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Abstract: In the era of Industry 4.0, highly complex production equipment is becoming increasingly
integrated and intelligent, posing new challenges for data-driven process monitoring and fault
diagnosis. Technologies such as IIoT, CPS, and AI are seeing increasing use in modern industrial
smart manufacturing. Cloud computing and big data storage greatly facilitate the processing and
management of industrial information flow, which helps the development of real-time fault diagnosis
(RTFD) technology. This paper provides a comprehensive review of the latest RTFD technologies
in the field of industrial process monitoring and machine condition monitoring. The RTFD process
is introduced in detail, starting with the data acquisition process. The current RTFD methods are
divided into methods based on independent feature extraction, methods based on “end-to-end”
neural networks, and methods based on qualitative knowledge reasoning from a new perspective. In
addition, this paper discusses the challenges and potential trends of RTFD in future development to
provide a reference for researchers focusing on this field.

Keywords: industrial process monitoring; machine condition monitoring; AI; RTFD; industrial smart
manufacturing

1. Introduction

The design of process monitoring and fault diagnosis methods in industrial manufac-
turing has become a compelling research topic in recent years. With the rapid development
of automation technology, modern industrial manufacturing equipment and production
processes are becoming more and more complex. The new generation of networked infor-
mation technologies, data analytics, and predictive modeling provide technical support to
achieve more intelligent industrial manufacturing systems. The development of intelligence
potentially amplifies the scope and depth of the impact of failures. The damage caused
by a chain of abnormal reactions attached to a failure would be incalculable for modern
large industrial production processes or safety-critical systems. A key component in the
development of smart manufacturing is an effective fault diagnosis mechanism, which
can accurately identify, diagnose, isolate, and recover abnormal operating conditions [1,2].
Therefore, smarter fault detection, diagnosis, and prediction have received increasing
research attention.

Fault diagnosis techniques are mainly used in the following applications: condition
monitoring and predictive maintenance of mechanical production equipment [3–5]; process
monitoring [6] and production scheduling [7] in industrial manufacturing processes; and
abnormal behavior monitoring of intelligent terminals such as robots [8,9] and self-driving
cars [10,11]. In addition, real-time detection, identification, and diagnosis of faults in safety-
critical systems that need to ensure human safety, environmental health, and economic
security are particularly important [12]. This includes medical and surgical equipment,
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aviation and air traffic control, hazardous and toxic chemical processes, large-scale power
systems [13–19] and transmission lines [20–22].

The general classifications of fault diagnosis methods are model analysis-based meth-
ods, empirical knowledge-based methods, and data-driven methods [23]. The model-based
analysis approach requires the integration of complex mechanistic knowledge to build
accurate mathematical models, which is very difficult for modern industry. The empirical
knowledge-based approach is suitable for systems that are not easily modeled mecha-
nistically, but it relies on the long-term experience of engineers. As intelligent industrial
systems continue to evolve toward complexity and data, the systems are generating mas-
sive amounts of operational state data all the time. Data-driven approaches are becoming
more popular due to their ability to monitor system status more comprehensively and their
greater applicability [24,25]. Fault diagnosis can be essentially considered a pattern classifi-
cation problem. As a powerful pattern recognition technology, artificial intelligence (AI)
enables more intelligent fault handling and production scheduling capabilities in industrial
manufacturing, provides strong technical support for the development and application
of data-driven modeling methods, and is increasingly valued by academia and industry.
In industrial process monitoring and machine condition monitoring, common data-driven
modeling approaches include statistical analysis, signal processing, traditional machine
learning, and deep learning.

Data-driven modeling approaches have high requirements for the quality and distri-
bution of monitoring data and have more difficulty identifying underlying mechanistic
invariant relationships masked by dynamic data features [26]. Recently, fault diagnosis
techniques based on the fusion of quantitative data and qualitative knowledge driven
by the same have gained significant attention [27]. Fault diagnosis techniques based on
qualitative methods focus on the causality and correlation between system states, which
can compensate for the impact of data deficiencies on quantitative models, and with low
computational cost, it is easier to realize real-time online diagnosis [28].

In the current era of Industry 4.0, modern fault diagnosis techniques for intelligent
multi-domain industrial systems are facing the practical need for real time. One of the
keys to smart manufacturing is intelligent fault diagnosis based on big real-time data flow
analysis to support timely and accurate production decisions [29]. With the development
of networked technologies such as the Industrial Internet of Things (IIoT) [30,31] and cyber-
physical systems (CPS) [32–34], it has become easier to obtain large streams of operational
status data in real time [35,36]. For example, large-scale data processing technologies such
as cloud computing and digital twins [37] enable easy real-time condition monitoring,
online fault detection, diagnosis, and prediction of industrial processes and mechanical
equipment [38]. After adding the search term “real-time”, we found that 72% of the selected
papers contained substantial research on real-time fault diagnosis through real-time data
stream processing. This shows that real-time fault diagnosis (RTFD) based on big data
analysis has become the focus of researchers. Therefore, this paper focuses on providing a
review of the latest research methods in the field of RTFD.

The rest of this review is organized as follows. In Section 2, the collection process,
literature data statistics, and topic feature mining of the literature cited in this review are
described. Section 3 reviews current RTFD techniques, provides a detailed categorical
description of their processes and methods, and summarizes the characteristics and ap-
plications of these methods. Section 4 identifies the challenges facing the current RTFD
approach and discusses potential trends. Finally, the conclusions are revealed in Section 5.

2. Literature Collection

This work focuses on providing a comprehensive review study of RTFD techniques.
A systematic literature search was conducted in three citation databases—Web of Science,
IEEE Xplore, and Science Direct—which contain a large amount of technology-related
interdisciplinary research literature. The adopted method consists of three steps: literature
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search and screening; data performance statistics; topic feature mining. The detailed steps
are as follows.

2.1. Step 1: Literature Search and Screening

To capture international cutting-edge research results, this work uses the Web of
Science, IEEE Xplore, and Science Direct science citation databases to conduct a global
search of relevant literature. In order to find the right article within the topic, “real-time”
and “fault diagnosis” were used as keywords for the topic search. In addition, to keep up
with the trend of RTFD application in industrial smart manufacturing, some other search
terms were added, such as “fault prognostics”, “fault detection”, “artificially intelligent”,
and “smart manufacturing”.

More than 300 articles were retrieved via a precise search of subject matter such as
titles, abstracts, and keywords while avoiding the substitution of synonyms. Considering
the need for complete annual data indicators for statistical work, the time span chosen for
this work was 2010–2021; journal categories: “Articles”, “Journals”, and ”Review Articles”.
Relevant journals dealing with the field of engineering were used as refinement conditions
for a secondary search of the papers. The number of articles retained after the secondary
search was 224. This work was then filtered based on details such as abstracts to remove
a subset of articles that were not relevant to the focus of the review. Some articles that
were repeated in the three major citation databases were also filtered out. Ultimately,
a total of 110 papers were selected for the review and analysis of RTFD [1–22,24–111].
In this section, 110 papers are initially counted and analyzed and divided according to
application areas, among which 22 papers are related to “smart manufacturing and Internet
of Things”, 18 papers are related to “industrial process monitoring”, 41 papers are related
to “machinery condition monitoring”, and 29 papers are related to “power transmission
monitoring”, as shown in Figure 1.

