5 25 × 25 × 12.5
Block density (tonne/m3) 2.88 2.88

Number of periods 4 4
Length of periods (year) 1 1

Discount rate (%) 8 8
Metal price Zn ($/tonne) 2400 2400
Metal price Pb ($/tonne) 2000 2000

Mining cost ($/tonne) 14.50 14.50
Rejection rate 50% 50%

* Mining capacity (tonne/period) 10,000,000 10,000,000
Processing availability (hr./period) 8059 8059

Rock Types Dolomitic Shale (D)
High Silica (HS)

Operational Mode A
Processing cost ($/tonne) 29.15 29.15

Recovery Zn (%) 0.85 0.85
Recovery Pb (%) 0.62 0.62

Processing rate (tonne/hr.) 368 368
Percentage rock D 60 60

Percentage rock HS 40 40

Operational Mode B
Processing cost ($/tonne) N/A 34

Recovery Zn (%) N/A 0.87
Recovery Pb (%) N/A 0.63

Processing rate (tonne/hr.) N/A 334
Percentage rock D N/A 40

Percentage rock HS N/A 60
* Note that only 50% of the mined material passes through the ore sorter.
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4.2. Results

The algorithm was implemented in C++ and ran on a server with a processor Intel®

Xeon® CPU E5-2650 using twenty-four threads for parallelization. As mentioned, twenty
scenarios were considered: ten for generating an optimized mine plan and the other ten for
obtaining risk profiles of the cumulative NPV. Figure 3 shows the curves associated with
both designs, where it is natural to observe that the upgraded plant has a higher operational
NPV due to it having an additional degree of freedom, i.e., an additional mode. However,
this increased revenue of $77 M observed between the two P50 curves is small compared
to the impact of geological uncertainty, as measured by the differences between the P10
and P90 curves ($128 M in the case of the existing plant, and $129 M for the upgraded).
Moreover, the upgrading costs of $50 ± 20 M are insignificant compared to the geological
uncertainty and will be offset by the increase in the revenue of ≈$77 M.

Figure 3. P10, P50, and P90 curves cumulative NPV of the existing (a) and upgraded (b) designs.

More critical for the given context is Figure 4a, which shows how the existing design
requires an increasingly higher mining rate in order to keep its only operation mode run-
ning. In contrast, the upgraded design stabilizes rock extraction to slightly over 6 Mt/year
(Figure 4b). Figure 5a shows the existing plant would attain a throughput of 3 Mt/year
operated in the first three years, which corresponds to full capacity considering a plant
availability of 8059 h/period and a processing rate of 368 t/h (Table 2). The upgraded
plant would is also at full capacity in the first three years, although it is not apparent from
Figure 5b; in each of the three first periods, the upgraded plant processes less total ore than
the existing plant, considering that a portion of the annual production is carried under
Mode B having a slower rate of 334 t/h. Indeed, the upgraded plant is consistently accepts
more HS feed than the basic plant, even though the total throughput is lower (Figure 5).

Figure 6 shows the time distribution of the upgraded plant over the four periods for
each mode, noting that the existing plant would devote all of its available productive hours
to Mode A. Throughout the four periods, Mode B occupies an increasingly large portion of
time, and finally dominates in the final period.
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Figure 4. Tonnes of rock mined per period for the existing (a) and upgraded (b) designs.

Figure 5. Tonnes of ore processed per period for the existing (a) and upgraded (b) designs.

Figure 7a presents schematic views of the mine plan associated with the existing and
updated plant designs. For the existing plant, its only operational mode restricts the mine
plan by requiring as much ore as possible, which is particularly noticed in periods 1 and 2
and leads to a skewed pit design (Figure 7a). Conversely, the updated design allows the
mine plan to extract the ore more evenly across the periods, observed mainly in periods 2
and 3 (Figure 7b). Similarly, to an observation made by Navarra et al. [17]: Figure 7 shows
visual confirmation that the strategic mine plan and the metallurgical plant design are
coupled, and should therefore be evaluated simultaneously, within the same computational
framework. Furthermore, the feed blending is inevitably coupled with the plant design
and strategic mine plan.
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Figure 6. Time distribution of plant operating mode for the upgraded plant.