Figure 1. Application area classification chart.

2.2. Step 2: Data Performance Statistics

A more detailed data review of the selected literature in Step 1 is necessary to highlight
the research fervor and attention given to RTFD. In this work, the chronological volume
trends of the selected literature were counted and the following results have been obtained.
Since the beginning of 2010, there has been a general trend of exponential increase in the
amount of international literature and institutional participation in fault diagnosis and
smart manufacturing. Specifically, among the searched literature, 4 studies were published
in 2010; this number had reached 34 by 2021, with a growth rate of 112.5% compared to
the previous year. It is worth mentioning that the average cumulative literature growth
rate during the 12-year period from 2010 to 2021 has reached as high as 35.72%, which
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shows that this research topic is popular, with a strong research focus, and the review study
is valuable.

2.3. Step 3: Topic Feature Mining

After sifting and refining the selected papers, this work further applied text mining
tools for mining analysis of topic features and clustering statistics of scientific research
relationships. ITGInsight software [112] is an advanced scientific text mining and visual
analysis tool, which is mainly used for visual analysis and mining of scientific texts and
Internet text data. The visualization mining methods used in this work mainly include
coupling relationship visualization, co-occurrence relationship visualization, and evolution
analysis visualization.

Before reviewing the vast amount of literature, it is necessary to categorize it according
to relevance to facilitate thematic clustering and targeted analysis. This work achieved
preliminary categorization by analyzing the coupling relationships among the literature.
The literature based on the same citation set has similar research problems, which is suitable
for a centralized review to obtain approximately consistent conclusions.

An article usually contains more than one topic to varying degrees, and keywords are
the authors’ high-level summaries of literature topics. Therefore, this work conducted a
co-occurrence analysis for keywords to get the number of papers weighted for each topic to
facilitate a more focused discussion. As shown in Figure 2, there are strong co-occurrence
relationships among “fault diagnosis”, “fault detection”, “machine learning”, “condition
monitoring”, “feature extraction”, “smart manufacturing”, and other keywords, which
verifies the preliminary statistical results in Step 1. Moreover, keywords such as “real-time
systems”, “convolutional neural network”, “predictive maintenance”, “cloud computing”,
and “big data” need to be further analyzed to explore more potential research directions
of RTFD.

Figure 2. Keywords co-occurrence network map.

In order to further highlight the development trend and direction of fault diagnosis,
this work also performed a visual evolution analysis of the regional sources and keywords
of the literature, respectively, in order to inspire the readers’ thinking, and the results
are shown in Figure 3. In terms of the country share, most of the papers selected in
this review were contributed by China and the United States, accounting for 40.9% and
16.3%, respectively. Figure 3a retains two countries with large contributions, showing
the proportion and trend of the number of literature issued by different countries in each
period. Figure 3b shows the hot topics and their weights in each period, which can provide
a useful reference for researchers to get a comprehensive overview of this field.
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Figure 3. Evolution analysis graphs. (a) Country evolution analysis graph. (b) Keywords evolution
analysis graph.

3. Real-Time Fault Diagnosis Process

In this section, RTFD techniques are further classified according to the different imple-
mentation methods, and their industrial applications are highlighted for review. In addition,
this section describes the RTFD process in detail, including data acquisition, preprocessing
processes such as denoising or dimensionality reduction if necessary, as well as selection
of the RTFD method and its working process. It also gives a flow chart of the method,
as shown in Figure 4.
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Figure 4. Real-time fault diagnosis process.
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3.1. Data Acquisition

The collected value of the sensor directly represents the state of the detected object, so
sensor data collection is essential for a fault diagnosis system. The data acquisition step
is usually performed by various types of sensors, wireless sensor networks [39], or other
information acquisition techniques. The types and manifestations of faults vary from
scenario to scenario, which leads to large variation between fault information collection
methods. In general, the commonly used monitoring signals in condition monitoring of
mechanical equipment are vibration, acoustic emission, displacement, velocity, temperature,
torque, and pressure [40–42], among which the vibration signal is the most commonly
used fault diagnosis signal due to its low cost and high reliability. In industrial process
monitoring, commonly monitored variables include pressure, temperature, flow, level,
humidity, and concentration [43,44].

For different fault diagnosis objects, the selection of sensors can be referred to as
follows. Fault information of critical rotating components such as bearings and gearboxes is
expressed in the form of strain, vibration, and acoustic signals, and vibration and acoustic
sensors can be used for data acquisition. In particular, the advantage of acoustic emission
sensing technology is its ability to effectively detect early defects in bearings and gears,
especially in low-speed operating conditions and low-frequency noise environments of
machines. Magnetoelectric speed sensors based on the electromagnetic induction principle
are commonly used to detect the rotational speed of rotating equipment. For fault informa-
tion of electrical equipment such as circuit breakers and distribution boxes, current and
voltage transformers can be used for data acquisition. In addition, since heat generation
is usually an early symptom of equipment failure, thermal image-based fault diagnosis
methods are widely used for electrical equipment, rotating machinery, etc., in industrial
fields. As data acquisition techniques become more and more intelligent, this subsection
further classifies data acquisition methods into invasive and non-invasive acquisition to
facilitate researchers’ choices.

3.1.1. Invasive Data Acquisition Methods

The so-called intrusive data acquisition method mainly refers to the use of wired
or contact sensors to accomplish the information acquisition task. Sensors that detect
vibration, acceleration, pressure, and electrical signals are mostly intrusive sensors. Many
bearing failures are usually manifested in high frequencies, so fault diagnosis methods
based on high sampling rate modeling are more effective. In the bearing failure study
by Shenfield et al. [45], experimental data were obtained from high-frequency vibration
signals collected by accelerometers at the drive and fan ends of the test equipment, sampled
at 48 kHz. The experimental dataset of Zhong et al. [46] was obtained from a vibration
sensor mounted on a turbine gearbox. To avoid missing details of the fault information,
the sampling frequency was set to 4096 Hz, which is twice as high as the meshing frequency.
To monitor the vibration and noise generated by linear switched reluctance actuators
(LSRA) during operation, Salvado et al. [47] developed a distributed vibration and noise
analysis and monitoring system based on an intelligent sensor (IS) module. The IS module
is connected to an accelerometer and placed on different mechanical parts of the LSRA
structure. Voltage and current signals are the most effective way to characterize the state
information of power systems such as microgrids [48]. In the study of Yılmaz et al. [49],
the power quality disturbance signals (PQDs) of PV microgrids were automatically detected
with the help of voltage signals only. Jiang et al. [50] developed a new data-driven proba-
bilistic fault location method for power distribution systems that jointly uses historical fault
location data and real-time or near real-time alarms from multiple sensors for probabilistic
fault location. Supervisory Control and Data Acquisition (SCADA) sensors in the feeder
circuits were used to detect fault currents. The digital relay and Intelligent Electric Devices
(IEDs) were used to obtain the estimated fault distance.

To facilitate the real-time processing of multi-source heterogeneous data collected by
multiple sensors, the researchers also introduced wireless sensor networks and data fusion
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technologies. Moradi et al. [51] proposed a multi-sensor data fusion method including
strain and vibration sensors for wind turbine set blade stress-level detection and crack
detection using microelectromechanical systems (MEMS) sensors. To address the problem
that the fault detection results of vibration signals from a single sensor may be unreliable
and unstable, Liu et al. [52] proposed a correlated vector machine intelligent multi-sensor
data fusion method based on an ant colony optimization algorithm and successfully used
the collected eight channels of vibration data for gearbox fault detection. Cheng et al. [53]
applied a wireless sensor network constructed using LoRa wireless communication technol-
ogy to motor condition monitoring and achieved real-time acquisition of voltage, current,
speed, position, and other status information of motors in a cluster system. Chao et al. [54]
collected power generation data of PV module arrays under different solar radiation levels,
module temperature, and fault conditions through a ZigBee wireless sensor network and
developed a portable PV power system fault diagnostic instrument. The ZigBee wire-
less sensor network transmitter improves real-time fault diagnosis and allows remote
fault diagnosis.

3.1.2. Non-Invasive Data Acquisition Methods

Intrusive acquisition methods usually affect the balance of machine motion to varying
degrees. Non-intrusive data acquisition techniques have emerged to avoid interference
with equipment or system status and to obtain the most realistic status information. In IIoT
and CPS environments, real-time data acquisition can be performed at different spatial
scales and is widely used in smart grids, medical monitoring, and industrial process control
systems. Gong et al. [55] broke the limitation of vibration sensors to detect early faults in
rotating machinery at ultrasonic frequencies (20–60 kHz) via acoustic signal acquisition
through a non-contact acoustic sensor. In a study by Gupta et al. [56] on real-time moni-
toring of pharmaceutical powder processing, the near-infrared (NIR) spectroscopy sensor
Turbido OFS-12S-120H was used to measure ribbon density and moisture content. They are
also conducting some studies on non-invasive sensing techniques based on microwaves and
X-rays. In addition to specific sensors, researchers have devised indirect, non-invasive data
acquisition methods. Irfan et al. [57] proposed a non-invasive instantaneous power analysis
(IPA) method for condition monitoring of asynchronous motors. They considered that the
motor mechanical vibration is related to the component of the stator current at the specific
characteristic frequencies. The modulation of the air gap by mechanical vibrations causes
the motor current to increase with mechanical vibrations. The effect of this modulation is
manifested in the stator current through the stator inductance of the motor. IPA is used as
an indirect and non-invasive method to obtain frequency modulation characteristics in the
current and voltage spectrum of a motor and thus detect motor mechanical vibration data
without the need for special sensors.

In addition, relying on the development of machine vision-related technologies, non-
invasive detection of specific target faults can also be achieved by processing image in-
formation streams in real time [58]. Lim et al. [59] proposed a thermal-image-based fault
diagnosis method by acquiring thermal images of rotating machinery using an infrared
thermography camera while acquiring the vibration signal of the rotating machinery and
considering the thermography signature of CIELab space as a pattern recognition paradigm.
This method shows a better performance than vibration analysis in diagnosing early prob-
lems of stator windings. Sun et al. [60] proposed a vision-based approach to fault diagnosis
by extracting image datasets from videos to represent the normal and fault behavior of a
vibrating mechanical system. A Phantom Miro C110 high-speed camera with a resolution
of 1280 × 800 and a frame rate of 500 fps in grayscale mode was used to collect images
about the state of the machine and use them as input to a deep learning model.

3.2. RTFD Methods

According to the different fault diagnosis bases such as equipment signals, process
variables, and semantic data, and the need for independent extraction of figurative feature
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information, this work classifies current RTFD methods into three categories: methods
based on independent feature extraction, methods based on “end-to-end” neural networks,
and methods based on qualitative knowledge reasoning. A detailed description of these
methods and their research cases will be shown in the following subsections.

3.2.1. Methods Based on Independent Feature Extraction

The idea of the methods based on independent feature extraction is to extract feature
information of practical significance from the monitoring data and to establish the relation-
ship between features and states for fault diagnosis through the classification of features.
Extracting and classifying the characteristic information characterizing normal or faulty
states, respectively, is the main step of the method. When there is a need to reduce noise
or computational complexity, dimensionality reduction techniques such as PCA, LDA,
and Relief can be used to compress features and eliminate redundant information [61].
The reduced-dimensional feature components help to build higher-performance models.
Currently, the application of independent feature extraction-based methods in fault di-
agnosis is very widespread, especially for vibration and acoustic signals of mechanical
equipment [62]. A detailed description of the two main steps in this method—feature
extraction and feature classification—is given in Figure 5.

Methods based on independent feature extraction

Model the classifier between the extracted features 

and the fault pattern

Extract the time-frequency domain or statistical value 

features with practical significance

Step1：
Feature extraction

Step2：
Feature classification

Machine learning algorithms
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CNN / DBN / WearNet

Applications: [91, 92, 113, 114]

Figure 5. Methods based on independent feature extraction.

Step 1: Feature Extraction

Feature extraction is the process of extracting identifiable non-redundant feature
information that characterizes various states from the raw data. The extracted features
have obvious physical significance or statistical significance. As the most critical step of
fault diagnosis, feature extraction is the basis for further detection of fault occurrence and
identification of fault types, which directly affects the accuracy of diagnosis results [63].
The methods of feature extraction vary for different fault diagnosis application scenarios.
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In machine condition monitoring based on signal data, features are usually extracted
using signal analysis methods, which can be in the time domain, frequency domain, or a
combination of both [64]. In plant-wide process monitoring based on process variables,
multivariate statistical analysis is the standard method for extracting characteristics of
statistical values, such as principal component analysis (PCA), partial least squares (PLS),
and independent component analysis (ICA) [65].