Figure 7. Schematic view of mine plan (XZ-planar cut along middle Y value) associated with the
existing (a) and upgraded plant designs (b). HS: high silica blocks.
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5. Conclusions

This work presented the selection of a metallurgy plant design that maximizes the
cumulative NPV throughout the life of the mine, dealing with different ore types and
geological uncertainty. This objective is reached by optimizing the mine plan under dif-
ferent metallurgical plant designs (hence different operational modes and feed blends).
In particular, the sample calculations showed a case in which a potential upgrade would
ensure a more balanced development of an open pit, which would diminish the amount
of mining equipment. This more balanced development required an additional degree
of freedom, as manifested by a second operating mode that was represented within the
optimization framework. Furthermore, this optimization framework runs a paralyzed
algorithm based on a VND metaheuristic to determine the periods where the blocks are
extracted and embedded linear programs to deal with the mass balancing required by
the plant’s operational modes. This level of detail had not been possible in the previous
development of the VND algorithm [16–18] and is essential for designing or redesigning
metallurgical plants [15], which depend on short-term decisions regarding blending.

The authors consider this study a successful step in narrowing the gap between the
mine and plant and, therefore, reaching a holistic view shared by multidisciplinary roles
inside mining companies. In establishing the context for the sample computations, the
grindability of the ore was considered a critical geometallurgical attribute, as represented
by the Bond Work Index. However, the authors acknowledge the need for more exper-
imentation to measure accurately the impact of considering operational modes to react
simultaneously to different ore types and grade uncertainty. Among these experiments, it
is desirable for an efficient implementation of Equation (11) so that the modes may support
composition ranges and consider additional features such as strategic stockpiles, multiple
processing streams and market uncertainty. In developing applied case studies (similar to
the one in Section 4 of this paper), more computational experiments can be conducted in
tandem with laboratory-scale metallurgical analyses, to establish and potentially extend
the operability of a proposed plant. Moreover, in light of current trends, there is an interest
to relate our methods to the carbon footprint of a mine, as well as other environmental
impacts concerning tailings treatment and water conservation. It is our hope that the paper
can stimulate other researchers and mine developers to test our methods for their specific
mining operations.
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Appendix A

The Dantzig-Wolfe (DW) decomposition was proposed by Dantzig and Wolfe [47,48]
and since then has become an important method for approaching linear programming
problems whose constraints follow the structure presented in Figure A1, which is known
as the block angular structure.
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Figure A1. Block angular structure of constraints to apply DW decomposition.

The generic problem to be solved is defined as:

maxcx (A1)

Subject to
Ax ≤ b, x ≥ 0 (A2)

The A matrix has the block angular structure, where Ai (i = 1, 2, . . . ., 2N) are matrices,
and the 0s are null matrices.

A =


A1 A2 . . . AN

AN+1 0 . . . 0
0 AN+2 . . . 0
...

...
. . .

...
0 0 . . . A2N

 (A3)

Based on these definitions, the problem can be rewritten as:

max
N

∑
j=1

cjxj (A4)

Subject to

[A1, A2, . . . , AN , I]
[

x
xs

]
= b0,

[
x
xs

]
≥ 0 (A5)

AN+jxj ≤ bj and xj ≥ 0, f or j = {1, 2, . . . , N} (A6)

where cj, xj, b0, and bj are vectors such that c = [c1, c2, . . . , cN], xT = [x1, x2, . . . , xN],
bT = [b0, b1, . . . , bN], and xs is the vector of slack variables for the first set of constraints.