(1) Feature extraction of machine state data via signal analysis

For mechanical equipment, signal analysis is the most effective feature extraction
technique. It can extract proper and de-noised fault features of the original signal and clearly
show the failure pattern on time, frequency, or time-frequency domains. The corresponding
characteristic indexes mainly include amplitude, kurtosis, power spectral density, etc.
Typical methods are spectral analysis, Fourier transforms [66], wavelet transform [67], S-
transform, empirical modal decomposition [68], and Hilbert–Huang transform (HHT). In a
study by Chung et al. [69], Blockchain Network Based Topic Mining Process for Cognitive
Manufacturing was investigated. They used a short-term Fourier transform algorithm
to perform signal processing on the information collected by various sensors to analyze
the state information of equipment and human motion. Zhu et al. [70] extracted features
based on the energy of each frequency component in the sensor signal. They used two
methods—wavelet packet decomposition based on HAAR wavelet basis and empirical
mode decomposition—to decompose the signal waveform step by step to generate a
series of data sequences with different feature scales as the intrinsic mode function and
then extracted the variance contribution and modal energy value of each intrinsic mode
function as the feature vector for pattern recognition. Zhang et al. [71] used the blower
as a monitoring object and preprocessed the signal collected by the sensor using filtering,
denoising, and compression methods. The standard deviation of wavelet coefficients was
extracted from the processed equipment history signal as features. Then, the new principal
features from the original features are extracted using PCA as input to train the neural
network. Gashteroodkhani et al. [72] proposed intelligent fault detection and classification
method for multi-distributed power microgrids. The method uses a time–time transform to
extract energy, standard deviation, and median absolute deviation from TT-matrix diagonal
and TT-contours of current samples to calculate fault detection and classification features.
Tonelli-Neto et al. [73] applied multi-resolution analysis to the discrete wavelet transform
for signal feature extraction, analyzing feeder current signals at different resolution levels
using multiple filters. Liu et al. [52] used ensemble empirical mode decomposition (EEMD)
to preprocess the signal to eliminate the effects of noise and other uncorrelated signals
in order to effectively extract the fault features from the non-linear, non-smooth raw
vibration signal. There are 27 eigenparameters selected in the eigenmode function of each
decomposition. Fourteen time-domain statistical features and thirteen frequency-domain
statistical features were extracted separately. To further eliminate feature redundancy
and improve classification accuracy, the distance evaluation technique is employed to
select dominant features as input of the relevance vector machine based on an ant colony
optimization algorithm. Zhong et al. [46] proposed a data-driven real-time fault diagnosis
method for wind turbine gearbox systems. The method integrates EEMD and HHT for
fault feature extraction. They used EEMD to eliminate the mode mixing problem and
proposed a combination of energy mode calculation and time-domain statistical analysis to
extract fault features and reduce the feature size to improve computational efficiency. Then,
the dimension vector was constructed by the intrinsic mode function energy, time-domain
statistical features, and the maximum HHT edge spectrum.

(2) Feature extraction of plant-wide process data by multivariate statistical analysis

For plant-wide industrial processes containing a large amount of variable data, the main
method of feature extraction is to use multivariate statistical analysis methods such as
extended PCA and linear discriminant analysis to extract statistical value features using
statistical knowledge [74–77]. In the work of Gupta et al. [56], a three-stage dual orthogonal
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wavelet was chosen to denoise the data, and statistical quantitative feature extraction was
performed using PCA, combined with Hotelling T2 and Q statistics for fault detection
and identification. Xia et al. [78] proposed a real-time fault detection and process control
method based on multi-channel sensor data fusion. The method uses uncorrelated multilin-
ear discriminant analysis (UMLDA) to extract features from multi-channel sensor data. It
combines the extracted features with multivariate control charts to achieve real-time fault
detection and process control for multi-process forging processes. UMLDA is a supervised
multilinear feature extractor that directly processes multidimensional data. It considers
class information when extracting features and extracts unrelated discriminative features
through tensor–vector projection. Kim et al. [79] proposed a fault detection method capable
of diagnosing abnormalities in equipment components in real time. First, data normal-
ization is performed on the collected normal and abnormal state vibration data. Then
the vibration signal is segmented using the Hamming window function, and the signal is
denoised using the inverse spectral transform to enhance the intrinsic characteristics of the
vibration signal. After preprocessing the data, ten statistical condition indicators, such as
root mean squared, average, effective value, and peak to peak, are extracted and used to
train the feature classification model.

Step 2: Feature Classification

Mapping the recognition results of features to process variables or machine states
is the feature classification process. The main step of the process is to build an effective
classifier model based on the available feature information and classify the extracted
features according to the failure modes to obtain diagnostic results. Fault diagnosis can be
regarded as a pattern classification problem in essence. As a powerful pattern recognition
tool, the application of AI in fault diagnosis has attracted much attention from many
researchers. There are a series of traditional machine learning classification algorithms, such
as k-nearest neighbor (k-NN), artificial neural networks (ANN), support vector machines
(SVM), and decision trees [80–82]. In recent years, deep learning has seen increasing use in
fault diagnosis tasks with better real-time and generalization capabilities [83–86].

(1) Machine learning classification algorithms

ANN can be viewed as a learning machine composed of a large number of sim-
ple computational units (neuron nodes) that are interconnected. The excitation function,
connection weights, and network structure of the network can be adapted to the actual
problem or combined with other algorithms to make the network achieve a specific function.
Zhang et al. [71] proposed a new approach to rotating machinery fault diagnosis combining
wavelet transform, PCA, and ANN. The main fault features extracted from real-time signals
are used as inputs for ANN training. The trained neural network can predict the status
and degradation of components and machines and make a diagnosis of components and
machines with faults. Tonelli-Neto et al. [73] normalized the energy function vector of cur-
rent information as a feature indicator to input a multilayer fuzzy artificial neural network
(FANN) to identify the state information of distribution feeders. The FANN consists of a
pair of adaptive resonance theory modules and associative memory modules that finally
output diagnostic information with the help of a voting scheme. Zhong et al. [46] proposed
a pairwise-coupled sparse Bayesian extreme learning machine (PC-SBELM) for fast fault
identification of a real-time gearbox monitoring system. The classifier uses the Sparse
Bayesian learning (SBL) algorithm to overcome the drawbacks in the extreme learning
machine based on feedforward neural networks. It can generate smaller classification
models and identify single and simultaneous faults more efficiently and accurately.

General-purpose supervised machine learning algorithms such as SVM are powerful
tools for feature classification and statistical analysis. SVMs have inner product kernels
and are able to classify linearly indistinguishable cases by mapping to higher dimensions.
Abbas et al. [87] proposed an SVM classifier-based sensor fault detection method using a
dataset containing 42 normal samples and 25 faulty samples for training. Wang et al. [88]
introduced a hybrid fault diagnosis method that uses SVM and an improved particle
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swarm optimization (PSO) algorithm. The radial basis function (RBF) was used to build the
SVM model. For the problem of selecting hyperparameters such as kernel function width
and penalty factor, they proposed an improved PSO to ensure the classification efficiency
and accuracy of SVM. In addition, Dou et al. [89] also introduced the Particle Swarm
Optimization optimized Support Vector Machine (PSO-SVM) algorithm. Chang et al. [90]
developed a SVM-based automatic diagnostic procedure to characterize the performance of
mechanical molds. They use sensors to measure the contact forces during the stamping of
steel parts. SVM extracts feature from the obtained waveforms and spectra for constructing
hyperplanes to classify the state of the punch or die as sharp or blunt to evaluate the
mechanical properties of the slotting machine.

Typical binary classification methods such as SVM and random forest require labeled
normal and fault data for training diagnostic classification models. However, the reality
is that the amount of industrial fault data that actually exists is very small. In contrast,
the use of a class of classification methods based on distance metrics, which classify samples
based on their similarity metrics, can be used without the limitation of the amount of fault
data. For example, MD can construct Mahalanobis space represented by Mahalanobis
Distance (MD), using only normal signal data, and then determine whether the new
signal sample belongs to Mahalanobis space. Therefore, Kim et al. [79] constructed two
MD-based one-class classification models, the Mahalanobis distance classifier (MDC) and
the Mahalanobis–Taguchi System (MTS), to detect anomalous states and evaluate the
extracted data.

In addition, Zhu et al. [70] extracted features from the output data collected by the sensors
under various failure modes and then input them into a decision tree for training to build
a fault classification recognition model. This decision-tree model determines the fault type
based on the variance contribution of each data series under different fault performances.

(2) Deep learning classification networks

For the purpose of effective classification of more complex features, some deep network
models are also used in combination with signal analysis techniques to provide fault
diagnosis methods based on independent feature extraction. Lee et al. [91] developed a
CWT-CNN model to detect the mechanical fault in variable speed settings. They collected
machine state data at different rotational speeds using a triaxial accelerometer, extracted
time-frequency features through continuous wavelet transform with Morlet wavelets,
and applied them to a convolutional neural network (CNN) model. The model takes
the final output of all filters in the convolutional layer as the feature map, reduces the
input dimensionality through segmental sampling in the pooling layer, and outputs the
detection results through the fully connected layer. To achieve real-time and accurate fault
diagnosis, Wang et al. [92] proposed an integrated diagnosis method based on impulse
signals, deep confidence networks (DBN), and feature unification. For gearbox faults
that often excite frequency resonance at a certain frequency, they used an optimized
Morlet wavelet transform, cliff exponent, and adaptive soft threshold synthesis method to
extract the impulse components from the original signal. Then, 17 time-domain features,
4 spectral frequency-domain features, and 4 envelope spectral frequency-domain features
were extracted from the original signal and the pulse signal, respectively. The sensitivity
of features to different faults was studied using probability density functions, and DBN
learned these differences to identify fault types based on the input features.

As the most popular classification network, CNN architecture is widely used in
deep learning-based fault diagnosis research through visual image feature extraction.
Xia et al. [113] applied deep learning to visual monitoring of wire-arc additive manufactur-
ing to diagnose different process abnormalities, including humping, spattering and robot
suspension. They used CNN to learn the features of melt pool images and evaluated the
classification performance of several representative CNN architectures, and obtained good
classification results. Li et al. [114] developed a lightweight CNN structure called WearNet
to realize surface scratch detection of metal-forming processes. The network can gradually
extract and learn category features with good label recognition capability. Their research
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ensures excellent classification accuracy while simplifying the network structure as much
as possible, with advantages in response speed.
3.2.2. Methods Based on “End-to-End” Neural Networks

With the dramatic increase in the amount of data in industrial systems, traditional
machine learning methods are now struggling to meet the requirements. With their pow-
erful feature learning and pattern recognition capabilities, neural networks can perform
the entire abstract feature learning and classification process in an “end-to-end” manner
without needing to perform independent feature extraction. The principle of “end-to-end”
neural network-based fault diagnosis is as follows: first, the network automatically learns
deep abstract features of a large amount of input data layer by layer, then the network is
trained according to the mapping of feature attributes to fault patterns. Finally, the trained
network is used for fault diagnosis of new monitoring data. Some deep hierarchical net-
works are even capable of taking source data directly as input and monitoring it in real
time. This subsection classifies this class of methods into single-type network models and
multi-class network fusion models based on the type of network, as shown in Figure 6.
In addition, researchers can further enhance the fault diagnosis performance of the model
by introducing optimization algorithms to optimize the network structure and parameters.

Real-time processing of source data directly, 

automatic learning of fault features for classification and identification

Methods based on "end-to-end" neural networks

Introduction of optimization algorithms 
to optimize network parameters

Networks:

SAE+PSO / CNN+PSO / LCNN+de-

composed Hierarchical Search Space / 

TSFFCNN+PSO

Applications: [97, 98, 99, 101]

Introduction of optimization algorithms 
to optimize network parameters

Networks:

SAE+PSO / CNN+PSO / LCNN+de-
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Applications: [97, 98, 99, 101]

Multi-type network fusion model
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Figure 6. Methods based on “end-to-end” neural networks.

(1) Single-type network model

Some of the more representative deep neural networks in fault diagnosis are CNN,
DBN, stacked autoencoder network, and recurrent neural network (RNN) [93,94].
Eren et al. [95] used a compact adaptive 1D CNN classifier for real-time bearing fault
diagnosis. It can directly take the source data as input and efficiently learn optimal features
with the proper training. In the supervised training phase, CNN’s convolutional filter is
optimized by back-propagating the classification error, and the model can automatically
learn highly discriminative features from the input data. The overall fault classification
accuracy of this method for the IMS and CWRU bearing datasets was 93.9% and 93.2%,
respectively. Xu et al. [96] proposed a two-phase digital-twin-assisted fault diagnosis
(DFDD) method using deep transfer learning and constructed a deep neural network-based
diagnosis model. Without a priori knowledge, representative features were extracted from
a large amount of unlabeled simulation data, and PCA was used to reduce the features to
three dimensions. Tests showed that the model had good feature clustering and was able
to separate most features for different health conditions. Among the many neural network
parameter optimization algorithms, PSO is one of the most commonly used algorithms.

Zhang et al. [97] applied a spectrometer to capture high-dimensional optical signals
and feed them into a stacked auto-encoder-based data-driven framework for real-time de-
tection of high-power disc laser welding defects. They used PSO to optimize the proposed
data-driven framework to enhance its ability to extract representative features from the
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original high-dimensional signal by obtaining globally optimal parameters, such as kernel
size, weight coefficients of sparse terms, and weight decay coefficients. To address the
problem of the poor real-time performance of CNN in directly processing one-dimensional
time series signals of aero engines for fault diagnosis, Li et al. [98] combined improved
pattern gradient spectral entropy (IPGSE) and CNN to propose an intelligent fault diag-
nosis scheme for aero engine control system sensors. In order to solve the problem of
insufficient adaptation of the algorithm, the PGSE empirical selection parameters were
improved by using PSO to adaptively optimize the scale factor λ so that the obtained spec-
tral entropy map can better match the classification made by the CNN model. In addition,
Wang et al. [99] proposed a lightweight convolutional neural network (LCNN) for the
intelligent diagnosis of bearing faults. They used deep separable convolution to construct
the LCNN structure via inverse residual structure and linear bottleneck layer operation.
Then, a novel decomposed Hierarchical Search Space decomposed the model into different
blocks and searched each block for operations and block–block connectivity relationships
to automatically search for the optimal LCNN for bearing fault diagnosis in the IIoT envi-
ronment. The model can meet the requirements of a small number of parameters, small
storage space, and high accuracy to a large extent.