The set of points xj, such that xj ≥ 0 and AN+jxj ≤ bj, constitutes a convex set with a
finite number of extreme points. Under the assumption that the set is bounded, any point
in the set can be represented as a convex combination of the extreme points. If nj is the
number of extreme points, these points are denoted by x∗jk for k = 1, 2, . . . , nb

xj =

nj

∑
k=1

ρjkx∗jk (A7)
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nj

∑
k=1

ρjk = 1, ρjk ≥ 0 (A8)

Therefore, this formulation provides a method for representing the feasible solutions
to subproblem j without using any original constraints. The overall (master) problem is
restated as the following:

max
N

∑
j=1

nj

∑
k=1

(cjx∗jk)ρjk (A9)

Subject to

N

∑
j=1

nj

∑
k=1

(Ajx∗jk(ρjk + xs = b0, xs ≥ 0 f or j = {1, 2, . . . N} (A10)

nj

∑
k=1

ρjk = 1 and ρjk ≥ 0, f or j = {1, 2, . . . , N} (A11)

Let B be the current basis matrix and let cB be the corresponding vector of basic
variables coefficients in the objective function. Let m0 denote the number of elements of
bo. Let (B−1)1;mo be the matrix consisting of the first m0 columns of B−1, and let (B−1)i
be the vector consisting of the ith column of B−1. Then the subproblems are defined as
the following:

min(cB(B−1(1;m0
Aj − cj(xj + cB

(
B−1

)
m0+j

(A12)

Subject to
AN+jxj ≤ bj, xj ≥ 0 (A13)

The decomposition is applied to the linear program presented in Equations (5)–(10) by
changing the variables as stated in Equations (A14) and (A15). If two operational modes
are considered, it is observed that each subproblem has a feasible region delimitated by
points x∗b1 (0,0)—meaning that the block has not been processed; x∗b2(1,0)—block entirely
processed by mode A; and x∗b3(0,1) block processed by mode B (Figure A2). This provides a
better comprehension of the nature of the problem.

∑
o∈O

mbso
mb

=
3

∑
k=1

ρbkx∗bk (A14)

3

∑
k=1

ρbk = 1 and ρbk ≥ 0 (A15)

Figure A2. Feasible region of each subproblem.

In the case of a third mode, Figure A2 would be extended to consider a third dimension,
coming out of the page, and Equations (A14) and (A15) would consider the four vertices
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of a tetrahedron. More generally, for n modes, the structure of Equations (A14) and (A15)
would be extended in consideration of the n vertices of an n-dimensional simplex.

To map the linear program presented in Equations (5)–(10) into the block angular
structure of Figure A1, the central constraints are Equations (7) and (8), whereas the
constraints within the block divisions correspond to Equation (6). Based on Equations (A14)
and (A15), the linear program is reformulated as follows, where Equations (A17) and (A18)
are Equations (7) and (8), and Equation (6) is transformed into Equation (A19):

max ∑
b∈Bt

3

∑
k=1

vbso(ρbkx∗bk) (A16)

Subject to

∑
b∈Bt

3

∑
k=2

mb
rk

ρbk ≤ dt, ∀rk > 0 (A17)

∑
b∈Btp

mbk − wkp ∑
b∈Bt

mbk = 0, ∀k = {1, 2, 3}, ∀p ∈ P (A18)

3

∑
k=1

ρbk = 1, ∀b ∈ Bt (A19)

ρjk ≥ 0, ∀b ∈ Bt, ∀k = {1, 2, 3} (A20)

In this transformation, the basis inversion B−1 is trivial because each block division
(Figure A1) consists of only one Equation (6), i.e., the basis “matrix” is only a scalar. In
addition, it is acknowledged the transformation would be more complicated with a range
of compositions, as described by Equation (11); however, this is the subject of a forthcoming
paper in which the context explicitly demands ranges in feed compositions.

In terms of execution time, the new formulation does not reduce the number of
variables or constraints; however, the DW decomposition uses delayed column generation,
which reduces the size of the matrices and, therefore, decreases the time dedicated to
multiplication. Within the execution of the VND algorithm, as blocks are being moved
between periods, the nT·nS instances of the linear programs (Equations (5)–(10)) are never
reinitiated from scratch. When blocks are added to a period, the DW decomposition
reoptimizes from the previous state, whereas when blocks are removed from a period, a
dual problem formulation allows reoptimization. The efficiency of the algorithm depends
on the implementation of these reoptimization operations.
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