(2) Multi-type network fusion model

Currently, some studies have used models with a multi-class neural network fusion to
compensate for eigenmodes, capture dynamic features, or achieve further fusion of deep
features. Such models are able to describe fault features more accurately and improve
fault diagnosis accuracy while reducing computational costs. Liu et al. [100] proposed a
dynamic deep learning algorithm based on incremental compensation (ICDDL) applied
to fault diagnosis and prediction of bearing operating conditions. The method used a
denoising autoencoder (DAE) to extract the characteristic patterns of the newly generated
data, and then the weights of each pattern were dynamically adjusted according to the
difference in similarity between the new patterns and the historical failure patterns. Finally,
the SVM algorithm was used to supervise the classification of weighted patterns, and the
BP algorithm was used to fine-tune the whole network model according to the error of
the model. The method provides dynamic compensation based on the importance of each
eigenmode over time and has more accurate fault diagnosis accuracy. The proposed ICDDL
method can accomplish both real-time extraction of bearing equipment status features and
reliable classification of failure modes.

Shenfield et al. [45] combined elements of CNN with an RNN path to propose a novel
dual-path recurrent neural network with a wide first kernel and deep convolutional neural
network (RNN-WDCNN) pathway for diagnosing rolling bearing faults in electromechani-
cal drive systems. The model works directly on the raw temporal data, avoiding the need
for manual feature extraction or noise removal, and exhibits good robustness with respect
to both environmental noise and changes in operating conditions. In the dual-path archi-
tecture of the model, the deep convolutional path consists of five convolutional stages for
feature extraction and a dimensionality reduction stage for feature compression. The RNN
block is mainly used to capture dynamic temporal features spanning many time steps and
feed them into a convolutional path to learn and improve the final classification results.
Finally, the deep convolutional paths are fed to the output classification layer together with
the RNN paths, and the probability distributions of the bearing fault classes are output
by softmax. Xue et al. [101] proposed a two-stream feature fusion convolutional neural
network (TSFFCNN) to achieve real-time diagnosis of bearing faults, using 1D-CNN and
2D-CNN to construct a two-channel network model. Two parallel convolutional and pool-
ing layers are used to extract the 1D and 2D features of the normalized and reconstructed
signals. The feature fusion strategy is used to fuse the two feature streams smoothly. Finally,
the classification is performed using (PSO-SVM). The model is able to identify failure modes
more accurately from vibration signals in a shorter iteration time.

Yang et al. [115] proposed a fault detection method based on a teacher–student un-
certainty autoencoder (TSAUAE) to monitor process-relevant and quality-relevant faults.
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In this method, the student network extracts representational features and the teacher
network detects faults. Representation evaluation block (REB) is proposed to evaluate and
reduce the feature difference between the teacher and student networks. Wang et al. [102]
proposed a high real-time Optimal Transport-Capsule Network (OT-Caps) fault diagnosis
model. The model expands the one-dimensional neuron in the traditional CNN into the
multidimensional neuron according to the characteristics of the capsule network, which
enhances the data mining capability and fault feature storage capability of the deep net-
work. Based on the traditional capsule network algorithm, they introduce an auxiliary loss
to improve the network architecture during the offline training process and introduce the
optimal transmission theory into the auxiliary loss to accurately describe the error distribu-
tion of fault characteristics. By improving the network structure, this capsule network can
directly process one-dimensional raw vibration signals, reducing the complexity of data
processing. The model ensures high accuracy, early prediction, and relocatability of fault
diagnosis while reducing the computational cost of multidimensional neuronal networks.

3.2.3. Methods Based on Qualitative Knowledge Reasoning

Recently, fuzzy logic, case-based reasoning (CBR), and hybrid methods based on
data and knowledge have been popular techniques used for fault diagnosis and fault
prognosis [103,104]. Methods based on qualitative knowledge reasoning usually use a
combination of qualitative and quantitative analysis, establish inference rules with product
knowledge, and use data as an auxiliary basis to achieve real-time reasoning about fault
information. The brief process of this kind of method is as follows: first, the relevant
representation of failure modes is made using a priori qualitative knowledge or data. Then,
the fault information matching model and inference rules are established to perform real-
time fault inference on the system state. As shown in Figure 7, the methods discussed
in this subsection mainly include causal interpretation, logical inference, fuzzy rules,
and Bayesian networks.

Fault inference models based on prior knowledge, state information, 

semantic data, logical relationships, or variable causality

Methods based on qualitative knowledge reasoning

Other related approaches

Approaches:

hierarchical BN / Optimal observer-

based

Applications: [110, 111, 118]

Causal explanation
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CGM / CLA+FR / SDG+TA / 

BG+empirical residual evaluation

Applications: [26, 105, 106, 107]

Causal explanation

Methods:
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Applications: [26, 105, 106, 107]

Logic or knowledge reasoning
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FIS+Dempster–Shafer evidence theory / 

knowledge reasoning and semantic data / 
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Applications: [73, 108, 109, 116, 117]
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Applications: [73, 108, 109, 116, 117]

Figure 7. Methods based on qualitative knowledge reasoning.

(1) Causal explanation

For fault diagnosis tasks of control systems containing multiple complex operating
units, qualitative modeling based on cause–effect interpretation is a practical approach
when there are not enough direct data or failure mode models for quantitative modeling.
In a study by Rathinasabapathy et al. [105], a qualitative modeling approach for process
diagnosis called causal link assessment (CLA) was developed. CLA uses a plant model
structure called Functional Representation (FR) to generate all causally linked device failure
modes matching a plant snapshot at a certain time step by matching sensor characteristics
to device states in a progressive process performed device by device. The CLA approach
can easily solve multiple simultaneous faults and provide helpful diagnostic clues for those
not documented in the model. However, it will be limited by the prior knowledge of the FR
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model. Hamdan et al. [106] developed a real-time exceptional events management (EEM)
framework integrating signed directed graph (SDG) and trend analysis (TA) methods for
fault diagnosis. First, the low-resolution search was performed based on the initial response
tables (IRT) generated from the SDG representation of the causal relationships of variables.
The SDG and associated IRT for known faults were generated based on a priori knowledge
of the process. They used a moving window to calculate the average process variable
value and implemented fault detection by testing the deviation of the variable from the
tolerance range or alarm limits. Once an anomaly was detected, the motion window is
frozen and diagnostic logic was initiated to determine possible faults. They then used
a higher-resolution but more time-consuming diagnostic method based on qualitative
trend comparisons, comparing the deviation trends of the abnormal variables observed
during the process with the fault trends in the information base to derive the most likely
faults. The framework considers the simultaneous occurrence of different abnormal events
and develops a multi-fault identification protocol that detects, diagnoses, and provides
mitigation strategies for multiple simultaneous abnormal events within 10 s.

Yang et al. [26] proposed a process monitoring method based on Causal graphical
modeling (CGM) and a multiple model framework for detecting blockages in a steel con-
tinuous casting process. The proposed method can suppress the effects of unobservable
disturbances and improve the robustness of blockage detection by using a smart manufac-
turing platform, and the large amount of process data collected by CGM developed based
on field knowledge. In a study by Niu et al. [107], a new scheme for fault characterization
modeling with an integrated Bond graph (BG) was proposed in order to achieve robust
real-time monitoring and diagnosis of dynamic systems in multiple energy domains, which
can track the propagation and transformation of energy effects in the model through causal
paths. In addition, a complete fault detection and isolation framework were established
by combining the novel BG model, residual generation empirical estimation based on
multivariate state estimation technique, and threshold monitoring based on a sequential
probability ratio test.

(2) Logic or knowledge reasoning

Intelligent fault diagnosis methods based on logic or knowledge inference can reveal
the internal logic of data and help address the growing need for real-time online processing
of industrial data. Wang et al. [108] proposed a fault diagnosis scheme with knowledge
inference and semantic data integration to meet real-time data processing requirements.
They define a smart factory as a cloud-assisted self-organizing manufacturing system.
The inference engine performs fault diagnosis and statistical analysis using real-time collec-
tion and processing of real-time semantic data from the production process. Specifically,
the researchers used the unified modeling language (UML) and the JUDE community to
build information models of manufacturing systems. Based on the above, Protégé software
was used to build the ontology model, and UaModeler was used to build the OPC UA
model. The OPC UA server provides semantic data to the cloud, and the ontology model
combined with it is cyclically processed by Apache Jena. Semantic web rule language was
used to describe fault detection and statistical analysis rules. Chen et al. [109] proposed an
intelligent fault diagnosis method for power electronic converters based on generalized
logic according to the correlation between faults and basic measurements. The method
successfully diagnoses different faults online using combinatorial logic and fuzzy logic.
In their study, combinatorial logic was shown to diagnose specific faults and perform
the system recovery using redundant or standby components. Fuzzy logic was used to
diagnose multiple faults, providing faster fault diagnosis times.

Fault detection and classification using a fuzzy rule-based approach has the following
main features: low computational effort, high robustness, reliability, and efficiency. It
also has the potential to merge new failures that are different from the existing model.
Tonelli-Neto et al. [73] designed a fuzzy inference system (FIS) to provide an output scalar
to the feeder current vector through the evolution of fuzzy rules. Then, the FIS fuzzy set
verified its affiliation to identify the operating state of the feeder. They used the Dempster–
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Shafer evidence theory based on probabilistic reasoning and evidence combination to
aggregate state data into a probability value and a reliability value, thereby simplifying
the diagnostic process and minimizing the stress of manual decision-making. In addition,
as an important subset of qualitative knowledge reasoning, fuzzy logic methods are also
widely used for fault prediction modeling due to their good representation and evaluation
abilities. Li et al. [116] combined fuzzy logic modeling with the improved quantum-
behaved particle swarm optimization algorithm to predict the evolution of sheet metal
surface scratching. They used ball-on-disk experiments to evaluate the contribution of
specific fuzzy variables to surface damage. In order to improve the prediction accuracy, they
refined the fuzzy model by optimizing the membership functions of the fuzzy variables.
Padhi et al. [117] proposed a fuzzy inference system combined with Taguchi’s philosophy
to optimize the fused deposition modeling (FDM) process parameters and further proposed
a prediction model to evaluate the dimensional accuracy of FDM-fabricated parts under
various operating conditions. They used fuzzy logic decision-making to optimize multiple
performance characteristics into a single performance characteristic index.

(3) Other related approaches

In general, the causal relationship between the failure and the cause of a complex
system is not always certain. Bayesian networks provide an intuitive causal framework
capable of handling uncertainty inference problems with multiple sources of data and
knowledge. Chen et al. [110] constructed a hierarchical Bayesian network based on failure
mode and impact analysis and system composition, aiming to reduce uncertainty and im-
prove troubleshooting efficiency in the diagnosis of complex aircraft systems by considering
design knowledge and real-time monitoring information. The network model uses failure
mode and effect analysis in security analysis as a priori knowledge and real-time moni-
toring events as observed information to show the cause–effect relationship of complex
systems in a cause–mode–effect manner. In addition, T-S fuzzy dynamic modeling tech-
niques are becoming popular in the study of non-linear industrial processes. Li et al. [118]
proposed optimal observer-based fault detection and estimation approaches for T-S fuzzy
systems. They addressed the fault detection issue of fuzzy systems in the time-varying
framework for the first time and investigated the fault estimation scheme from the least
squares optimization viewpoint.

Moreover, many critical problems which play a key role in real industrial fault de-
tection and diagnosis, such as the imbalance or loss fault data, as well as non-Gaussian
or heavy tailed distributional data. Wang et al. [111] proposed a bilayer convolutional
transfer learning neural network to detect the agglomeration fault of an actual polyethylene
process when there are far fewer faulty data than normal data. Considering the strong
non-stationarity of time series from a real system, several common statistical indices includ-
ing autocorrelation function, Hurst exponent, probability density distribution, and Alpha
stable distribution were analyzed to explore the hidden fractional feature, which helped to
improve the generalization ability of the neural network model. The original acquisition
data directly from the industrial sensors should be preprocessed and depicted to find the
statistical characteristics before the data learning for any purpose.

4. Discussion, Challenges, and Future Trends

The details above show that RTFD has been widely used in all aspects of industrial
smart manufacturing. The previous section reviewed the research results of RTFD in
various application scenarios in detail. This section further discusses some of the research
challenges and extensions of this topic in combination with the topic feature mining in
Section 2.3. The following content hopes to inspire readers to locate potential trends in the
future development of this topic.

4.1. Data-Acquisition-Related Issues

As the primary medium for data acquisition, the sensor determines the validity of
the collected data from the root. If the acquisition of diagnostic information is inaccurate,
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it will inevitably directly affect the correctness of data processing and lose the diagnostic
value of the model. In addition, if the diagnostic data are not adequately collected, this
will inevitably lead to a waste of resources and hinder the improvement of the model
diagnostic performance to a certain extent. Therefore, the following two issues require
adequate research attention.

(1) How to ensure the accuracy of the data collected by the sensor. Unreliable sensors or
unsynchronized sampling rates can lead to unexpected loss of observations or differences
in data dimensionality, which prevents accurate condition monitoring and affects the
occurrence of diagnostic decisions. Only a little research has been carried out on the status
detection and self-diagnosis of the sensors themselves.

(2) How to more fully capture machine status information. For the fault diagnosis
of mechanical equipment, the selection of the type of observation signal is also crucial
to the diagnosis results. In the course of the article review, it was found that for the
same vibration sensor measurement data applied to different signal analysis methods,
the diagnostic results vary significantly. The sensor’s performance in different frequency
ranges may also be a major factor, excluding the influence of different methods. In the future,
the relative characteristics of different types of sensors in different frequency bands can be
advantageous,signaling different frequency bands for targeted, integrated processing.

4.2. Big Data Application Issues

(1) Data optimization processing issues

As a critical premise of data-driven work, data preprocessing has been challenging
fault diagnosis. In the current RTFD effort, the volume of data collected is growing rapidly,
along with an increase in low-quality data that need more accuracy and completion. Effec-
tive data cleaning is essential to improve the source data quality, which will directly affect
the performance of the fault-handling model. Targeting the removal of redundant infor-
mation, compressing data, and improving the validity of sample data will be a long-term
challenge for the field. In addition, effective data fusion techniques must be developed
to overcome the differences in sampling rates, periods, and weights and to fuse heteroge-
neous data from multiple sources collected by various sensors. Data fusion can provide
comprehensive global fault characteristics for fault diagnosis and obtain more accurate
diagnosis results.

(2) Building a big data ecosystem

With the further development of intelligent manufacturing, the amount of data to
be faced in the industrial field is enormous. Enhancing the adequate management of
monitoring of the data stream will greatly improve the real-time fault diagnosis. The archi-
tecture of cloud computing is being mentioned more often. With the assistance of cloud
computing technology, data flow management technologies such as data lake and database
are introduced to establish a big data ecosystem for online processing, which is of great
help to both real-time fault diagnosis and fault prognosis. Online data reflect not only the
latest changes in the system’s current state but also the operational process’s cumulative
correlation. In addition, data mapping technologies such as the digital twin can be intro-
duced to improve the efficiency and real time of FD by using dual diagnosis in virtual and
physical space. However, the data security issues brought about simultaneously cannot be
ignored. Transformation protocols and data encryption methods can be utilized to address
data and network security issues.

4.3. Machine Fault Diagnosis for Variable Operating Conditions

In practical applications, for the fault diagnosis of mechanical equipment, especially
rotating machinery, it is necessary to develop a diagnostic model applicable to variable
machine running conditions. Variable machine operating conditions mainly refer to differ-
ent motor loads, bearing speeds, and ambient noise. For some static feature classification
methods, their diagnosis performance relies heavily on the extracted feature parameters, is
limited to a small data set, and is only applicable to specific equipment operating conditions.
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In other words, a fault model built with features extracted under one operating condition
does not necessarily achieve the same ideal diagnostic effect under other different operating
conditions. Many RTFD methods in the literature are not applicable to different operating
conditions, which raises new requirements for future research.

4.4. Hybrid Fault Diagnosis of Plant-Wide Industrial Systems

Industrial systems will inevitably evolve towards complex systems with high-dimens-
ional, strongly non-linear, strongly coupled, and large time delays, for which it is difficult
to build an accurate model. How to manage the process data of large and complex systems
and provide troubleshooting for reliable operation of complex systems accordingly is
a crucial issue. The complexity of the actual system makes it impossible to rely on a
single troubleshooting method to achieve the desired maintenance results. Therefore, it
is a highly relevant research direction to consider fusing the different characteristics of
different algorithms and developing a diagnosis method for hybrid faults applicable to
complex systems.

On the other hand, the future diagnosis of hybrid faults requires data and knowledge
fusion-driven decision making. With the increasing complexity of modern plant-wide
processes, FD has become more challenging than ever. Qualitative knowledge modeling
enables excellent diagnosis of special systems or specific fault types with little direct data
volume. The application of causality and empirical knowledge helps design and optimize
data modeling, improving diagnostic performance while reducing model complexity and
computational cost. In addition, quantitative data modeling helps to avoid the uniqueness
of diagnostic results of qualitative models and further improves the usefulness of qualita-
tive methods. An integrated modeling strategy that introduces qualitative analysis into
quantitative data processing is an effective way to solve complex FD tasks. The integration
of the two in fault diagnosis will be very promising research work.

4.5. Interpretability and Robustness of Deep-Learning-Based FD Models

The problems of poor interpretability and robustness caused by the “black box” char-
acter and complex structure of deep neural networks have seriously affected the reliability
and practicality of the models.

(1) Interpretability. For the many needs of practical applications, it is not enough
to know the inputs and outputs of a deep learning-based FD model, the interpretation
of its results is equally necessary. Research on the interpretability of deep learning can
guide the construction of DNN-based diagnostic models with optimal architectures and
enable clear targeted improvements. It is challenging to work out generalized methods
to explain deep-learning-based models. Creating specific interpretations of the model for
specific questions and data may be the first step for future research. Some researchers
have been focusing on the deep structure of traditional statistical monitoring to implement
hierarchical latent variables extraction in the trade-off between model interpretability and
model performance [119].

(2) Robustness. The effectiveness of deep-learning-based FD models relies on high-
quality training data. DNN models can easily exhibit vulnerability if there are adversarial
interference attacks in the input data. It is important to conduct research to simultaneously
make DNN-based diagnostic models with satisfactory performance and good robustness.
Currently, adversarial training is the most successful method to obtain robust neural
networks. In fact, the research of robustness in deep learning is usually associated with
adversarial sample attack and defense. However, the robust overfitting problem that affects
adversarial training performance requires further attention from researchers.

5. Conclusions

This paper provides a detailed review of the most relevant techniques and methods for
RTFD from 2010 to 2021. The research and discussion are derived from scientific literature
search and text mining.
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First, this paper presents a preliminary analysis of the collected literature using a
text mining and visual analysis tool, ITGInsight. Then, after a careful reading, this paper
categorizes the current RTFD methods from a new perspective and discusses their method-
ological applications separately. Finally, through topic mining and in-depth analysis of
the literature, this paper provides prospects in the following five aspects in response to
the challenges faced by RTFD, aiming to provide valuable guidance for future research in
this field.

• The self-diagnosis and characteristics in different frequency bands of sensors play a
key role in the accuracy and sufficiency of information acquisition;

• Effective data preprocessing techniques should be developed to achieve fusion of
heterogeneous data from multiple sources;

• Fault diagnosis techniques under variable working condition are important due to the
changing production needs;

• Hybrid fault diagnosis methods should be considered in order to be applied to the
complex plant-wide industrial system;

• The interpretability and robustness should be discussed to improve the reliability of
deep-learning-based fault diagnosis models.

In particular, this paper points out the development trend of real-time intelligent
fault diagnosis in modern industrial smart manufacturing. With the surge of industrial
data, the construction of big data ecosystems should be considered to support the moni-
toring and management of real-time data flow for online decision-making and real-time
fault diagnosis.
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